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ERROR BOUNDS FOR THE METHOD

OF GOOD LATTICE POINTS

SHAUN DISNEY AND IAN H. SLOAN

Abstract. New error bounds are obtained for the method of good lattice points

for multidimensional quadrature, when m , the number of quadrature points,

is prime. One of these bounds reduces the constant in Niederreiter's asymptotic

error bound, if the dimension exceeds 2. Together they give very much smaller

numerical bounds for all values of m .

1. Introduction

The method of good lattice points, developed by Korobov [4] and Hlawka [3],

is a well-studied method for the approximate evaluation of integrals over the

s-dimensional unit cube Is = [0, if , under the assumption that the integrand

is 1-periodic in each variable. The method is reviewed by Niederreiter [7, 9].

If / is such an integrand defined on Rs, then the approximation is

c i m~*    / ■   \

ti.» /,*w*"-=-g'(i»)"

where m > 2 is a (large) positive integer, and g e Is is an appropriate s-

dimensional integer vector, or "lattice point". In the present work, as in the

work of Korobov and Hlawka, m is taken to be prime.

If f has the absolutely convergent Fourier series expansion

(1.2) /w-E.v2"*".
hez1

then, as is well known, the error in (1.1) is

1   m~'      /   •    \ r

j=0     v      '     J' MO

h-g=0 (modm)

Let
s

(1.4) r(h) = l[[r(h¡),        r(h) = max(l, \h\).
(=i
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From (1.3) it follows that the least upper bound of the error for the class of

functions whose Fourier coefficients satisfy |aJ < r(h)~" for h / 0 is

(1.5) Pa(S,m)=       £ * o>l.

h-gsO (mod m)

In the method of good lattice points, for fixed m and a one chooses a lattice

point g which makes Pa(g, m) as small as possible. (Alternative selection

criteria are discussed by Lyness [5].) A result of Niederreiter (obtained by

combining (4.6) of [7] with Theorem 2 of [8]) is that for m prime (or a prime

power) there exists a lattice point g such that

(1.6) Pa(8,m)<(l + 2C(a))j(2'°e'" + 0n-81),° + 1 =0(flg^O .
m \     m      )

For m prime, Bakhvalov [ 1 ] has even shown that a bound of order

0((logmf~i)a/ma)

is achievable, but he does not give the constants.

In the present work we give new upper bounds on PJg, m) for good choices

of g. One of these (see Theorem 5) is of the same asymptotic order as (1.6),

but has a smaller constant factor in front, except possibly for s = 2.

The main results are stated in the next section, and proved in §3. Some of

the results depend on making an appropriate choice of a certain parameter ß .

Motivations for our particular choices are given in §4. Finally, in §5 we calculate

numerical values for the various bounds, and compare them with known "good"

values of Pn(g, rn).

2. The main results

Our first result makes use of the mean of ^ (g, m),

(2.1) K(^) = 7-TTfE^(8'w)' <*>l>
1 '  gee

where G is the set of all lattice points g= (g{, g2, ... , g ) satisfying -m/2 <

gj < m/2 and g} ¿ 0 for j = 1, ... , s .

Theorem 1. If m is prime, then

(U,        MM="+2C(°))' + '^Ilfl-2"-'"'7C'<"V-l.
v     ' "y m m      \ m- I I

This is proved in §3, using techniques adapted from Niederreiter [8].

Since Mn(m) is the mean of PJg, m) over g, it is obvious that there exists

a point g for which ^ (g, m) is less than or equal to the mean.
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Corollary 2. If m is prime, then there exists a lattice point g such that

r (i. m) < " + 2«tt»' + ¿"ZU {t - 2" - »'TXMV , t,
" m m      \ m - I j

If m > ((a) + 1, then an obvious inequality is

^ 1     2(1-m'-Kía)^ t     2Ç(a) ]
m-l m - I ~

This leads to the following corollary, slightly weaker, but more transparent than

the results above:

Corollary 3. If m is prime and m > Ç(a) + I, then

(2.3) MJm)<(l+2Ç(a))Jm,

and there exists a lattice point g such that

(2.4) Pn(g,m)<(l+2C(a))Jm.

