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AN AUTOMATIC QUADRATURE
FOR CAUCHY PRINCIPAL VALUE INTEGRALS

TAKEMITSU HASEGAWA AND TATSUO TORII

Abstract. An automatic quadrature is presented for computing Cauchy prin-

cipal value integrals Q(f; c) = fa f(t)/(t — c)dt, a < c < b, for smooth

functions f(t). After subtracting out the singularity, we approximate the func-

tion f(t) by a sum of Chebyshev polynomials whose coefficients are computed

using the FFT. The evaluations of Q(f; c) for a set of values of c in (a, b)

are efficiently accomplished with the same number of function evaluations. Nu-

merical examples are also given.

1. Introduction

We present an automatic quadrature scheme for approximating principal

value integrals

(1.1) Qif;c) = -f P^-dt,      -l<c<l,
J-i i — c

where f(t) are assumed to be smooth functions. Piessens et al. [17] give an

automatic quadrature program for evaluating Q(f;c) in ( 1.1 ) for a single value

of c.

In this paper, for a set of values of c in (-1, 1) we efficiently compute a set

of approximations {QN(f; c)} to the integrals (1.1) satisfying the prescribed

tolerance ea. To this end, it is required to construct quadrature rules which

have error estimates independent of the values of c for smooth functions f(t).

Our method is an extension of the Clenshaw-Curtis method [4] (henceforth

abbreviated to CC method) for the integral /_j f(t) dt to the problem (1.1) [1],

[2], [3], [14]. In the CC method, the function f(t) is approximated by a sum

of Chebyshev polynomials Tk(t),

(1.2) PNit) = Y,"aNkTk(t),       -\<t<l,
k=0
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interpolating f(t) at the abscissae tj = cos(nj/N) (0 < j < N), which are

the zeros of the polynomial oN+l(t) defined by

(1.3) coN+x(t) = TN+X(t) - TN_x(t) = 2(t2- 1) UN_x(t),        N > 1,

where Uk(t) is the Chebyshev polynomial of the second kind defined by Uk(t) =

sin(/c+1)9/ sinö (t = cosö). In (1.2). the double prime denotes the summation

where the first and last terms are halved. The truncated Chebyshev series (1.2)

converges rapidly as 7Y increases if f(t) is a smooth function.

Chawla and Kumar [3] substituted pN(t) (1.2) for f(t) in (1.1) to obtain an

approximation QN (f;c) to Q(f;c) as follows:

(1-4) QCNK(f;c) = J2"4QiTk>c)>
k=0

where the modified moment Q(Tk ; c) = f_x Tk(t)/(t - c)dt can be computed

by means of a three-term recurrence relation [1]. However, this method is

not suitable for our purpose because the error Q(f; c) - Q^K(f; c) cannot be

bounded independently of the value of c [3].

On the other hand, subtracting out the singularity [5, p. 184], [7, p. 104], [18],

[19], one can write Q(f; c) (1.1) in the form

(1.5) Q(f;c) = j ^gc(t)dt + f(c)\og(j^j ,

where gc(t) is defined by

(1.6) gc(t) = {f(t)-f(c)}/(t-c).

Chawla and Jayarajan [2], and subsequently Kumar [14], made use of the ap-

proximate polynomial pN(t) (1.2) to interpolate gc(t) instead of f(t) at i;

and obtained the quadrature formulae

(1-7) QC/(f-,c) = ±"Ajgc(t») + f(c)log(^ ,

when tN: i^ c for all ; . In the above, A-   are given by

4 N'2
ANj=j}Y,"T2kitNj)li\-U2)>        0<J<N,

k=0

where here and henceforth we conveniently assume that tV is even.

