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A GALERKIN METHOD FOR THE
FORWARD-BACKWARD HEAT EQUATION

A. K. AZIZ AND J.-L. LIU

ABSTRACT. In this paper a new variational method is proposed for the numeri-
cal approximation of the solution of the forward-backward heat equation. The
approach consists of first reducing the second-order problem to an equivalent
first-order system, and then using a finite element procedure with continuous
elements in both space and time for the numerical approximation. Under suit-
able regularity assumptions, error estimates and the results of some numerical
experiments are presented.

1. INTRODUCTION

In this paper we consider a new Galerkin method for approximating the
following parabolic boundary value problem:
(1.1) o(x, 06,(x. ) = b, (x, )= f(x, 1) V(x,)€Q,
(x1,1)=0 Vvre]0, 1],
(x,00=0 Vvxel0,1],
(

¢
(1.2) [
$(x,1)=0 VvVxe[-1,0],

where Q = (-1, 1) x (0, 1), and the coefficient o(x, ¢) changes sign in Q.

Problems of the type o¢, = ¢ . with ¢ taking both positive and negative
values appear to have been considered by Gevrey in [5, 6], who specifically
treated the case o(x, t) = x” with m an odd integer. Much later, in 1968, a
detailed treatment of the case o(x, t) = x was given by Baouendi and Gris-
vard [3]. A similar treatment in a context where the second-order derivative is
replaced by a suitable nonlinear differential operator may be found in Lions’
book [10]. Recently, Goldstein and Mazumdar proved [7] that problem (1.1),
(1.2) is well posed in a suitable function space.

Problem (1.1), (1.2) arises in boundary layer problems in fluid dynamics (cf.
Stewartson [11, 12] and the references contained therein), in plasma physics,
and in astrophysics in the study of propagation of an electron beam through the
solar corona (see LaRosa [8]).
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As far as the numerical treatment of (1.1), (1.2) is concerned, very little can
be found in the literature. In [14] this problem is dealt with by a finite dif-
ference method, where a rather delicate piecing together on the dividing line
is considered. The main drawback of this approach is that it requires a high-
degree regularity of solutions in order to obtain a reasonable rate of convergence.
For example, in [14] it is required that the solution possesses continuous
derivatives of order 4 in x and order 2 in ¢ to obtain the rate of convergence
O(k + h2) , where k and & are mesh sizes in time and in space, respectively.
These regularity assumptions appear to be unrealistic in view of the fact that
the solution may not even be H "in ¢.

By a change of dependent variables,

u —At —At
u=[ '], uy=e "¢, uy=e "¢,

)

equation (1.1) may be written as the symmetric first-order system

(1.3) A, + A, + A;u=f,
where
[0 -1 o O _Jas O _[eMr
4=15 9] =[5 o 4=[T 3] =[]

We shall examine a finite element procedure for the numerical approximation
of the solution for this system of first-order partial differential equations. Our
results show that the L’ rate of convergence is O(hk), where & is the mesh
size of space and time, if the solution u € (Hk“ (Q))2 .

The finite element approximation for first-order systems in connection with
the mixed type equations has been studied by Aziz, Leventhal, and Werschulz
[2]. Many finite element methods for the heat equation have been proposed
and analyzed in the literature (cf. Thomée [13]). A common approach, often
referred to as the method of lines, is to first apply the Galerkin method in
space to reduce the heat equation to a set of ordinary differential equations.
Then a suitable method is applied to integrate the ordinary differential equa-
tion. However, our problem (1.1), (1.2) does not fit into this category, simply
because the coefficient o(x, t) changes sign, i.e., g(x,t) > 0 for x > 0 and
o(x,t) <0 for x <0. In contrast to the method of lines described above, we
use finite elements to discretize the first-order system (1.3) in space and time
simultaneously.

The use of continuous finite element methods to discretize time-dependent
problems has been proposed in the past. For example, Aziz and Monk [1] pro-
posed a continuous finite element method for the second-order heat equation;
however, it does not appear that this method can be extended to our problem.
Lesaint and Raviart [9] also proposed a collocation method for solving the heat




GALERKIN METHOD FOR THE FORWARD-BACKWARD HEAT EQUATION 37

equation, rewritten as a first-order positive symmetric system; however, our
first-order system is not positive in the sense of Friedrichs [4].

2. NOTATION AND DEFINITIONS

Let Q be a bounded domain in the (x, ¢) plane with boundary Q. We
denote by n= (n,, n,) the outward unit vector normal to 9.

