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A FINITE DIFFERENCE FORMULA FOR THE DISCRETIZATION

OF d3/dx3 ON NONUNIFORM GRIDS

B. GARCIA-ARCHILLA AND J. M. SANZ-SERNA

Abstract. We analyze the use of a five-point difference formula for the dis-

cretization of the third derivative operator on nonuniform grids. The formula

was derived so as to coincide with the standard five-point formula on regular

grids and to lead to skew-symmetric schemes. It is shown that, under periodic

boundary conditions, the formula is supraconvergent in the sense that, in spite

of being inconsistent, it gives rise to schemes with second-order convergence.
However, such a supraconvergence only takes place when the number of points

in the grid is odd: for grids with an even number of points the inconsistency

of the formula results in lack of convergence. Both stationary and evolutionary

problems are considered and the analysis is backed by numerical experiments.

1. Introduction

Nonuniform grids may be the only way to numerically solve some practical

problems involving partial differential equations and, accordingly, the literature

on adaptive/moving meshes has grown enormously in recent years; see, e.g.,

[1-3, 16-19, 21, 22, 24, 25]. Analyses of finite difference discretizations on

nonuniform grids are likely to be considerably more involved than analyses cor-

responding to constant mesh sizes. In fact, nonuniform grids may give rise to

a number of consistency/ stability phenomena that have no counterpart on uni-

form grids. The aim of the present paper is to illustrate such phenomena in the

particular case of a five-point formula for the replacement of third derivatives.

It is perhaps useful to give some background on the problems considered here.

In [21], one of the present authors and I. Christie suggested a simple moving-grid

technique for the numerical solution of one-dimensional evolutionary partial

differential equations. The well-known nonlinear Schrödinger equation was used

in [21] to illustrate the suggested procedure. The Korteweg-de Vries equation,

ut + uux + uxxx = 0,

similar in many ways to the Schrödinger equation, appeared to be an obvious

candidate to be used in further tests of the technique. Those tests were carried
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out by Fraga and Morris [7], who used the formula

Vxxx{Xi) " hi+\hM + hi+x + hl)(hi+1 + hi+i + ti + w-x){Xm)

_6_
hi+2(hi+x +ti)(hl+x +ti + ti~x)     i+x

{     ' _6_

hl-l{hM +hl)(hM + hM +ht)nXt-l)

6

ti~x(ti+x + ti + ti~x)(ti+2 + hM + ti + ti~x)
MXj_2)

to discretize the uxxx term on the (highly nonuniform) meshes generated by

the regridding strategy employed in [21]. Throughout the paper, h' denotes the

mesh size x; -x(_1. Note that on a uniform grid, (1.1) reduces to the standard

five-point, second-order formula

(!-2) »«,(*<) = ¿$Mxm) - 2v(*/+i) + 2vixi-i) - vixi-2)) ■

In fact, (1.1) was found in [7] by imposing the requirements:

- the formula should be consistent;

- the formula should involve five points xi+2, x/+1, x¡, x¡_x, x¡_2 , but,

as in (1.2), v(x¡) should carry a zero weight.

These requirements give four linear equations for four unknown weights and

lead to (1.1). The order of consistency achieved is, in general, only 1, as there

are not enough free parameters to annihilate the coefficient of vxxxx in the rel-

evant Taylor expansion. It is only through the symmetry implicit on a uniform

grid that second order of formal consistency can be achieved with four free

parameters.

Numerical evidence [7] indicates that, when using ( 1.1 ), the resulting moving-

grid algorithm is far from being successful. We were thus led to consider the

following two problems:

(1) Account for the poor performance of (1.1).

(2) Identify an alternative formula.

In connection with problem (1), it has been found [8, 9] that (1.1), in spite

of reducing to (1.2) on uniform grids, usually leads to unstable schemes on

nonuniform grids.

For problem (2) we set ourselves the following two constraints:

(i) In order to keep a low bandwidth on the resulting matrices, the alternative

formula should be based on a five-point computational molecule.