It is known [14] thai the quadrature formulae (1.7) can yield, in general, bet-

ter approximate values for ( 1.1 ) than the formulae (1.4), but in the computation

of git** ), we have severe numerical cancellation if a node t¡ happens to be

very close to c [9], [15]. This instability requires special care in programming

the function gc.
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We now show that we can avoid this instability by approximating f(t) and

f(c) in (1.6) by pN(t) and pN(c) (1.2), respectively; the approximation

QN(f;c) to the integral Q(f;c) then becomes

Expanding the integrand in (1.8) in Chebyshev polynomials,

(1.9) P»{t\lP"{C) = ïl'dkTk{t),
k=0

and integrating term by term, yields a new integration formula

tf/2-l /]-r\

(1.10) QN(f;c) = 2 Y,'d2kl(\-4k2) + f(c)\og[T¿),
k=o \1+c7

where the prime denotes the summation whose first term is halved. The coeffi-

cients dk in (1.9) can be stably computed by using the recurrence relation

(1.11) dk+x-2cdk + dk_x=2ak,       k = N,N-l,... , 1,

in the backward direction with the starting values dN = dN+x = 0, where we

take a^/2 instead of a% . We have omitted the dependence of dk on tV and

c.

It is well known that the Fast Fourier Transform (FFT) is useful for efficiently

computing the coefficients {ak } in (1.2); see also (2.1) below, [1] and [10],

where by doubling tV the computation can be repeated, reusing the previous

values until an error criterion is satisfied. It is advantageous to have more

chances of checking the stopping criterion than by doubling tV , in order to

enhance the efficiency of automatic quadrature. In [12], we allowed N to take

the forms 3x2" and 5x2" as well as 2" , that is,

(1.12) tV = 3,4, 5,... ,3x2", 4x2", 5x2",... (« = 1,2,...).

In §2 we briefly review how to generate recursively the sequence of the in-

terpolating polynomials {pN(t)} by increasing N as in (1.12) and by using the

FFT. The set of the TV + 1 nodes uN¡ (0 < j < N) for pN(t) is chosen to be a

subset of {cosnj/2m} ( 0 < j < 2m ) used in the CC method, where m is the

smallest integer such that N <2m .

We remark that the present quadrature rule QN(f; c) (1.8) or (1.10) is not

of interpolatory type because the degree of exactness in the present rule, using

N + 2 abscissae, u] (0 < j < N) and c, is N, not tV + 1. As will be shown

in §3, however, since the function value f(c) is used in the quadrature rule

Q^if' c) (1-8), but not in interpolating f(t), the error of QN(f; c) can be

bounded independently of the value of c for smooth functions f(t). See (3.8),

(3.10), and (3.11) below. This fact enables us to use the polynomial pN(t)

common to the set of the approximations {QN(f;c)}  for a set of ovalues
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in (-1,1). In §4 numerical comparisons with other automatic quadrature

methods are shown.

2. Computation of the Chebyshev coefficients

We will outline the iterative procedure for computing the sequence {pN(t)}

(1.2) of the truncated Chebyshev series by increasing tV as in (1.12). For

details, see [12].

We begin with the sample points for pN(t) to interpolate f(t). If the sample

points are carefully chosen, the interpolating polynomial converges [13, p. 254],

We gave in [11] and [12] a sequence {ß,} which is a modification of the van

der Corput sequence and satisfies the recurrence relation:

ß2j = ßj/2,        ß2j+x=ß2j + l/2,        / = 1,2,... ,

with the starting value ßx = 3/4. The set of the sample points {cos2nß}

(j = -1, 0, 1, ... ), where we put ß_x = 0 and ßQ = 1/2, is a sequence

of Chebyshev points [13, p. 254], which makes the sequence of interpolating

polynomials converge uniformly on [-1, 1] for functions analytic on [-1, 1].

The polynomial pN(t) is determined so as to interpolate f(t) at the first tV+ 1

points of the sequence {cos 2nß } ( j = -1, 0, 1, ... ).

Let tV = 2" ( n = 2, 3, ... ); then the set of the N+l abscissae {cos 2nßj)

( -1 < j < N) coincides with the zeros of a>N+l(t) (1.3), that is, {cosnj/N}

( 0 < j < N ) used in the CC method. Therefore, the interpolation condition

pN(cos nj/N) = /(cos nj/N),        0<j<N,

determines the coefficients ak  for pN(t) (1.2) as follows:

2   N
(2.1) ak = jj ^2 " /(cos nj/N) cos(nkj/N),    0 < k < N.

7=0

It is known that the right-hand side of (2.1) can be efficiently computed by

means of the FFT for real data [10].

