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A TABULATION OF ORIENTED LINKS

HELMUT DOLL AND JIM HOSTE

Abstract. In this paper we enumerate all prime, nonsplit, oriented, classical

links having two or more components and nine or fewer crossings. Our list is

complete up to diffeomorphism of S and complete reorientation of the link.

(That is, reorienting every component of the link.) Previously, only tables of

nonoriented links have been compiled. Furthermore, we list, in the case of

alternating links, all possible minimal diagrams of each link up to orientation.

We also include the skein polynomials of each link.

Our methods are direct generalizations of those used by Dowker and Thistle-

thwaite to enumerate knots. We rely heavily on the HOMFLY and Kauffman

polynomials to distinguish inequivalent links. In a few cases these invariants will

not suffice and other link invariants are employed. Our table is generated "from

scratch" rather than by introducing orientations into already existing nonori-

ented tables. This provides a check on Conway's table in the range mentioned

above.

Introduction

The history of knot tabulation is a long one, beginning in the last century with

Kirkman, Tait, and Little. Assisted by Kirkman, both Tait and Little compiled

tables that together presumed to list all knots of ten crossings or less and all

alternating knots of 11 crossings [8, 9, 11, 12, 13, 19]. Produced over a period

of about 15 years, these tables were truly a remarkable achievement! Of course,

Tait and Little could not be absolutely sure that their tables were complete or

that they contained no duplications. But with the advent of topology came the

development of various knot invariants and so the ability to rigorously distin-

guish between the knots in the table. Many topologists played a role in this

effort, for example Alexander, Reidemeister, and Seifert to name only a few.

Tables of knots up to nine crossings were republished in [1] and [17].

Modern knot theorists relied solely on these tables until the 1960's when J.

H. Conway described a notation in terms of which it was possible to efficiently

list (again by hand but now in only a day!) all knots to 11 crossings and all

links to ten crossings [4]. Conway's enumeration provided the first check of

the existing tables in the 11-crossing range (Tait and Little had checked their

tables against each others) and turned up one duplication and 11 omissions.
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However, Conway also missed a duplication not caught by Tait and Little, the

now famous "Perko pair." These were two entries representing the same ten-

crossing nonalternating knot and were discovered by the Manhattan lawyer K.

Perko [15]. Conway's enumeration of links and his list of nonalternating 11-

crossing knots were entirely new and could not be checked against any earlier

tables.

In the 1970's work still continued to verify that the tables contained no du-

plications and that they did indeed list only prime knots [16]. The knot tables

were extended to 13 crossings by Thistlethwaite and links of 11 crossings were

tabulated by A. Caudron [5, 20, 3]. More recently, the discovery of the Jones

polynomial and related generalizations has made the task of distinguishing the

knots and links in these tables much easier [6, 10].

Perhaps the most widely used table of knots and links to appear in recent

times is in Rolfsen's wonderful book, Knots and links [18]. This table, which

includes knots up to ten crossings and links up to nine crossings, was taken from

Conway's table and is accompanied by beautiful drawings of each link.

Conway's link table, as well as Caudron's, lists only unoriented links, and

there are currently no existing tables or even accepted nomenclature for ori-

ented links. In this paper we provide such a table, listing all oriented links up

to nine crossings. We also list, in the case of alternating links, all possible min-

imal diagrams of the same link, up to orientation. As expected, these diagrams

are all related by flypes. For nonalternating links we list only one diagram from

each oriented link type because the number of different minimal diagrams that

can represent a nonalternating link is often quite large. This is due in part to the

possibility of changing the diagram by means of Type III Reidemeister moves.

These moves cannot present themselves in alternating diagrams. Because of

the recent resurgence of interest in combinatorial link invariants which can be

defined starting with link diagrams we hope that this additional information

will prove valuable. Moreover, because of recent applications of knot theory

to chemistry and biochemistry, and because it is usually more natural to con-

sider oriented links rather than unoriented links in such applications, we hope

that these tables will prove useful to researchers in those fields. We also pro-

vide the values of the Alexander, HOMFLY, Jones, Kauffman, and BLM/Ho

polynomials for each of the links.