We consider the following problem: Given a vector-valued function f =
(fi» fy) € (L2(Q))2, find a vector-valued function w = (u, u,): Q — R,
which is a solution of the first-order system

(2.1) Lu=A4u +4,u,+4u=f inQ,
with the boundary condition
(2.2) Mu=u =0 onT,

where '=T, Ul ;U Ul and the I'; are defined as follows:

I ={(x,: xe[ 1,0], t=0},

I={(x,):x=~1, t€[0, 1]},

I ={(x,: xe[ 1,0], t=1},

I,={(x,n:xe€[0,1], t=1},
(x, 0):

Ii={(x,n:x=1, te[0, 1]},

Iy ={(x,0:x€l[0,1],1=0},
hence 9Q =T, U-- Ul . In order to give a weak formulation of problem (2.1),
(2.2), we define a 2 x 2 matrix-valued function T and a function space V as

follows: 0
a
rv={ gy a)®
where a and f are known functions in x and ¢ to be specified such that T
is bounded, and
V={ue(H(Q)’: Mu=0}.
We shall make constant use of the classical Sobolev space H™(Q) provided

with the norm
1/2
10l o = (Z /|a vl dx) :

la|<m

1/2
V0 = (Z/la"vl dx) ,
|a|l=m

where a is a multi-index.

Define the bilinear form B: V' xV — R by B(u, v) = (Lu, Tv), where (-, -)
denotes the (L2(§2))2 inner product. Thus the weak formulation of (2.1) for a
given fe (L*(Q))? is: To find a ue V such that

and the seminorm

(2.3) Bu,v)=(f, Tv) WeV.
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3. THE GALERKIN PROCEDURE

In this section we shall derive an a priori estimate for the solution of (2.3)
and describe our finite element scheme.
We assume the constants kI >0 and k2 > 0 are chosen so that

Hl: Aao — §(a0), + 3(Bo), > k
H2:a>k,,

H3:a, + Bo < 2y/kk,,
H4: (mtlr,UD >0.
Now we state the fundamental result of this section as

Theorem 3.1. If H1- H4 hold, then there exists a constant C depending only
on the constants k, and k, such that

(3.1) lull} o < CB(u,u) VueV.
Proof. We have

B(u, u) = (Lu, Tu)=/(aau Up — U, u +/10aul Baulul
Q

2
—auy Uy + fougu, +auy)dQ.

Since
1 2 1 2
oau, uy = 3(gau;), - 3(da)u;,
—Qly Uy —oUy Uy = —(au uy)  +a,uu,,
2 2
_Baululx = _%(Balﬂ)x + %(BO')Xul >
we now let

I, —/[ (-=3(00), + dao + 3(Bo), )u?+(ax+/30)ulu2+au§]a’§2,

I, —/[ 2aau (au,u, + 2Bau ), 1dQ.

Applying Green’s formula to I, , we obtain
L= Laan,u; ' hd
, = (zaonu, —an uu, — sBon u|)ds.
r,u--ur

From the boundary conditions we then have:
on ILulbul'yul(: I, =0, since u, =0;
onI':n =0,n=-1,andby H2 and H4, I, >0;
onI,:n =0,n=1,andby H2 and H4, I, > 0.
By H1 and H2, we have

1> /Q i — (o + Bo)lu,||uy] + kyl]dSQ.
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If H3 holds, then it is possible to choose 0 < ¢, < k; and 0 < ¢, <k, such

that o, + fo < 2,/c/C, < 2¢/kk,. Since —=2,/c,G|u, | |u,| > —cluf - czug, we
get

I > /Q[(k1 - cl)uf + (k, - cz)ué]dQ.
The result now follows with 1/C = min{k, —¢,, k, -¢,}. O

To approximate problem (2.3), we in essence replace the Hilbert space V' by
a finite-dimensional subspace V" which satisfies the boundary condition (2.2).
Here, & > 0 is a real parameter such that as # — 0, dim V" - 0. The
Galerkin approximation is: Find a u" € V" such that

(3.2) B V) =, Tv) w'ev".

Equation (3.2) is equivalent to a set of linear equations. Indeed, let {¢j };’=I be
a basis for V" and denote

SRR ]

% #, 0 4
then
e [u?] _ [Eﬁzlu{ ’.}
- h| — n J4J
U, 21 9
n J . J
0 [u ] . J
= P ! N,
j=1 [ 0 ¢5] L ,;1
where .
v-[4]
L Uy
If we denote U = (u', ..., u")" and b=(b', ..., b")” with

) J )

v =[] =T rsisn,
by

then U is given by the linear system

(3.3) AU=b,

where A =(a;),; ;<, and a; = (LN’ , TN').

Lemma 3.1. A is invertible.

Proof. Suppose that there is a vector Z such that AZ = 0. Letting

(3.4) 7 = Z N7,
j=1
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we find that

1
z

T T
Z'Az=0",...,7" A | :
n

=zn:z,r(.n

j:

n T
= }:z' AZ
i=1

= (L', ") = B(", ");
since Z'AZ =0, and by (3.1), we then have
h2 h h
Clz'lly g < Bz, 2') =0.

Hence 2" = 0. Now {¢j };’=l is linearly independent (being a basis for yh ),

so that (3.4) and =0 imply that Z = 0. Since A is a square matrix with
trivial nullspace, A is invertible. O

We now prove existence, uniqueness, and uniform stability of solutions to
(3.2).