We represent the polynomials P5N/4(t) and PiN,2(t) interpolating f(t) at

the nodes {cos2jtßj} , where -1 < j < N + N/4 for P5N/4(t) and -1 < j <

N + 7V/2 for PiN,2(t), respectively, in the form

N/4

W) -pnW = -s+1wEÍ ü¡k-i(0
(2.2) k=i

= Éb?{TN_k(t)-TN+k(t)},
fc=i
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N/2

Pin/iW-Pn«) = "WV+lWÉ Bk  Uk-lit)
k=\

N/2

= ÉSk{TN-kit)-TN+kit)}.
fc=i

Then, the coefficients {bk} and {Bk} are determined to satisfy the conditions

P5N,4Í^) = fi^)'        0<;<tV/4,

P3N/2iWj) = f(w^),       0<j<N/2,

where the sample points v¡   and w.   are defined by

(2.4) ^ = cos87t(; + /34)/7V    or   TN/4(vJ) - cos2nßA = 0,

(2.5) Wj =cos4n(j + ß2)/N   or   TN/2(Wj )-cos2nß2 = 0,

respectively. This is because the set of the additional tV/4 (tV/2) abscissae

{cos2nßj}, N <j < N/4 (N < j < N/2) for P5N/4(t) (pWj2(t)) coincides

with {vf}, 0 < ; < tV/4 ({wf}, 0 < j < N/2) [12]. If the set of tV/2
sample points {cos47t(7+/33)/7V} (0 < ;' < tV/2), which agrees with {cos2nßj}

(3N/2 < j <2N ), is added to the set of abscissae for PiN,2(t), we have 2tV +

1 abscissae {cos7r;'/(27V)} (0 < ;' < 2tV) for p2N(t). Thus the sequence

of the interpolating polynomials {p3m(t), p4m(t), p5m(t), ...} (m = 2" , n =

1, 2, ... ) is recursively generated. The FFT [12] is used to efficiently compute

the coefficients {bk} and {Bk }.

3. Error estimates

Assume that N = 2"  (n = 2, 3, ...) and define Ak  by

' ak, 0<k<N-N/4,

ak+b%_k, N-N/4<k<N,

</2, k = N,

-bk_N, N<k<N + N/4.

Then, the approximate quadrature QSN,4(f; c) depending on the polynomial

P5N/4(t) (2.2) is given by the right-hand side of (1.10), where the sum ranges

from 0 to tV/2 + tV/8 - 1, and by (1.11) with aj¡ replaced by Ak (3.1).
Similarly, one can obtain the approximation Q3N/2(f; c) depending on the

polynomial P3N/2it) (2.3).

Now,  we will give error estimates for the approximations   QN(f;c),

Q5N,4(f;c), and  Q3N,2(f;c), especially for analytic functions  /.    Let

(3.1) ANk
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e   denote the ellipse in the complex plane z = x + iy with foci (x, y) =

(-1, 0), (1, 0) and semimajor axis a = (p + p~X)/2 and semiminor axis b =

(p - p~ )/2 for a constant p > 1.

Assume that f(z) is single-valued and analytic inside and on e . Then,

the error of the interpolating polynomial pN(t) can be expressed in terms of

a contour integral [6], [7, p. 105], [8], which is also expanded in a Chebyshev

series [11]:

(3.2)    />„-,,(,)- ¿jf I'^'X' =^,MgV(/W<>.

where the coefficients Vk (f) are given by

0.3)        tfw.-uägww*   t2a
7T2i/£/,       W^+1(Z)

The Chebyshev function of the second kind, Uk(z), is defined by

(3.4) ^(W'-LW*^. «__ *^,
■/-i (z-Ovl-/2     V?-lwk     (w-w  x)wk

where tu = z + \/V - 1 and H > 1 for z g [-1, 1] [8], [11].
Using (3.2) in (1.5), (1.6) and (1.8) yields the error for the approximate

integral QN(f;c):

oo

(3.5) Q(f; c) - QN(f; c) = £'üf (c) VkN(f),
k=0

where Qk (c) is given by

(3.6)        nfr) = f   -N^)lk(t)-œN+x(c)lk(c)d^       k ^ o
J-\ t - c

In Appendix A we prove the following lemma.