(ii) The alternative formula should lead to schemes convergent of the second

order (with respect to some standard norm) on arbitrary grids. The insistence
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on arbitrary grids is due to the fact that the grids actually produced by the kind

of algorithm suggested in [21] are very irregular, so that convergence analyses

based on the smoothness of the grid seem inappropriate. In particular, we

want to avoid the assumption that, as the grids are refined, the difference ti -

h'~x between two consecutive interval lengths is 0(h ) rather than 0(h) (h

represents the maximum of ti over the grid).

In order to obtain the convergence mentioned in constraint (ii) above, the

standard approach in finite differences is of course via stability plus consistency.

To guarantee stability, we added the requirement:

(iii) The alternative formula should replace, under favorable boundary con-

ditions, the operator d /dx   by a discrete skew-symmetric operator.

Many attempts to get a five-point formula satisfying (iii) and having second

order of consistency failed. The only way to obtain (i)—(iii) appeared to be to

resort to the supraconvergence phenomenon, i.e., to try and get second order

of convergence without having second order of consistency [6, 13, 14, 15, 22].

Generally speaking, the term supraconvergence [13] refers to situations were a

finite difference scheme is convergent (in some norm) while not being formally

consistent, or at least while having a formal order of consistency lower than its

order of convergence. Here, formal order of consistency means the degree of

the leading terms of the truncation error at individual grid points. The word

formal is used to emphasize that we are considering local truncation errors at

individual grid points as distinct from the situation where the order of consis-

tency is measured with respect to some suitable norm. Consistency in the latter

sense is norm-dependent [20], while formal consistency is merely an algebraic

notion.

The course of events outlined above led us to the investigation of a skew-

symmetric, five-point, inconsistent formula that may lead to algorithms with

second order of convergence in standard norms. It is this formula which is

studied in this article.

An outline of the results of the paper is as follows. In §2 we present the

five-point supraconvergent formula. Section 3 is devoted to the proof of supra-

convergence in the stationary model problem

(1.3) uxxx + u = f'        «, / L-periodic.

Boundary conditions were chosen to be periodic so as not to complicate the

analysis with unwanted details. (Note that with periodic boundary conditions

the equation uxxx = f would not have made a suitable model. The operator

d3/dx3 is singular.) Surprisingly enough, supraconvergence for (1.3) only takes

place when using an odd number of grid points per period. When using an

even number of grid points, the underlying formal inconsistency of the scheme

manifests itself in the divergence of the numerical scheme. We shall present

numerical results in which this awkward behavior is clearly borne out. The

final §4 investigates an evolutionary model problem: the periodic initial value
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problem for the equation

(1.4) ut = uXXX

It should be mentioned that, by using the techniques in [12], it would be a

simple matter to extend our analysis to periodic problems for equations of the

form

Uxxx + LiU)=f>

Ut = Uxxx + LiU) + fiX) >

where L(u) denotes a linear operator involving u, ux, uxx . A forthcoming

paper [10] considers the application to the Korteweg-de Vries equation of the

formula studied in this paper.

2. The difference formula

Throughout the paper we assume that the (spatial) variable x takes values

x e (-00, oo) and that all functions u = u(x) considered are real-valued and

L-periodic. We denote by A = {0 = x0 < xx < ■ ■ ■ < Xj = L} a mesh in

the interval [0, L], by ti the mesh size x;. - x/_1, i =1,2, ..., J, and by

x'~x/2 the center (xi + x/_1)/2 of the cell [Xj_x,Xj], i= 1,2,...,/. In

general, we use subscripts when refering to quantities related to the nodes x¡

and superscripts when refering to quantities associated with the cells [x ■_,, x¡].

Furthermore, sub- and superscripts should be understood in an obvious periodic

way, e.g., xJ+x = L + x¡, h   = h   , etc. Discrete functions defined either at

the nodes x,, x2, ... , xy or at the centers x1' , x ' , ... , x ~ ' shall be

identified with /-dimensional column vectors.