Our table was generated "from scratch" rather than by introducing orienta-

tions into already existing tables. Thus, our work provides a check on Conway's

table in the range in which they overlap. We are happy to report that we dis-

covered no errors.

We assume that the reader is already familiar with the theory of knots and

links as expounded, for example, in [18]. If L is a link in S , we shall denote

its reflection through an equator of S by L*. We call L* the enatiomorph or

obverse of L. If additionally L is oriented, then its reverse, -L, is obtained

by reversing the orientations of all of its components. Finally the inverse, -L*,

is obtained by doing both. As is typical with previous tables, our table will list
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only one link from each set {L, -L, L*, -L*}. In general, these four links

need not be equivalent, that is, ambient isotopic. Furthermore, we list only

prime nonsplit links.

Recall that the skein polynomials can never detect instances of L ¥ -L,

and we avoid this issue altogether. On the other hand, the skein polynomi-

als are quite good at detecting instances of L ^ L*. (If L = L*, then

FL(a,x) = FL(a~x, x) and PL(v, z) = PL(-v~x, z).) Indeed, within the

range of this table, the Kauffman polynomial F (a, x) detects all such cases.

The only acheiral links (ones with L = L*) are 632, 84, 84 + H—, 8^, 83, and

83 4- + + -. Interestingly, there are two cheiral links, 82-H— and 87, which are

not detected by the HOMFLY polynomial P(v , z). Finally, we point out that

nearly all the links in this table are visibly arborescent (algebraic), so that their

symmetries can be determined by the algorithm of Bonahon and Siebenmann

[2].
One place where we may differ from accepted terminology is in our usage

of the words projection and diagram. By a projection we shall mean a regular

projection of a link where crossings appear as transverse doublepoints. By a

diagram we shall mean a projection where over- and undercrossings have been

indicated at each doublepoint, so that the link can be recovered from the di-

agram. Thus, associated with each projection with n double points are 2"

possible diagrams.

Our general approach to tabulating links is to first list all possible projections

and then pass from these to diagrams. Our methods are basically generalizations

of those used by Dowker and Thistlethwaite for knots [5]. Our algorithms will

work equally well for knots as for links.

This paper is an expanded version of the first author's Master's thesis written

at Oregon State University in the spring of 1988.

1. Encoding and listing link projections

We use Dowker and Thistlethwaite's notation to encode a link projection.

Consider the projection shown in Figure 1.1. If we first order the components,

orient them, and choose a basepoint on each, we may then consecutively number

the crossing points as we traverse the link subject to these choices. Each double

point receives two integer labels. It is not hard to prove that given any choice

of ordering and orientations of the components, some choice of basepoints will

yield a numbering having both an even and an odd number at every double

point. We shall only consider such parity reversing numberings.

Once the projection has been so labeled, there is an obvious involution a

among the numbers 1, 2, ... , 2« , where the projection has n doublepoints.

Namely, a(i) = j provided i and ; label the same doublepoint. By listing

only the even numbers a(l), a(3), ... , a(2« - 1), we may completely describe

the involution a. Moreover, we may position vertical bars within this list to

indicate the presence of the various components. Thus, the projection of Figure

1.1 can be encoded by the sequence 6 101 8 2 12 4.
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610)82124

Figure 1.1

We call the subsequences into which the sequence is partitioned by the bars

the components of the sequence. The number of integers in each component

is the length of that component. It is very useful to think of each component

as being not only linearly ordered but also cyclically ordered. Thus, in the

sequence 6 101 8 2 124 the 6 follows the 10 in the first component and the 8

follows the 4 in the second. It will also be convenient to define an "addition

modulo components." If i is used to label some crossing of the projection, then

let i +c k be the label obtained by starting at i and advancing k crossings on

that component. Thus, in 6 101 8 2 12 4 we have 3 +c 2 = 1 while 8 - 5 = 11.