Lemma 3.1. Let N = 2" , « = 2,3,..., and Qk (c) be defined by (3.6). Then,

ilk(c) is bounded independently of the value of c as well as N and k ; indeed,

(3.7) \QNk (c)\ < 8.

From (3.5) and (3.7) we have the following theorem.

Theorem 3.2. Let N = 2" , « = 2,3,..., and assume that f(z) is single-

valued and analytic inside and on e . Then, the error of the approximate integral

Ôat(/î c) given by (1.10) is bounded independently of c by

oo

(3.8) \Qif\c)-QN{f;c)\<*Y,'\VkNif)\>
k=0

rN
where Vk (f) is given by (3.3)
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Similarly,   the   errors   of  the  approximate   integrals   QSN,4(f; c)   and

QyNi2(f;c) are bounded as follows:

Theorem 3.3. Let N = 2" (« = 2,3,...) and assume that f(z) is single-

valued and analytic inside and on e . Further, let VkN+N/a(f) (a = 2, 4) be

defined by

N+N/<j/f._    1    f LJk(z)f(z)dzvr ' (f)
n l Je(3-9) k        "'     n2iJepCDN+x(z){TN/a(z)-cos2nßa}'

k>0,    (7 = 2,4.

Then, we have

oo

\Qif; c) - Q5N/4(f; c)\ < 8(1 + |cos2^4|)X;yriV/4(/)l

(3.10) x k=0

~n.iE'iC4(/)i.
k=0

oo

\Q(f; c) - Q3N/2(f; c)\ < 8(1 + \cos2nß2\)J2'\VkN+N,2(f)\

(3.11) x fc=0

~13.7£K+"/2(/)|,
k=0

where ß4 = 3/16 and ß2 = 3/8.

Proof. The error of the interpolating polynomial pN+N,a(t) ( a = 2, 4 ) has an

expression similar to (3.2):

1    f Un+WPnioÍ1) -cos2nßg} f(z)dz
/(')-/W/CT(') = ¿£

(z - t)œN+x(z){TN/a(z) -cos2nßa}

(3.12) =coN+x(t){TN/a(t)-cos2nßa}

oo

x   ,iy/N+Nla
Z'nN+NI"if)Tkit),        a = 2,4,
k=0

where VkN+N/a(f) is given by (3.9). If we note in (3.12) that

(3 13) 20)N+lit){TN/ait)-C0s2nK}

= ^N+N/o+lit) + WN-Nlo+\ (0 - 2 C0S 2nßo œN+l W '

then the proof of (3.10) and (3.11) is established in a way similar to that for

(3.8).   D

Suppose that f(z) is a meromorphic function which has M simple poles

at the points zm  (m = 1, 2, ... , M) outside of e   with residues Res/(zm).
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Then, performing the contour integral of (3.3) gives

(3.14) VkN(f) = --Y,^fizm)Vkizm)lo>N+x(zm),        k > 0.

Put z = (w + w  x)/2; then the Chebyshev polynomial can be expressed as

(315)      Tn(z) = (w" + w ")/2,    w = z + \Jz2-l,

\w\> 1 for z£[-l, 1].

From (1.3), (3.4), (3.14) and (3.15) it is seen that \Vk (f)\ = 0(r~k'N), where

r = rnin1<fn<M|zm + Jzm - 1\ > 1. Thus, from (3.8) we may estimate the

error for ~QN(f; c) as follows:

(3.16) \Q(f; c) - QN(f; c)\ < 4\VQN(f)\(r+ l)/(r - 1).