The difference formula studied in this paper was obtained as follows. We

first consider the standard divided difference formula

»«*(*'   1/2) *   - n^{n^+hi){h^+nl+hi+^X-2)

M + ti-Xti(ti+ti+X)ViX>-x) - h'ti+X(ti-X+h')Vi^

_6_
+ ti+x(ti + ti+x)(ti~x + ti + ti+x)V[Xi+x ' "

We then replace in the right-hand side of (2.1) the nodal values v(x¡) by the

linear interpolation averages

/i -n                                        "                i    '-1/2n   ,           h .   j + 1/2.
(2.2) —-^-rV(X )H-:-^-rV(x ).
V       ' h'+h'+X ti+hl+X    K
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This results in the desired five-point formula

1-1/2,
xxx^

J-Vh

VxxxiX

-v(x
(ti~2 + ti-x)(ti~x + ti)(ti~x + ti + hl+x]

_6(ti~2 + ti~X + ti + ti+X)_        i-3/2

(2.3) + (Ä'-2 + Ä,-1)(Äi-I+Ä')(A, + Ä,+1)(Ä/-I+Ä, + Ä,+1)

6(ti~X + ti + ti+X + ti+2) ,   1+1/2.
-v(x      )

(A'"1 + ti)(ti + hi+x)(hi+x + ti+2)(ti~x + ti + hi+x)

_6_        ¿+3/2x

(ti + ti+X)(ti+X+ti+2)(ti-X+ti + ti+X)V[X ''

On a uniform grid with ti = h = constant, (2.3) coincides, after an obvious

change in notation, with the standard five-point, second-order formula (1.2).

However, on arbitrary grids, (2.3) is inconsistent. In fact the leading term in

the truncation error is easily found to be

3 1

A'-1 + A' + A'+I4
(2.4)

hM + hM+ti + ti-x

ti+x + ti

A' + Ai-i VxxiX )

so that the truncation errors will actually grow as the grid is refined.

Let us consider the operator that associates with a discrete function

[Ux ,U2,..., UJ]T the discrete function [Vx ,V2,..., VJ]T, where Vj de-

notes the third difference at xj~x' of the values Uj computed according to

(2.3). This operator can be identified with the product DAPA of two JxJ ma-

trices, where PA is the matrix that performs the averaging of the U' 's according

to (2.2) and DA represents differencing according to (2.1). On introducing the

"mass" matrix

(2.5) MA = Diag((h°+ti+ti)/3, (ti+h2+h3)/3, ... , (hJ~x+hJ+hJ+x)/3),

it is easily seen that the matrix MADAPA is skew-symmetric. In other words, the

operator DAPA is skew-symmetric with respect to the following inner product

for discrete functions V = [VX, V2, ... , VJ]T , W = [Wx, W2, ... , WJ]T:

(2.6) (V,W)A=   J2  \iti~X +h} + hJ+x)ViW1.
i<j<J

It should be mentioned that the skew-symmetric matrix MADAPA also arises

when approximating third derivatives via the Galerkin method based on qua-

dratic splines (see [9] for details).

Before we prove the supraconvergence of model difference schemes based on

the operator DAPA, it is expedient to study some properties of the averaging
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operator PA. It turns out that these properties depend on whether the number

/ of points in the grid A is odd or even.

The case J odd. When / is odd, the averaging operator PA is invertible. The

inverse operator PAX can be found as follows. Assume that PAV = U, for grid

functions V =[VX, V2, ... , VJ]T and U = [Ux, U2, ... , Ujf . The relation

jPaV = U provides / equations to determine the entries of V from those of

U. Multiply the ;th equation, ; = 1,2,...,/,by (-l)j((l/hj) + (l/hj+x))
and sum all the resulting equations to obtain

(2.7) K     ' 2

i-i

1 = 1,2,...,/.

j=0

This formula determines V in terms of U, i.e., inverts the operator PA .

The right-hand side of (2.7) can be written in a more useful way. To do so,

we need the standard first and second divided difference operators DA and DA

acting on mesh functions U = [UX, U2, ... , Uj]T :

(2.8)

(2.9)

DXAV=U'
h'       '

2        i>AU'+1-r,AU'

ut^i -      nj   ,   .i+l,
(ti + hl+l)/2

i = 1, 2,...,/,

/ = 1, 2, ... , /.