Of course, choosing different orientations, basepoints, etc. will produce differ-

ence sequences for the same projection. This establishes an equivalence relation

among sequences derived from link projections. We call a sequence reduced if

the bars divide the sequence into components of nondecreasing length. In each

equivalence class of sequences we may choose a unique representative, called

the standard sequence, by taking the minimum with respect to lexicographic

order of all reduced sequences in that class. (Note that all reduced sequences

in one equivalence class have their bars in the same positions.)

For example, there are 256 possible ways to label the projection of Figure 1.1.

But half of these are not parity reversing, and of the half that are, only half again,

or 64, yield reduced sequences. Since the projection has an obvious two-fold

symmetry which reverses both orientations, only 32 distinct reduced sequences

exist. Of these the smallest, or standard, sequence is 6 1012 12 4 8 . If we begin

with an oriented projection and maintain that orientation, then we are only free

to change basepoints and reorder the components. We then deal with an oriented

equivalence class containing oriented reduced sequences, the smallest of which

is the oriented standard sequence for that projection. The oriented standard

sequence for the projection in Figure 1.1 (with the orientations as shown) is

6 101 4 12 2 8 . This is not as small as the (unoriented) standard sequence.

It is obviously a simple matter to generate all reduced sequences of even inte-

gers with a given number of integers and bars. But which of these can actually

be derived from projections? In particular, which correspond to projections

of prime nonsplit links having a minimal number of crossings? (We are told

by Thistlethwaite that Conway has dubbed 1 -component sequences that do not

arise from knot projections "knits." Bogus link sequences are "locks.")
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Three elementary observations present themselves immediately. The first is

that there cannot be too many bars in a sequence. For it is not hard to prove

that if L is a prime nonsplit link with n > 3 crossings, then L has at most

n/2 components. Thus, for example, if n = 6 we need only consider sequences

having one or two bars. Secondly, if L is a prime nonsplit link with n > 2

crossings, then every sequence representing any projection of L always has at

least two integers in each component. Finally, suppose that P is a projection

of a prime nonsplit link L having a minimal number of crossings. Then P

is connected, since L is nonsplit. Moreover, because P is minimal and L

is prime, there cannot be any circle in the plane that meets P transversely in

two points not on the same edge of P. To describe how this last condition

manifests itself in the corresponding sequence, it is useful to define an arc of a

sequence.

If S is a sequence, then by an arc of S1 we shall mean a set of consecutive

integers which is a proper subset of some component of S. Keep in mind that

by consecutive we mean with respect to the cyclic ordering of the component.

Thus, [12, 4, 8] is an arc of 6 101 8 2 124. Now suppose P is a projection

which is cut transversely by a circle in exactly two points not on the same edge

of P. It is not hard to show that this condition is true if and only if, given

any sequence S encoding P, there exists a subset I of S consisting of a

union of components together with a single nonempty arc of S such that for

all i e I we have a(i) +c 1 e I, or for all i e I we have a(i) -c 1 e I.

For example, if S is the sequence 6 8112 2 4 14 10 and / = {6, 8, 2, 4} , then

WO -c 1|/G/} = {1 -c 1,3-c 1,7-c 1,9-c 1} = {4,2,6,8} = 7. We
shall denote this equality either by a(I) +c 1 = I or a(I) - 1 = 1. To see

that such a sequence corresponds to a projection which is met transversely by a

circle in two points on different edges, it suffices to prove that exactly two edges

connect the crossings of I with those of S - I.

We summarize these results in the following theorem.

Theorem 1.1. A reduced sequence S of n integers and k bars which is derived

from a minimal projection of a prime nonsplit link L must satisfy the following

three conditions:

51. If n > 3, then k+ 1 < n/2.
52. If n > 2, then each component of S has length two or more.

53. If a is the involution determined by S, then there does not exist a

subset I of S consisting of a union of components together with a single

nonempty arc of S such that a(I) +c 1 = I or a(I) -   1 = 1.