Now, we wish to estimate \VQ (f)\ in terms of the available coefficients ak

of the truncated Chebyshev series pN(t) (1.2). Elliott [6] gives the expression

,„, n      2   i TN_k(z)f(z) . ^ .      ..
(3.17) ak= —. é  ——-—?—.—dz,        0 < k < N.

Performing the contour integral in (3.17) and comparing with (3.14) gives the

estimates

(3.18) \V0N\^\a^\r/(r2-l)

and \ak | ~ r\ak+x\, unless the poles zm of f(z) are close to the segment

[-1, 1] on the real axis. Finally, from (3.16) and (3.18) we could obtain an

estimate of the truncation error EN(f; c) for QN(f; c) as follows:

(3.19) EN(f;c) = S(\aNN\/2)r/(r-l)2,

where we note that a^/2 is the coefficient of the last term in the truncated

Chebyshev series (1.2). The constant r may be estimated from the asymptotic

behavior of {ak } in a way similar to that in the stopping criterion described

in [12].

If \ak\ decreases slowly as k increases, that is, r -* 1+, we prefer a rather

cautious error estimation similar to that given in the stopping criterion of [12]

in place of (3.19). See also [16].

Next, we turn to estimate the error (3.10) of QSN/4(f; c) in terms of the

available coefficients bk  of P5N/4(t) (2.2).

Lemma 3.4. Let f(z) be single-valued and analytic inside and on e . Further,

define

TNja_k(z)f(z)dz
ĥ -U

(3.20) *' \ Vn+iWÍTn/A2) - ™s2nßa} '

l<k< N/a, a = 2, 4,
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where the right-hand side of (3.20) is multiplied by 1/2 when k = N/a. Then,

for bk in (2.2) and Bk in (2.3), we have bk = Jk (4) and B% = JkN(2),
respectively.

Proof. From (3.2) and (3.12) we have

coN+x(t){TN/a(z)-TN/a(t)}f(z)dz
PN+N„(t)-P»(t) = éïf

(z - t) coN+x(z) {TN/a(z) - co*2nßa}

(3.21) _ j_ ^',   r coN+x(t)UN/a_n_x(t)Tn(z)f(z)dz

"'*'    t=t     K      WN+liZ){TN/dZ)-COs2nßo}      '

cr = 2,4.

In deriving the second equality above we have used the identity (A. 3) in Ap-

pendix A, where we take N/a , a complex z and real t for k + 1, t, and c,

respectively. Comparing (2.2), (2.3) and (3.21) establishes Lemma 3.4.   G

Performing the contour integrals in (3.9) and (3.20) and comparing both

results yields the estimates

(3.22) lC"/V4|^/4|r/(r2-l),

\Vk+NI\f)\ = 0(r-k-N~m) and |¿>f| ~ r\b%+l\. Using these relations in

(3.10), one gets an estimate of the truncation error EN+N/4(f; c) for Q5N/4(f; c)

as follows:

(3-23) ^5JV/4(/;c) = 22.2|^/4|r/(r-l)2.

Similarly, it follows that

(3.24) E,m(f; c) = 27.4|</2| r/(r- l)2.

If the constant r is found to be close or equal to 1, we resort to a check proce-

dure; see the stopping criterion in [12].

It should be noted that the error estimates (3.19), (3.23) and (3.24) for the

quadrature rules QN(f;c), Q5N/4(f;c), and Q3N/2(f;c), respectively, are

independent of the value of c. This fact enables us to use the approximate

polynomial pN(t), PSN,4(t) or P3N,2(t) common to the set of the integrals

Q(f; c) (1.1) for a set of c-values if a stopping criterion is satisfied.
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4. Numerical examples

We now show numerical results obtained with the present automatic quadra-

ture scheme for the following test problems:

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

J-l        t-c

¿¿4^ a,,
i     t-c

1 cos2nat

t-c

1-a2

i

Ir-

dt,

[Wl-f

To    t-c
dt.