Summation by parts in (2.7) leads to

k<=^+(_4 ¿(-D^y-x:(-i)^y
;=/+l ;=i

1 = 1,2,...,/,

which, on rearranging, becomes

2        + 2

(2.10a)

('-1)/2 h2j + h2j-[   ■>
V +  _D2U

<^)/2 hW + hV ^2+ E
7=(i+l)/2

2"      ^U2;

/=1,3,5,...,/,



FINITE DIFFERENCE FORMULA ON NONUNIFORM GRIDS 245

V = ̂ i1El + T

(2.10b)

(i-2)/2    2;+l       ,2j

Z  h—^-Dlv2j
j=0

h   +H_D2u
2        utSJ2j-\

j=(i+2)/2

+   E

1 = 2,4,6, /-l

The case J even. In this case, the matrix PA is not invertible. In fact, manip-

ulation of the equations PA\ = 0 following the steps of the / odd case shows

that the kernel of PA is generated by the vector

(2.11) c = [-ti,ti,-ti,...,-hJ-X,hJ]T,

which plays an important role in later developments.

3. Stationary model problem

In this section, we study the application to the model problem (1.3) of the

operator DAPA associated with (2.3). Namely, we consider the finite difference

equations

(3.1) ÖAPAU + U = F,

,UJ]T.where F = [f(xx/2), f(x3/2),..., f(xJ~xl2)]T and V = [Ux, U2.

Here, UJ is an approximation to the cell-centered quantity u(xj~x' ), j =

1, 2,...,/. As discussed in the preceding section, the scheme (3.1 ) is formally

inconsistent.   More precisely, the truncation errors DAPAuA + uA - F, uA =
1 II 3/2 J ~ 1II      T

[u(x ' ), u(x ' ),..., u(x       )]   , grow under refinement of the grid.

In the analysis, we denote by p the set of all grids A = {0 = x0<x¡ <■•■<

Xj = L) in the interval [0, L] and by po (respectively pe ) the sets of all such

grids having odd (respectively even) number / of points. For each A € p, the

notations h = h(A) and A ■   = A . (A) refer to the maximum and minimumv   ' nun minv   '

mesh sizes max1<1<7 ti , TCiinx<i<J ti , respectively. With each L-periodic real

function v and each A € p wë consider the restrictions

r    ,    1/2,       ,   3/2, ,   J-1/2..TvA = Mx '  ),V(X '),..., V(X )]    ,

V*A = [V(XX),V(X2), ... ,V(Xj)f ,

to the cell centers and nodes, respectively.

In the remainder of the paper we shall refer to discrete functions defined at

the nodes (resp. at the cell centers) as grid functions (resp. cell functions). Thus,

vA is a cell function and vA a grid function.

The following discrete norms are employed. If A e p and V is a discrete

function (i.e., either a cell function or a grid function), we denote by ||V||    the

standard maximum norm. For grid functions Y = [Vx, V2, ... , Vj]    we also



246 B. GARCIA-ARCHILLA AND J. M. SANZ-SERNA

use the discrete Sobolev norms

(3-2) IIUIU,oo=   E   Halloo,        « = 0,1,2,
\<k<m

where DA, DA denote the divided difference operators introduced in (2.8)-(2.9)

and DA represents the identity operator. Finally, || • ||A denotes the L2-norm

corresponding to the discrete inner product (2.6).

As in the previous section, the cases / odd and / even must be addressed

separately.

/ odd: supraconvergence. The following stability theorem is the main ana-

lytical result of this paper. The proof uses techniques due to Grigorieff [11,

12]. We require the summation operator J2A that maps each grid function

\ = [VX ,V2, ... , VJ]T into the grid function defined by

M (EaV), = ¿*7~'+3+*J+V,        i=1, 2, ...,/.
,/=l

This is a discrete counterpart of the integration operator

(3.4) EVW = j*v®dt-

Theorem 3.1. There exist positive constants h0, ß ,y such that for each grid

A € p0 with A (A) < h0, and for each cell function V =[VX, V , ... ,VJ]T and

each grid function V* = [VX, V2, ... , Vj]T the following inequalities hold:

KI|V||2>00 + l|V||j < IIEa^v* + v)L + ll^-'^v-v*)||œ

</?(llvl2>00 + l|V||j.