Given a reduced sequence S which satisfies the three conditions just de-

scribed, it still may not correspond to a minimal projection of a prime nonsplit

link. And even if it does, it may not be the standard sequence for that pro-

jection. To further address this problem, we introduce an associated oriented

graph T(S). Suppose S = a(l)a(3) • • ■ a(2n - 1) is a sequence having k bars.

Let bx,b2, ... ,bk be the positions of the bars, where bi = 2j if the z'th bar
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lies between a(2j - 1) and a(2j + 1). It is convenient to introduce bQ = 0

and bk+x = 2« . We may now construct the oriented graph T(S) by beginning

with k + 1 disjoint real intervals Ix, I2, ... , Ik+X, where each I = [b¡_x, bA

(oriented as usual), and identifying integer points within these intervals as fol-

lows. First the endpoints of each interval are identified so as to produce k + 1

disjoint circles. Then each i in Ir, br_x < i < br, is identified with a(i) in

Is if bs_x < a(i) < bs. We regard this graph as endowed with slightly more

structure than an arbitrary 4-valent graph. This is because each vertex was pro-

duced by joining together two pairs of "opposite" edges. Thus, the edges of

T(S) are cyclically ordered around each vertex. The graph Y(S) can obviously
3 2

be embedded in R   but of course not necessarily in R .

By considering the graph Y(S) associated with a sequence S we may extend

the equivalence relation already defined for sequences derived from link projec-

tions to all sequences. Namely, two sequences are equivalent if their associated

unoriented graphs are the same. Two sequences are oriented equivalent if their

associated oriented graphs are the same. If we start with an arbitrary 4-valent

graph y with cyclically oriented edges surrounding each vertex, then it is clear

how to produce a sequence S such that y = T(S). Simply choose a basepoint

on each "component" of y and orient each "component." We may then traverse

the "components" and consecutively number each vertex as we pass it. Clearly,

each equivalence class of sequences is generated by renumbering the associated

graph T subject to different choices of basepoints, orientations, etc.

We call a sequence S realizable if Y(S) can be embedded in R so that the

cyclic order of the edges at each vertex is preserved in the obvious way. Thus,

the realizable sequences are those that can be derived from link projections.

If we view the embedding of Y(S) as lying in S = R2 U {oo} , then we may

define two embeddings to be equivalent if one can be obtained from the other

by composing with a homeomorphism of S . If a sequence S is realizable,

then it may be possible to embed Y(S) in R2 in different ways. However, if

S satisfies conditions SI-S3 of Theorem 1.1, then this is not possible. For it is

not hard to prove that if 5 satisfies conditions SI-S3, then Y(S) satisfies the

following four conditions:

Gl. The graph Y(S)  is a 4-valent oriented graph with cyclically ordered

edges surrounding each vertex.

G2. Every edge of Y(S) joins two distinct vertices.

G3. If any two edges of Y(S) are removed, then Y(S) remains connected.

G4. If any vertex of Y(S) is removed, then Y(S) remains connected.

It is now proven in [5, Lemma 1] that these conditions guarantee that any■y
embedding of Y(S) in R is unique. This gives us the following important

theorem.

Theorem 1.2. Unoriented minimal projections of prime nonsplit links, up to

homeomorphism in S2, are in one-to-one correspondence with realizable stan-

dard sequences satisfying conditions SI-S3.
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Figure 1.2

Thus, our task is to generate all possible reduced sequences satisfying SI and

S2 and then to eliminate those that do not satisfy S3, are not standard, or are

not realizable. Only testing for realizability presents any real difficulty. For a

given sequence S, how can we decide if it is realizable? A few examples will

illustrate our algorithm. Consider first the sequence S given by 4 8 1016 12 2.