1

lat + a2   t-c

•yr^2"

a = 4, 8, 16,

a=\, 1/4, 1/8,

a = 8, 16,32,

dt,       a = 0.8,0.9,0.95,

Table 1

Comparison of the performance of the present method with QA WC

in QUADPACK[17] for jx_xea(t~X)/(t-c)dt, a = 4,8,16. N

denotes the number of abscissae required to satisfy the tolerance

ea . The present method computes all the integrals for a set of

the values of c by using N - 1 abscissae once and for all, and

by using the number of the corresponding values of c.

Ea = 10-6 Ba = 10
■10

present method QUADPACK present method QUADPACK

N error TV error A' error N error

0.2

0.5

0.95

17+1

v(+l)

1x10"

2x10"

6x10"

25

25

25

2xl(T15

4xl0-15

1x10
-14

ft(+l>

21+1

9x10"

1x10"

2x10"

105

105

105

3xl0"13

4xl0-14

2xl0-13

0.2

0.5

0.95

fr(+D

21+1

*(+l)

5x10'

3x10"

8x10"

105

105

65

7xl0-13

2xl0-15

4xl0-15

25+1

v(+D

9x10"

3x10"

1x10"

145

185

145

7xl0-13

4xl0-13

2xl0-13

16

0.2

0.5

0.95

33+1

7x10"

6x10"

2x10"

105

145

105

7xl0-13

8xl0~13

6xl0-16

t(+l)

33+1

7x10"

6x10"

2x10"

185

225

185

7xl0-13

8xlO"13

lxlO-13
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Table 2

Comparison of the performance of the present method with QAWC

in QUADPACK[11] for jx_x (t2+a2)~x/(t-c)dt, a= 1, 1/4, 1/8.

Ea = 10- - in-ioEa = 10

present method QUADPACK present method QUADPACK

N error N error TV error N error

0.2

0.5

0.95

ft(+i)

21+1

v(+D

lxlO-8

lxl0~8

4xl0-9

65

65

65

4xl0-13

5xl0~13

5xl0-13

33+1

*(+D

6xl0-13

5xlO~13

lxlO-13

145

145

105

4x10"

5x10"

7x10"

1/4

0.2

0.5

0.95

81+1

v(+l)

3xl0"7

3xl0-8

9xl0~10

225

215

165

2xl0-11

9xl0~12

lxlO-11

129+1

7xl0-13

5xl0-13

lxlO-13

365

325

235

3x10"

3x10"

2x10"

1/8

0.2

0.5

0.95

161+1

4xl0_

3x10
-7

1x10"

335

225

255

6xl0~12

3xl0-11

5x10
-12

257+1

lxlO-12

2xl0-13

5xl0-13

505

445

325

1x10"

1x10"

1x10"

Tables 1 - 5 compare the results of the present scheme with those of QAWC

in the subroutine package QUADPACK [17] for each problem (4.1)—(4.5). We

show the number of function evaluations tV required to satisfy the requested

absolute accuracy ea for each integral and the actual errors.

It should be noted that the present scheme can efficiently give all the ap-

proximations to the integrals ( 1.1 ) for a set of c-values by using the common

number of function evaluations once and for all, except for each function value

f(c) at c, for smooth functions f(t). Consequently, in each Table 1-5, the

present method requires only N + extra 2 ( = tV + 2 ) function evaluations to

compute the three integrals for the three values of c. For example, in Table 1,

20 {= N + 2 = (17 + 1) + 2} function evaluations are sufficient for the three

integrals with the parameter a = 4 to satisfy the tolerance ea = 10~ .

The computation was carried out in double-precision arithmetic (about 16

significant digits).
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Table 3

Comparison of the performance of the present method with QA WC

in QUADPACK [17] for ¿  cos2nat/(t-c)dt, a = 8, 16, 32.

ea = 10
-6

Ea= 10
-10

present method QUADPACK present method QUADPACK

N error N error TV error /V error

0.6

0.8

0.95

49+1

2xl0-10

lxlO-10

3xl0-11

325

355

305

2x10"

1x10"