Proof. We begin with the first inequality. If the result were not true, a subfamily

of odd grids p* could be found such that inf{A(A): A € p*0) = 0 and for each

A e p* there exist a cell function VA = [V , V , ... , V ] and a grid function

\*A = [Vx,V2,...,Vj]T satisfying

(3-6) l|V*||2,00 + ||V||oo = l,

(3.7) lEa^y+V)      -°.        ̂ °>

(3.8) II^VaV-^Hoo-O'        A^O.

Furthermore, the relation (3.6) and a compactness result due to Grigorieff [11]

imply that it may be assumed that

(3.9) llV-vtH,      -0,        A-»0,

,i
for a certain C   periodic function v . (Recall that vA denotes the restriction

of v to the nodes of A.)
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Let us first consider the cell function PAl(PAVA - V*A) = VA - PAX\*A . The

expression for PAX found in (2.10) shows that the z'th entry of the vector

PAXy*A differs from (^• + ^_1)/2 by terms bounded by (LA/2)p^H^, i.e.,

by terms of 0(h) (see (3.6)). Therefore, (3.8) and (3.9) yield

(3.10) IIV-vJU-0,        A-0.

We now turn to the grid function WA := J2A DA\* -DAY*. On the one hand,

for each A € p*0 , WA is constant (i.e., all entries of the vector WA are equal);

this fact is the discrete counterpart of the identity

fX    3 3 2 2
/   d v/dÇ dÇ - d v/dx  = constant.
Jo

On the other hand, WA can be rewritten as

(3.11) wA=j;A(z)y+v)-x:Av-JDy.

In the right-hand side of this expression, the first term tends to 0 according to

(3.7), the third is bounded by (3.6), and the second satisfies, in view of (3.10)

and [12],

|EaV-Eva|L-0,        A-0.

Here, 52va denotes the restriction to the nodes of the antiderivative *£,v(x)

defined in (3.4). Putting together all our findings on the grid functions WA,

we see that they are constant and bounded. Without loss of generality these

constants can be assumed to converge to a real number w . Going back now to

(3.11), we see that the left-hand side and the first two terms in the right-hand

side converge. Hence the same must be true for D2A\*, a result that, when

combined with (3.9), reveals that the function v is actually C   and that

l|V-ill2.oo-°.        A^O.

We take limits in (3.11) to conclude that w = -¿^v — vxx, an expression

that, when differentiated, reads v = -vxxx . Since v is L-periodic, v vanishes

identically, and this contradicts (3.6) and (3.9). The first inequality in (3.5) has

now been proved. The proof of the second, with /> = 3 + L,/z0<4,isa simple

exercise.   D

We can now turn to the proof of the supraconvergence of (3.1) when / is

odd. On introducing the vector of averages U* = [Ux, U2, ... , Uj]T defined

by U* = PA\J, (3.1) can be recast in the form of a system,

(3.12) L>X + U = FA,        />AU-U* = 0.

For a grid that is sufficiently fine, the unique solvability of this system for U, U*

is an obvious consequence of the first inequality in (3.5). We consider U to

approximate uA , i.e., u at the centers of the cells, and U* to approximate uA ,

i.e., u at the nodes x;.
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Theorem 3.2. Assume that the (periodic) datum f in (1.3) is of class C . Then,

when using grids with an odd number of points, the solution of (3.12) satisfies,

as A -> 0,

l|U*-u;i|2i0O + ||U-uA||0O = 0(A2).

Proof. It is clear that the true solution u is C . Introduce the discrete func-

tions of errors E = uA - U, E* = uA - U*. If we use the first inequality in (3.5)

to estimate the size of ||E*||2 ^ + IIEH^ , then it is enough to show that

(3.13)       ||]TA(Z>AuA + uA)     +\\PAl(PAuA-nA)\\oo = 0(ti),        A-0.
II oo

Note that TI := DAuA + uA and T2 := PAuA - uA are the truncation errors

arising from substitution in (3.12) of the true solution. Now Taylor expansion

implies that the /th entry of TI is given by ±(hi+x -ti~x)uxxxx(xi~x/2)+0(h2).