The bound in Corollary 2 is only of order 0(1/m) and therefore is worse

than the bound (1.6) for large enough values of m . However, we shall see in §5

that its numerical values are useful for small and moderate values of m, and

indeed are smaller than the bound (1.6) for all practical values of m .

Bounds with better asymptotic form may now be generated by a simple ap-

plication of Jensen's inequality (see Hardy et al. [2, Theorem 19])

(EW)"Ps(EKi,)'/'.    o«<*.

which implies, by (1.5),

(2.5) PJg,m)<(Pß(g,m))"/ß,        Kß<a.

Combined with Theorem 1, this yields the following result:

Theorem 4. If m  is prime and 1 < ß < a, then there exists a lattice point g

such that

(2.6) PJg,m)<(Mß(m))"/ß

=  i(l+2qß)Y + (m-l) /   _ 2(1-m]-ßK(ß)Y _ Y'"
\ m ml m-l J        J

In principle, the best choice of ß in Theorem 4 is that which, for given m

and a, minimizes (MJm))' . In §4 we provide some motivation for two

nonoptimal choices,

(2.8) ßx(m) = logm/(logm -s) = I + (log\/m - l)~ ,

and

(2.9) ß,(m) = 1 + (log(^/fn/b) - loglog(^R/b))~l,
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where

(2.10) b = 2e~y+x'2,

and y = 0.57721... is Euler's constant. The second of these is the better in

both theory and practice, and is the one we use in association with (2.7) for

obtaining numerical bounds in §5. The first choice /?, , on the other hand, is

analytically simpler and allows us to obtain in §3 the following explicit bound:

Theorem 5. If m is prime and m > esa , then there exists a lattice point g

such that

(2.11) P(g,m)<(^)
e\sn (2 log m + s)

s ) m

The estimate (2.11) has the asymptotic form C(log,m)sn/ma, where

C = (2e/s)sa. Niederreiter's estimate (1.6) has the same asymptotic form

C'(logm)*7m", with the different constant factor C' = 2in(l + 2Ç(a))s. The

ratio

£ = ((í)"(1+2í(o)))S

is greater than 1 for a < 2 and s > 1, and for all a if s > 3 ; and for fixed a

it increases faster than exponentially with s . The larger bounds given by (1.6)

are reflected in the numerical bounds computed in §5.

3. Proofs

3.1. Proof of Theorem 1.     Since Ma(m) is the mean of Pn(g, m), all that has

to be proved is the explicit expression for Ma(m). In this proof, summations

over h and h will be over if and Z, unless specifically restricted. The notation

J2* stands for summation excluding zero.

We have

h.g=0 (modm)

where A/(h) is the number of vectors g e G such that h • g = 0 ( mod m).

We can express N(h) as

.   m— 1

*m-E±I> =»•• ■
m ¿-^    \m

gee      y=o



ERROR BOUNDS FOR GOOD LATTICE POINTS

where e(t) denotes e n" . Then we have

m-l

m(m-l)s j^.^¿í   \m     >(!>)

1

7=0    h   g€G

m—1      oo

1)îL     2^      "    1^
o       Aj=—a

*      e((j/m)h,g,)---e((j/m)hgs

m(m - .
7 = 0  A,=-00 ^ = -00

^ £ r(Ä,)& •••»■(*/
-m/2<g,<m/2     —m/2<gs<m/2

s
m-l

ffl^    ffl-1^     ^
7=0   \ A -m/2<g<

Separating out the j = 0 term, we get

U-l^      ¿- r(A)°       I
7=0   \ A -m/2<g<m/2 v   ;

m— 1
1 1/1 \

(3.1) Mim) = -(l+2C(a)), + -y    —î-rTO')     -1,
"     '     mv m ¿^ \m- 1        /7=1   v '

where

w-T,  £'  «(s**);¿y    •*>*«->
A -m/2<g<m/2     v /     v   /

Separating out the terms with /z = 0 (modm), we have

^') = E^  E*   »
A      v        y -m/2<g<m/2

+      E      ̂      E       *{ñhS
A£0 (modm)    v   ' -m/2<g<m/2      v

1
(W       !)E ,-(/,,„)<« E r(/j)'>

A      v        ' hjÈO (modm)    v   '

= (m_„(l + ;lC(Q))_(ç  '  _Ç-_J
.(hm)"A^O    v   ' A

= (m_1)^1 + _lC(Q)j_2(c(a)--Lc(a:

= (m- 1)-2(1 -m1~")C(a).