3x10"

t(+D

65+1

lxlO-13

lxlO-13

2xl0-13

495

425

505

4xl0-12

5xl0~12

4xl0-12

16

0.6

0.8

0.95

t(+D

81+1

8xl0_u

lxlO-10

5xl0-12

555

635

595

2x10"

1x10"

2x10"

97+1

6xl0~13

5xl0-14

2xl0-14

875

785

975

2xl0-13

lxlO-11

2xl0-12

32

0.6

0.8

0.95

f(+l)

161+1

*(+D

2xl0-14

9xl0-14

7xl0"14

1055

1205

1125

4x10"

5x10"

3x10"

f(+l)

161+1

2xl0-14

9xl0-14

7xl0-14

1615

1405

1595

3xl0~12

7xl0-12

8xl0-13

Table 4

Comparison of the performance of the present method with QA WC

in QUADPACK [17] for £,(1- a2)   (\-2at + a2)~x /(t-c)dt,

0 = 0.8,0.9,0.95.

Ea = 10
-6

Ea = 10"
-10

present method QUADPACK present method QUADPACK

N error TV error TV error N error

0.8

0.15

0.45

0.95

97+1

4xl0-9

-9
4x10

4xl0-8

195

205

305

7x10"

1x10"

2x10"

129+1

3x10"

4x10"

1x10"

305

305

385

3x10"

4x10"

2x10"

0.9

0.15

0.45

0.95

t(+D

193+1

4xl0~8

2xl0"8

9xl0-8

255

265

335

5x10"

9x10"

2x10"

fr(+i)
257+1

1x10"

2x10"

1x10"

365

375

445

3x10"

4x10"

5x10"

0.95

0.15

0.45

0.95

385+1

v(+.)

6x10

1x10

5x10

-9

-1

-7

315

325

395

3x10"

6x10"

2x10"

641+1

6x10"

2x10"

8x10"

425

435

505

2x10"

3x10"

6x10"
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Table 5

Comparison of the performance of the present method with QAWC

in QUADPACK [17] for fx \/l-t2 /(t -c)dt. The number in
the parentheses indicates failure to achieve the required accuracy.

Ea = 10" Ea = 10"

present method QUADPACK present method QUADPACK

TV error Tv- error N error N error

0.6

0.9

0.95

ft(+0

97+1

4xl0-4

2xl0"4

1x10
-4

(65)

285

295

2xl0-3

3xl0-7

5xl0~7

1025+1

v(+D

-1
6x10

6xl0~6

7xl0-6

315

405

445

3xl0~9

4xl0~9

3xl0~9

Appendix A

Here, we prove (3.7). By using the relation

(A.1) 2Tn(t)Tm(t) = Tn+m(t) + T{n_ml(t),        n, m > 0,

and the definition of coN+l(t) (1.3) in (3.6), it follows that

20?(c

(A.2)

>-£
a>N+k+l(t)-(oN+k+l(c)

t
dt

I1   ^|V-fc| + l(0-^|iV-fc|+1(g)
dt, k>0.

t - c

In the above, the plus sign is taken if N-k > 1 and the minus sign if k-N > 1.

Further, the second term in the right-hand side should be ignored when k = N.

Elliott [6] gives the identity involving the Chebyshev polynomial of the second

kind Uk(t):

k

(A.3) Tk+X(t) - Tk+X(c) = 2(t- c)J2'Uk_n(c) Tn(t),        k>0.
n=0

Using the identities  Uk(t) - Uk_2(t) = 2Tk(t)  (k >  1), where we define

U_x(t) = 0, and (A.3) in (A.2) gives

N+k -i

nNk(c) = 2¿2"TN+k_n(c)       Tn(t)dt

(A.4)
n=0

\N-k\

2E"TlN-k\-nic)f    Tn(t)dt.
n=0 J-i

Thus, Qk (c) is bounded by

N+k -i \N-k\ !

(A.5) |Q£(c)|<2£"   /    Tn(t)dt+2J2"   /    Tn(t)dt

1 ?
If one notes in (A.5) that the integral /_, Tn(t)dt equals 2/(1 - « ) if « is

even, and vanishes otherwise, it is easy to verify (3.7).
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