Thus, TI is only 0(h). However, we are really interested in ¿Z,AT1, a grid

function which, upon summation by parts, can be shown to be 0(h ). As

far as T2 goes, Taylor expansion implies that its ¿th component is given by

(h'ti+x/S)(uxx(Xj) + 0(h2)). We are interested in PAXJ2, whose components

can be found via (2.7). Summation by parts is again needed to show that PAXT2

is actually 0(h2).   n

Remark 1. We emphasize the we have shown that, when using an odd number

of grid points, the solutions U of (3.1) converge with second order, in spite

of the formal inconsistency of that scheme. This provides an approximation

to u at the centers of the cells. Furthermore, if approximations U* at the

nodes are computed by linearly interpolating the entries of U, then the U*

are convergent of the second order, together with their first and second divided

differences.

Remark 2. By considering only uniform grids, it is easy to show that the ex-

ponent 2 in the right-hand side of (3.13) cannot be improved. Combining this

with the second inequality in (3.5), we prove rigorously that, in Theorem 3.2,

the order of convergence cannot be higher than 2.

The case J even: divergence. The scheme (3.1) diverges (i.e., does not converge)

when used with grids having an even number / of points. This is so regardless

of the smoothness of the datum / and even if attention is focused not on

arbitrary grids but only on quasiuniform grids, i.e., grids that are refined so that

the ratio h/hmin remains bounded. This divergence is particularly remarkable

after recalling that on uniform grids the scheme (3.1) involves the standard five-

point formula for the third derivative and therefore is convergent of the second

order.

Divergence will be proved in the L2-norm || • ||A. Note that this implies

divergence in the maximum norm. We begin by noticing that, by (1.3) and

(3.1),

DÍPAV + (V-uA) = uxxxA.
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(Recall that uxxxA denotes restriction of uxxx.) We take the scalar product

(defined in (2.6)) of this equality and the vector c in (2.11). The result is

(3.14) («.U-»a)a = («.««hJa-

This is because c lies in the kernel of PA and hence in the kernel of the skew-

symmetric matrix Mad\pa . From (3.14) we can write

(3.15) ||U-uA||A>|(c,u^xA)A|/||c||A.

The denominator in (3.15) is bounded above by (vT)A. We shall show that

the numerator is at best 0(h), and divergence will follow.

Choose a real number X, 0 < X < 1, and for each positive integer N set

A = L/(2N(1 + X)). Consider the grid A^ = {0 = x0 < x, < < x4N = L)

defined by

x2j = j(l+X)h, j = 0,l,...,2N,

(3.16) x2j+x=j(l+X)h + h, j = 0,l,...,N-l,

x2j+i =j(l+X)h+Xh,       j = N,N+l,...,2N-l.

Note that the grid is symmetric with respect to the point L/2 = x2N and that

in [0, L/2] the odd-numbered lengths A , A , ... are all equal to h and the

even-numbered lengths are all equal to Xh. We are going to show that, for

uxxx = sin(27îx/L) and ;V large, the numerator in (3.15) is bounded below by

vh, for a suitable constant v . To do so, we note that by the symmetry with

respect to L/2, the numerator in question can be written as

2 2X + X2

3 1+X
7=1

A¿(l+A)Asin(^(j(l+A)A-^))

N-\

-\^h\T(i+x)hs*i(^-j(i+x)h+\y

On viewing each summation as a quadrature formula, the result follows easily.

Remark. By writing a more general solution « as a Fourier series, it can be

shown [9] that for the grids (3.16) divergence actually takes place for all smooth

solutions, not only for u = sin(27tx/L).

Numerical tests. The rather surprising difference between the analyses of the

cases / odd and / even led us to perform some numerical experiments to

back up our findings. In the interval [0, 1], we selected the datum / in (1.3)

so as to have u = cos 27tx . We implemented the scheme (3.1 ) on random grids,

calling the IMSL library for carrying out the linear algebra. The random grids
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were generated by means of the following algorithm:

x0 = 0

i= 1
A1 = random number (uniform distribution in [0, ô])

do while x( < 1

1 = 1 + 1

ti = random number (uniform distribution in [0, ô])

Xj = Xj_x +ti

end do

/ = /
Xj = l

h  = Xj — Xj_x.