Putting this into (3.1) gives (2.2).   D

3.2. Proof of Theorem 5. If m > 1 , s > 1 , then

m > - log m + 1 = —- + 2,
s ßx(m)-\

which, together with the inequality

°°   1 f°° 1 1
(3.2) £(,) = £<!+/ rfi= +i,        ?>1,

,   « 7i    x ? - 1
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implies that m > C,(ßx(m)) + 1 for all m > 1, s > 1 , where ßx(m) is given

by (2.8). It follows that Corollary 3 is applicable with a replaced by ßx(m),

giving

Mßi{m)(m)<(l+2C(ßx(m)))s/m.

The assumption m > esa'{"~l) is equivalent to 1 < ßx(m) < a, so Theorem 4

asserts the existence of a g such that

/q + 2^1(m))rVt//?|('^(2(^, -!)-'+ 3)«"*
prM,m)< p—.:iv <

m j rrt

(21ogx/m+l)w/?1      (2log</m + l)sa
<

mae~sa mae~sn

e\s" (2 log m + s)sa
71 *        I—I

© m

4. Motivation for choosing ß = ßi and ß = ß2

We begin with a one-parameter family of choices for ß in Theorem 4, namely

(4.1) ß = logm/(logm - c) = 1 + (log\fm - 1)    ,        c>0.

Proposition 6. If m is prime and ß = ß(m) is defined by (4.1), then

,a^ i** i   w>/ß     f 2sec\n (logmf"
(4.2) (Mß(m))      ~ I —j- I   —^t;—    as m ^oo.

Proo/. Using ^-»1 asm^oo and Ç(t) = {t- 1)_1 +0(1) as ; -+ 1 (for the

latter see Whittaker and Watson [10, §13.21]), we obtain

C(ß)

and hence, using (2.2),

aß) = (ß-i)~l + o(i) = iog</jñ+o(i),

M   = (2log<fm)s     0((logm) j-i

m \        m        I

Since l/ß = 1 - c/logm and m"c/log'" = £>"'', the result (4.2) follows.   D

It is now reasonable to choose the parameter c in (4.1 ) so as to minimize the

constant factor in the asymptotic expression (4.2). Elementary calculus shows

that ec/cs is minimized by the choice c = s. With this choice (4.1) yields

ß = ß{.

The choice ß = ß2 does not improve the asymptotic expression for (Mß)"'ß :

in fact, it can be shown that the choices /?, and ß2 both yield the same asymp-

totic form,

,,,, ,., ,   ,w/?,     (2e\s<l (logm)sn

(4.3) (Mß(m))      ~ Í — 1 m„      ,        i=l,2.
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The motivation for choosing ß = ß2 comes from the following more careful

argument. Let F(ß, m) be the bound in Theorem 4, i.e.,

(4.4) F(ß,m) = (Mß(m)fß.

Then

dF fa a    dM„\
?—(ß,m) = F(ß,m)[--2logMß +
dßKH,    ', KH,     ;y    ß2"*"ß       ßMß   Qß

= -j2F(ß,m)log(H(ß,m)),

where

/       ß     dMß      \(4.5) W,w) = ̂ (w)exp^-^L-^(m)J.

Thus, dF/dß = 0 if and only if H(ß, m) = 1 ; and it can be shown that

the stationary value of F is in fact a minimum. The next proposition shows

that the choice ß = ß2 is in a certain sense asymptotically optimal, in that

H(ß2(m), m) —► 1 as m —► oo, whereas this is not true for the choice ß = ß[ .

Proposition 7. If m is prime and s > 3, then

(i) H(ßi (m), m) —► +00 as m —> oo,

(ii) H(ß2(m), m) —► 1 as m —>■ oo.