We may embed the first component and the beginning of the second component

of Y(S) in R as shown in Figure 1.2. It is now necessary to connect the vertex

{9, 12} to the vertex {5, 10}. However this is impossible because the two

vertices lie in different complementary regions of that portion of Y that has

been embedded so far. In fact they are separated by the circle made up of the

edges [1, 2], [2, 3], and [3,4]. It is more convenient to consider the circuit of

edges [9, 8], [3, 4], [ 1, 2], [2, 3], [8, 9], which we call the obstruction circuit.

Since the vertex {5, 10} is not present on the obstruction circuit, it is not

possible to continue embedding the graph.

We formalize this idea as follows. First, given a sequence S with n entries

and k bars, let bx, b2,... , bk be the positions of the bars as defined earlier. As

before, let bQ = 0 and bk+x = 2« . Assume that for each i we have a(bi + 1) <

b(+ I. This implies that each component is connected to the previous ones.

(This may not be true for a standard sequence.) For / = 1, 2, ... , 2« , let y¡

denote the subgraph of Y(S) corresponding to Ix U/2U- • -U/rU[è'r+1/2, /'+1/2],

where br < i < br+l . Hence, if n is an embedding of Y(S), then n(yx) C

n(y2) c • • • C n(y2n) are increasingly more complete embeddings of Y(S). Our

strategy in attempting to embed Y(S) is to start with an embedding of y, and

extend it step by step through embeddings of the yi until an embedding of

y2n = Y(S) is reached. Note that nothing can obstruct this process before the

first loop is completed, i.e., before the first complete crossing is embedded. Also,

embedding the first crossing of a new component, which is where it connects to

a previously embedded component, presents no difficulty.

Obviously, S is not realizable if and only if there exists an i such that y(

can be embedded while yi+x cannot. In particular, S is not realizable if there

exists an / such that

(i) y¿ can be embedded,

(ii) a(i + I) < i, and

(iii) for all possible embeddings r\ ofy¡, n(a(i+l)) and n(i) lie in different

complementary regions of r\(yA .
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Assume that n is an embedding of yi. The ith obstruction circuit cfi is the

boundary of the region of R - n(y¡) that contains n(i+ 1/2). Clearly, we can

extend the embedding of y. to yi+x if and only if n(a(i+l)) lies on tfi. Thus,

we need to determine which integers lie on cf¡. To do this, we simply back up

from n(i + 1/2) "turning right" at each crossing until we return to n(i + 1/2).

To facilitate this, it is convenient to imagine n(i) not as a partial projection

but rather as a partial diagram that furthermore is "descending." This means

that at a crossing labeled {j, a(j)} , we have n(j) on the overcrossing strand

precisely when j < a(j). As usual, we shall assign ±1 to each crossing where

a crossing of type yf is assigned +1 while yC, is assigned -1. The sign of the

first crossing to be embedded will always be (arbitrarily) chosen as +1. If S

is realizable, then this uniquely determines the signs of the remaining crossings

because the embedding is unique up to homeomorphism in S .

As we successfully embed y¿ for larger and larger i, we record which cross-

ings have been embedded and their signs. To determine cfj, we begin by backing

up from t](i+1/2) until the first embedded crossing {n(j), n(a(j))} is reached.

Initially, as we back up, we are travelling opposite to the orientation of yi. But

later in our traversal of cfj we may be going with or against the orientation of

y(. We must keep track of our current status in this regard. When we reach the

crossing {n(j), n(a(j))} , we know whether we have arrived at n(j) or n(a(j)).

We can compare these two numbers and since the diagram is descending thus

know if we have arrived on the over- or undercrossing strand. Suppose, for

example, that we have arrived at n(j), the crossing has sign -I, j < a(j) (so

that we are on the overcrossing strand) and that we had been going forward

along y,. Then to "turn right" at the crossing is to proceed from n(a(j)) to

n(a(j) + 1) rather than to n(a(j) - 1). Thus, it is not difficult to record cf¡.