The parameter 8 that governs the maximum step length varied in the range

0.01 < ô < 0.1. Results coming from grids with / odd and even were kept in

different files.

t. o
e.e 1.8

/

/

/ /
/

/     /
/ /

1.8

1.0

LOGCH)

-3.8

Figure 1

/ odd.  IIU-u 'Alloc
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2.8

6.8
-3.

LOG(HD

Figure 2

/ odd. Truncation error

Figure 1 depicts log(||U - uA\\œ) versus log(A) for the grids with / odd (log

means log10). Each individual run is represented by a dot, and straight lines

with slopes 1 and 2 have been included to facilitate the estimation of the order

of convergence. Convergence of the second order manifests itself.

Figure 2 was obtained from the same family of runs used for Figure 1, the

difference being that now we give truncation errors L>APAuA + uA-F rather than

global errors U - uA . The formal inconsistency of the scheme is clearly borne

out. Note that for the finer grids the maximum norm of the truncation errors

can be as high as 105.

Figure 3 was obtained with grids with / even. The axes correspond to

log(||U - uA||A) versus log(A) and to try and help the scheme, the grids actually

employed were quasiuniform with hmin > h/10. (To generate quasiuniform

grids, the algorithm above was used, with h' taken from a uniform distribution
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-2.8,

8.8

/

-2.0 -3.8

L0GCH5

Figure 3

/ even.  IIU - u!AllA Quasiuniform meshes

in [O.lô, ô].) Figure 3 should be compared with Figure 1. With the finer grids,
—2

the errors in Figure 1 are (in the maximum norm) well below 10 , while here

we find runs with A in the neighborhood of 0.01 and L -errors above 10 .

This large difference in global error behavior between the cases / odd and /

even has no counterpart when truncation errors are considered. In fact, the (not

depicted here) truncation errors for the / even runs in Figure 3 were found to

behave as the truncation errors depicted in Figure 2 ( / odd).

Finally, we solved the problem we have been considering (i.e., u = sin(2nx),

L = 1) on the grids (3.16). Errors, given in Table 1, show an 0(1) behavior in

good agreement with our analysis. We divided the last subinterval of each grid

(3.16), with length A , into two subintervals of lengths A/2 . The resulting grids

have / odd. The corresponding results are given in Table 2, where convergence

of the second order is apparent. Note the striking difference in global errors

caused by the small change in the grid.
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Table 1

/

32 .05681
PaIIa

.079054

64 .02840 .055207
128 .01420 .054569
256 .00710 .054129

Table 2

/ IEAllA

33 .05681 .013514

65 .02840 .002253
129 .01420 .000530
257 .00710 .000130

The case J even: average behavior (collaboration with C.Matrdn and P. Revész).

A family of grids with / even for which divergence takes place has been con-

structed above. However, it has also been mentioned that uniform grids with /

even lead to convergence. It may be asked whether the "typical" case is given by

the divergence in the ad hoc grid (3.16) or by the (second-order) convergence

on uniform grids. The data in Figure 3 appear to indicate that for / even

the global errors, while being large, decrease under grid refinement. To end

this section, we provide some indications of the statistical analysis of such a

convergence "in the average-grid case."

Recall that the divergence on pe is linked to the presence of a mode c which

lies in the kernel of the averaging operator. The projection |(c, u;cj(;;cA)A|/||c||A

of uxxxA onto the normalized mode (||c||A)~ c was shown in (3.15) to provide

an obstacle to the convergence of the method. Such a projection, which was

shown to be 0(1) for a particular family of grids, can be expected to be on
1 II

the average 0(h ' ) on grids randomly generated by the algorithm above. This

suggests an order of convergence of 1/2, in agreement with Figure 3.

We begin by noticing that, after summation by parts, for smooth u,

(3.17) Ma^D-D'^K (xJ~X/2) + 0(ti).

j=i

We shall study the behavior of the sum in (3.17), and to this end we consider

the simplified model

(3.18) Y=  ¿2 (-l)'(A')
1<!<7

According to the grid generation algorithm, the ti are independent random

variables uniformly distributed in [0, S], and / is also a random variable

(stopping time), namely the smallest integer for which ¿~^x<i<J ti > 1, provided
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this integer is even. In ti and /, ô features as a parameter. It is expedient to

introduce the random variables Xx. = ti /ô, with uniform distribution in [0, 1]

and the variables Zf = X2i - X2i_x. Then

(3.19) y= H z„
l<!<7/2

and / is the first integer with

(3.20) ¿2Xj>l/ô.
\<i<J

Now Xj, Zj do not depend on the parameter ô , while / = J(ô). It is reason-

able to expect that, for ô small, / will be approximately 2/Ô . More precisely,

it can be shown [5, pp. 136-137] that for any sequence {ôk} with lim^ = 0,

(3.21) ôkJ(ôk)^2,

with almost sure convergence.

