TABLE ERRATA

613.-Ravindra Kumar \& M. K. Jain, Quadrature Formulas for Semi-Infinite Integrals, Math. Comp., v. 28, 1974, pp. 499-503.

The expression for ϕ_{3} on p .501 should have constant term $-\frac{1}{14}$. The first heading in Table 1 should be " n ". The weights for $n=4,5$ in Table 1 should read:

$$
\begin{array}{cc}
n=5 & n=4 \\
(-2) 0.483911318666 & (-2) 0.509359137224 \\
(-2) 0.261732005650 & (-2) 0.240398302919 \\
(-3) 0.119047619048 & (-4) 0.781190279565 \\
(-6) 0.276711090830 & (-7) 0.641463698229 \\
(-11) 0.246102967427 &
\end{array}
$$

They have been computed to twelve significant figures, using the recurrence formula (6) and standard procedures [1, p. 290, (v)] for computing the weights and abscissae of Gaussian quadrature formulae.

The omissions in the "Formula (16)" column of Table 2 should be -1×10^{-8} for $n=4$, and zero for $n=5$. (Both of these values were computed to eight figures to be consistent with Table 2.)

The corresponding values in the "Upper bound (15)" column are 223×10^{-8} $(n=4)$ and $22080 \times 10^{-8}(n=5)$. If $f^{(2 n)}(\xi)$ in equation (15) is replaced by $\max _{0 \leq x \leq \infty}\left|f^{(2 n)}(x)\right|$ as the authors have suggested, all numbers appearing in this column should be positive.

R. P. SAGAR
A. M. Simas

Departamento de Química Fundamental Universidade Federal de Pernambuco Recife-PE, Brazil

1. W. Gautschi, On generating orthogonal polynomals, SIAM J. Sci. Statist. Comput. 3 (1982), 289-317.