Having determined <f(., we can check if n(a(i+l)) lies on cfi. If so, then we

may extend yi to yi+x and record the sign of the newly embedded crossing. If

y i can be extended to yi+x in only one way, then the sign of the new crossing is

easily determined by comparing the orientations of if and n(y¡) at n(a(i+l)).

However, there may be two ways to extend yi to yi+x. If so, we choose one way

and continue with the algorithm. If we fail to embed some future yk , then we

must return to this step, choose differently, and continue again. The sequence

612|210144168 illustrates this possibility. After y9 has been embedded, yXQ

may be embedded with the crossing {7, 10} having a sign of either ±1. If

-1 is chosen, then yu cannot be embedded. But if +1 is chosen, then the

embedding can be extended all the way to Y = yx6.

Using a Macintosh SE computer, programs were written in PASCAL to im-

plement the algorithms described above. For each n = 1, 2, ... , 9 , all possible

sequences satisfying conditions SI and S2 were generated in lexicographic or-

der. As each new sequence was generated, it was first tested to see if it satisfied

condition S3. If so, it was then tested to see if it was standard. This was done

by generating all other equivalent sequences and stopping if a smaller one was

reached. The equivalent sequences were generated by methodically relabeling

the associated graph Y(S). What remained was a list of all standard sequences
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satisfying conditions SI-S3. These standard sequences were then tested for

realizability, finally giving rise to a list of all possible unoriented projections.

Since testing a sequence for realizability is very time consuming and does

not depend on orientations, we first generated all unoriented projections. The

list of oriented projections was then derived from this by considering all pos-

sible orientations for a given projection and determining the oriented standard

sequences within each unoriented equivalence class.

Another method for testing a sequence for realizability, which may be much

faster than ours, has been pointed out by the referee. This method reduces

the problem to that of testing a knot sequence for realizability and in that

case uses the algorithm of Dowker and Thistlethwaite [5]. Suppose S is a

sequence with k crossings and n components. Then we may create a new

sequence S' with k + 1 crossings and n - 1 components by formally replacing

a crossing X belonging to two different components with either ^ orxx.

Then S is realizable if and only if 5"' is.

2. Passing from projection to diagrams

Our goal, of course, is not to enumerate link projections but rather link di-

agrams and consequently links themselves. Therefore, we must now pass from

the list of projections we have generated to one of diagrams. Each oriented pro-

jection with n doublepoints determines 2n possible oriented diagrams. These

diagrams come in pairs with each pair representing a link L and its obverse

L*. Since we only intend to list one link from each set {L, L*, -L, -L*},

we may eliminate half of the diagrams. The situation is particularly simple if

we restrict our attention to alternating links. In this case we need only con-

sider the single alternating diagram obtained by placing each odd label on the

overcrossing strand and each even label on the undercrossing strand. Thus, we

may consider each sequence as encoding not an oriented projection but rather

an oriented alternating diagram.

To encode nonalternating diagrams, we may modify the sequence correspond-

ing to the associated projection in a simple way. Consider the nonalternating

diagram shown in Figure 2.1. The associated projection can be encoded by

6 101 8 42 . The alternating diagram produced from this by placing the odd la-

bels on the overpasses differs from the nonalternating diagram at two crossings:

{2,9} and {3, 10}. We may note this by introducing minus signs into the

sequence, thus obtaining the signed sequence 6 - 101 8 4 - 2 .

6101842 6 - 10184 -2

Figure 2.1
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Again, since we only wish to list one link from {L, L*, -L, -L*} , we need

only consider signed sequences which begin with a positive integer. Of course,

many of these signed sequences encode nonalternating diagrams which are not

minimal or which represent split or nonprime links. Most of these can easily

be detected and discarded by the computer.

Finally, what remains is a list of realizable sequences which encode the alter-

nating diagrams and a list of signed sequences derived from these which encode

the nonalternating diagrams.

3. Passing from diagrams to links

The list of sequences and signed sequences generated thus far is complete,

containing every possible minimal diagram of an oriented prime nonsplit link

having a given number of crossings or less. (In our case, nine crossings.) How-

ever the list contains many repetitions in the sense that several diagrams can

represent the same link.