On the other hand, the Z( have zero mean, and the central limit theorem

guarantees that as n —► oo

T"   Z
(3.22) ^'pL '' ->yV(0, 1).

45«

In (3.22) the arrow means convergence in law and iV(0, 1) denotes normal with

0 mean and standard deviation 1. The factor 8/45 arises as follows. With E

denoting mean,

E(Z2) = E(X42¡) + E(X42l_x) - 2E(X22l)E(X22¡) = \ - \ = & .

A theorem due to Doeblin and Anscombe [4, p. 317] can be used to show

that (3.21)—(3.22) imply, as k —> oo, and in the sense of convergence in law,

. J(Sk)ß

(3.23) Y.  *,-tf(0, 1).
= i

Finally, since the maximum increment A = h(6k) obviously satisfies h(Sk)/Sk

—> 1 (almost sure convergence), in the denominator of (3.23), J(Sk) can be

replaced by 2/h(ôk), according to Slutsky's theorem [4, p. 249]. This, and the

elimination of the Z( variables, lead to

Y/^5ti/2^N(0,l),        A-0.

In conclusion, the model variable Y behaves asymptotically as a normally dis-

tributed 0(hi/2) variable. Thus, (c, uxxxA)A can be expected to also behave as

0(h3^2) and the lower bound in (3.15) would be, on the average, 0(hx/ ). This
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(4.1) -V = D3APAV.

is not as bad as the 0( 1 ) behavior found for the worst possible case, but still

far away from the 0(h ) bound shown for the / odd situation.

4. Evolutionary model problem

In this section we consider the periodic initial value model problem for (1.4),

with the formally inconsistent discretization given by

dt

Again, U is meant to approximate the restriction of the true solution to the

centers x'~ ' of the cells. Note that, since (4.1) is linear, its solutions are

defined for all times. Techniques similar to those used above show that /

even leads to divergence [9], and only the case / odd will be considered. For

simplicity we assume that the initial value for (4.1), U(0), is taken to be the

restriction to the cell centers of the initial condition u(t = 0).
o

Theorem 4.1. Let u be a C solution of (1.4). Then to each positive T there

correspond positive constants h0 and C so that for each grid A with an odd

number of points J and h(A) < h0, the solution U 0/(4.1) with U(0) = u(i = 0)

satisfies

(4.2) max ||uA(i)-U(r)||A<CA2.

Furthermore, A0 and C only depend on the period L, on T, and on bounds

for the derivatives of u (up to the eighth).

Proof. For each positive time t, we introduce the solution W(î) of the problem

(4.3) D¡PAW(t) + W(í) = u((., i)A + u(., t)A = uxxx(-, t)A + uA(., /)A.

Theorem 3.2 implies that

|u(.,i)A-W(0||<CA2

and a fortiori

(4.4) ||u(.,í)A-W(í)||A<CA2

with C dependent on t, L, and bounds for the space derivatives of u up to

the fifth. Differentiating (4.3) with respect to t and reasoning as above leads to

(4.5) ■»(•.0A-^w(i) <CA2,
A

where now the constant depends on t,L, and derivatives of u up to the eighth.

We decompose the error E = uA - U as E = (uA - W) + (W - U).  The

first term has already been bounded in (4.4). The evolution of the second is

governed by

1. (\vA-U) = -j-(w-'(4.6) ^(WA - U) = ^(W - uA) + W - uA + D^A(W - U).
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Now (4.2) follows easily by, say, the energy method, because the operator d\pa

is skew-symmetric and the sources (d/dt)(W-uA), (W-uA) have been shown,

in (4.4) and (4.5), to be 0(A2).   D
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