Theorem 3.2. If H1- H4 hold, then there is a unique % satisfying (3.2).
Moreover, there exists a constant C depending only on the constants k, and k,
such that

h
(3.5) ullp,@ < Cliflly q-

Proof. The existence and uniqueness follow from Lemma 3.1; inequality (3.5)
is an immediate consequence of Theorem 3.1 and the boundedness of 7. O

4. ERROR ANALYSIS

In this section we shall derive L* error estimates for the Galerkin approxi-
mation problem (3.2). The problem of estimating the error may be reduced to
a problem in approximation theory.

Theorem 4.1. Let u and u" be solutions of problems (2.3) and (3.2), respectively.
If H1- H4 hold, then there exists a C >0 depending only on the constants k,
and k, such that

h . h
(4.1) w0l o < C inf fluv"ll o

Proof. Given % , we use Theorem 3.1 to find
Cllluh —vh||(2)’Q < B(uh v ' - vh)
h ho h h h h
=(Lu=v), T =v)) <Gllu-v, gllu" =vy q-

Setting C, = C,/C,, we find

h h h
lu” —v ”0,95 Cyllu—v ”LQ'




GALERKIN METHOD FOR THE FORWARD-BACKWARD HEAT EQUATION 41

Since
h h h o h
lu—ully o <lu=vilg o+l =viy o,
the desired result (4.1) follows with C =1+ C;. O
We now make the following assumptions:

(i) Thereisan s >0 such that ue V n (H'(Q))*.

(i1) {V"} -0 18 @ regular family of finite elements, where V" isa subspace
of V consisting of piecewise polynomials of degree k, where k <s—1
(and thus, u € (H**'(Q))?%).

Then we have the following error estimate.

Theorem 4.2. Suppose that the hypotheses of Theorem 4.1, and (i), (ii) hold.
Then there is a constant C >0 depending only on k, and k, such that

h k
(4.2) lu—wfly o <Ch ul,,; o

Proof. Immediate from Theorem 4.1 and the usual interpolation-theoretic re-
sults. O

5. EXAMPLES

We present here some examples to verify that the assumptions made in §3
are indeed not very restrictive. Some numerical implementations of the finite
element method to a particular example will be given.

Example 1. Consider the following second-order parabolic equation:
(5.1) x¢,(x, )=, (x,0)=f(x,1) Y(x,1)€eQ,
where Q = (-1, 1) x (0, 1), with the boundary conditions

o(xl,0)=0 vrelo, 1],
(5.2) é(x,0)=0 Vxelo, 1],
d(x,1)=0 V¥xe[-1,0],

where f is chosen as

2x(x? = D[t - 1> = 4x> +1(t - 1)]
“20%[(t-1)2 - 24x" +4] Vx>0, t€[0, 1],
2x(x? = 1)1 = )2 — 1 - 4x?)
—2(1-1)*(FF —24x* +4) vx<0, €0, 1].

It is easy to show that

2 2
¢(x,t)={( 1) E( 1)’ -4x’] vx>0, t€(o0, 1],

flx,1)=

t
(x> =) —axDH(-1)?* vx<0, te[o, 1],
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is an exact solution to the boundary value problem (5.1), (5.2). This typical
example will be used for all numerical calculations.

Example 2. For o(x

,1) = x" with m an odd positive integer, we choose
A=0.1,a=1,and f=x

~"*! We then have
H1: $(1+0.2x™) > 04 =k,
H2: 1=k,
H3: x <2v0.4 =1.2649,
Ha: xm”zlr,ur4 >0.

Example 3. We now give an example for which a(x, t) = x + %t. Let A=0.1,
a=2,and B =1. We then have

H1:3402(x+ 40> 5=k,
H2:2=k,,

H3:x+ i< d=1125<2/1 = 1.1832,
H4: (x + gt ”z|r,ur4 >0.

For the finite element procedure, we formulate (5.1) as a first-order system
which is not symmetric positive.
Now, the parameters A, a, and S are chosen as

(5.3) i=01, a=2, B=2.
If

u 8_0'“¢
(54) w= )= oy |

then using (5.1), we obtain the system of first-order equations
Lu= A, + 4,u, + A5u
[0 —lu+xou+—0'1xou
(5.5) -1 0|x 0 0] 0 1

—0.1¢
= [e 0 f] in Q,

with boundary condition

(5.6) u,(x,1)=0 ¥(x,7)€Tl,ul,UT UT,.

With the choice of (5.3), we then have the bounded operator

2.0
T=[2x 2}'
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Let us verify the hypotheses

H1:1+02x > %=k,
H2:2=k,,

H3: 2x < 2,3,

H4: x”1|r,u1‘4 >0.

After subdividing Q into squares, we choose the space of approximating
functions V" as the set of piecewise bivariate polynomials with degree < 2 on
the squares which satisfy boundary condition (5.6).

In Table 5.1 we see the L? error and the L’ rate of convergence for various
mesh sizes /. These results show O(hz) accuracy.

I

2.

TABLE 5.1
Finite element computation

h | maxle| | L error | L° rate
% 4271 1.104

1.99
% 1.208 0.276

2.02
% 0.316 0.067

2.01
% 0.078 0.016
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