In order to distinguish diagrams representing different links from each other

we computed the HOMFLY and Kauffman polynomials of each. These poly-

nomials, as well as the Alexander, Jones, and BLM/Ho polynomials which can

be derived from them, are listed in Appendix C on the microfiche supplement

attached to the inside cover of this issue. Fortunately, we did not need to

compare two alternating diagrams having different numbers of crossings. For

it was conjectured by Tait, and recently proven by Kauffman, Murasugi, and

Thistlethwaite, that all minimal alternating diagrams of a prime alternating link

have the same number of crossings [7, 14, 21].

In all but nine cases these polynomial invariants sufficed to distinguish dif-

ferent links. Otherwise, links having the same polynomials were shown to be

the same, in fact related by flypes in the case of alternating links. The nine sets

of links not distinguished by their polynomial invariants are

(l)8j + + + - 8J + + --       (4)9^ + +-    9^ + -+        (7)9|69j6 + —

(2)8Î 8J + + + -       (5)912 9]2 + -+       (Z)93X1 93X7 + -+

(3) 9^ 9^ + -+ (6) 93X5 + +-  93X5 + -+       (9) 932x  9¡x+-+.

Rather than listing these links by their standard sequences, we have given

their "Rolfsen numbers." We describe this method of enumeration in the next

section.

It is worth noting that in each of these pairs the two links are related by

mutation, thus explaining the equality of their skein polynomials.

All cases except (5) and (9) are easily analyzed by considering the linking

numbers of the various components of the links. These two cases, however, are

more difficult. Since the links are arborescent, they can be distinguished using

the algorithm of Bonahon and Siebenmann [2]. But since their work is still

unpublished, we shall include for completeness sake an ad hoc argument that

the two links in case (5) are indeed different. A similar argument works for case

(9). We thank Francis Bonahon for suggesting this proof to us.
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The two links are pictured in Appendix A of the microfiche supplement. Let

L be 912 and let I, J, and K denote the first, second, and third components

respectively. (Remember that the sequence is associated with a specific order-

ing of the components.) The second link, 912 H-h, is obtained from L by

reversing J. We thus seek to prove that L = {I, J, K} is not equivalent to

L' = {/, -J, K). Note that {/, K) forms a Whitehead link, while {/, J)

and {J, K} are both unlinks. Hence, if tp is a homeomorphism of 5" tak-

ing L to L', then tp must take J to -J and {/, K} to {I, K). In fact, <p

must take I to I and K to A", since {D(I), J, K) and {I,-J, D(K)} have

different HOMFLY polynomials, where D(P) denotes the untwisted double of

P. It now follows that tp must be isotopic to the identity. Hence, there exists

a e nx(S3 - {I, K}) such that aJa~x = J~X .

But the Whitehead link is hyperbolic, so that nx (S3 - {I, K}) = Y, a discrete
3 3

subgroup of Isom(H ) acting freely on H . Suppose that J ^ 1 and that J

fixes two ideal points, x and y . Now Ja(x) = JaJ(x) = a(x), and so a(x)

is also fixed by J. Thus, either a(x) = x and a(y) = y, or a(x) = y and

a(y) = x. But the latter case is impossible, for a would then fix some point

lying on the geodesic joining x toy. It now follows that a commutes with J,

since both are in stab{x, y} which is abelian. If J fixes only one ideal point

x , then again x is also fixed by a. Moreover, it is the only fixed point of a,

since otherwise, a and J would generate a nondiscrete subgroup of Isom(H ).

Hence, once again, we may conclude that a commutes with J.