Proof. Let Ç(. = í(/?,.(m)), C¡ = £(ßt(m)), and xt = (ßt(m) - l)"1 for i =
1,2. Then x, = log^/m - 1 and x2 = log(\fm/b) - loglog(\fm/b), and in
both cases xi = log^/m + O(loglogm) as m —► oo. Since

C(t) = (t - l)~l + y + e(t),

where e(t) -» O as t —> 1, we have

(4.6) C,=*, + 0(1)   asm^oo,  / = 1,2,

(4.7) 1+2C(. = 2xi(l + ^^- + o(—Y\     asm-^oo,   i= 1,2.

Also C'(0 = -(/ - l)-2 + O(l), which implies

C¡ = —jcf- + 0( 1 )   as m —> oo.

We also require

,. 0, l-ß,(m) -l/x, -l/(log^/m+0(loglogm)) -j,,   ,      ,,.,
(4.8) m     '     = m      ' = m = e    (1 + o(l)).

From (2.2) and (4.8) we have

M^Cm) = 1(1+ 2C/-¿(1+2(1-^(1+0(1)))^,)

+ 0((logm) /m )

= i((l + 2C,r - (1 + 2(1 - e-'Mjil + o(l)))

= i(l+2C,)i(l+0(l/x,2)),
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since s > 3. Similarly, by differentiating (2.2) and applying (4.6) and (4.7) we

obtain

(4.10)
dMß(m)

dß =-^(i+2c,r,x,2(i+0(i/x/2)).
ff,(m)

m

Thus, the argument of the exponential function in the expression (4.5) for

H(ß, m) is

-ß.(m)dMß(m)

Mß(m)     dß

(4.11)

(l + l/x,)2sx2(l + Q(l/x2))

(l+2C,)(l + 0(l/x,2))

s(x2 + x, + Q(l))

xl(l + (2y+l)/2xi + o(l/xi))

2x. x¡

*.-+'—=-^+ 0(1)

Using (4.9) and (4.11), it now follows from the definition (4.5) of H(ß, m)

that

H(ßi(m), m)Xls = j=(2X¡ + 0(l))exp (x, + X—^- + o(l)

In particular,

,'/JH(ß.(m),m)1 = (21ogv/m + 0(1)) exp
•1 -2y

+ o(l

whereas

t'/j

+ oo   as m —+ oo,

ym
H(ß2(m),m)"= l21og^--21oglog^- + 0(l)

1        (   i    i     <fm~     l-2y       ...
x -exp I -loglog^r- + —-— + o(l.

= 21ogÇ(l+o(l))i(logÇ

2       / 1 - 2y\
—*■ r exp I as m —i- oo.

z=l,2.

(i^+o(.,)

5. Numerical estimates

In Tables 1, 2, and 3 we show numerical values of theoretical bounds for the

case a = 2 and dimensions s = 3, 6, and 10. The bounds are calculated from

Theorem 1, from Theorem 4 with ß = ß2(m) (see (2.9)), and from Niederrei-

ter's bound (1.6).   Additionally, to give some perspective on what might be
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achievable, we show some known "good" values of P2(g, m) for comparable

values of m . These are taken from the tables of Maisonneuve [6].

The tables show, perhaps surprisingly, that the bound given by Corollary 2

is a quite effective bound for all practical values of m, notwithstanding its

inferior asymptotic behavior. The bound given by Theorem 4 with ß = ß2(m),

though asymptotically better, produces a smaller bound only for values of m

exceeding about 10i+ , and even then makes only a modest improvement.

The bound given by ( 1.6) exceeds both of the other bounds by many orders of

magnitude, especially when s is large, and is therefore less useful as a numerical

estimate.

Table 1

Bounds on P2 for s = 3

"Good" values

of f?(g, m)

m S

10"

105

106

2.2(-l) 98 (1, 16, 44)

5.3(-3) 1010 (1, 140, 237)

1.3(—4) 10,007 (1,544,...)

4.9(-6) 100,063 (1,53584,...

Table 2

Bounds on P2 for s

Table 3

Bounds on P2 for s = 10

m Cor. 2        Thm. 4        Bound

(ß = ß2l     of (1.6)

"Good" values

of P,(g. w)

io-
I05

106

107
10s

2.1(1) 103.661 45681
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