Table 3.1

crossings      sequences

standard      unoriented     unoriented     oriented

sequences     projections links links

0

2

0

24

120

2, 160

15, 120

241,920

2,540, 160

0

1

0

1

1

11

29

210

1462

0

1

0

1

1

6

8

35

97

0

1

0

1

1

6

9

29

83

0

1

0

2

1

10

14

62

156

Reduced sequences which satisfy conditions S1 and S2.
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2 3
Thus, J = 1, and so 7=1. But / cannot be nullhomotopic in S -

{I, K], as can be seen by examining the infinite cyclic cover of S3 over K.

For in this cover, there are lifts of J which have nonzero linking with lifts of

/. Thus, L cannot be equivalent to L1.
y

It is interesting to note that there is only one pair of links, 912 and

934 + -, which can be distinguished by the Kauffman polynomial but not by

the HOMFLY polynomial.

Finally, in Table 3.1 we summarize the numbers of sequences, projections,

and diagrams that were generated for each crossing number n .

4. HOW TO READ THE TABLES

A table of oriented link diagrams of links with nine or fewer crossings is

given in Appendix A of the microfiche supplement. Ignoring orientations, we

have listed all possible minimal diagrams for each alternating link, and one min-

imal diagram for each nonalternating link. To list diagrams for each oriented

link type would be too repetitive, since within each unoriented class, diagrams

for different oriented links differ only by orientation. Thus, we show oriented

diagrams for just one oriented link type within each unoriented class. Moreover,

even within one oriented link type, we have not shown all possible minimal ori-

ented diagrams, but rather only those which differ as unoriented diagrams. As

we will soon explain, diagrams for the other oriented links are easily obtained

from these.

While the lexicographic ordering of sequences provides a natural way to order

the links within the table, we have kept with tradition and ordered them as in

Conway's or Rolfsen's table. Furthermore, we have extended Rolfsen's notation.

An example should serve to illustrate our schema.

Consider the unoriented link 97. This is the seventh nine-crossing three-

component link to appear in Conway's or Rolfsen's table. The smallest sequence

representing this link, taken over all possible orientations and over all possible

diagrams, is 48 14|2 12 16|6 18 10. The oriented alternating diagram deter-

mined by this sequence is pictured first in Appendix A. (We have chosen to

draw all the diagrams in the table with the odd-labeled doublepoints as over-

crossings and the first crossing as positive. This convention sometimes results

in different diagrams for the same oriented link differing not only by flypes, but

also by reflection.) We denote this oriented link by 97 + ++ or more simply as

97. The sequence actually corresponds to an ordering of the components, and

we have indicated this by labeling the components 1, 2, and 3. We have also

placed the arrowheads at the locations of the basepoints corresponding to the

sequence. Oriented links obtained from 97 + ++ by reversing orientations of

various components will be denoted by 97 + H—, 97 H-1-, 97 H-, etc., where

a "-" in the /th position indicates that the orientation of the iih component

has been reversed. Since we do not distinguish a link from its reverse, there are
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only four possibilities instead of eight, and all our link names will begin with

"+". In the case of 97, however, only 97 + ++ and 97 + H— are distinct. The

fact that there are two oriented link types is indicated in the table by the two in
3 3

parentheses which follows 97. Thus, a diagram for 97 + H— can be obtained

from the pictured one by reversing the component labeled 3. To save space, we

have not drawn this diagram but we have given its oriented standard sequence

48 14 | 2 12 18 | 16610, as well as the oriented standard sequence for 97 + ++ ,

in Appendix B. Thus, by looking in Appendix B, one can learn which compo-

nents to reverse in the pictured diagram so as to produce the other oriented

links in a given unoriented class.

There are two more unoriented diagrams that represent the unoriented link

97. Standard sequences for these unoriented diagrams are given in Appendix B

andaré 6 101 2 141 4 18 16 8 12 and 6 121 2 10 16 | 4 18 8 14. The two oriented
diagrams that these sequences determine are pictured next. They are of the

same oriented link type as 97 + ++ . But each of these two diagrams may be

reoriented so as to represent 97 + H— . Oriented standard sequences for these

oriented diagrams are 6 101 4 141 2 18 16 8 12 and 6 121 4 10 1612 18 8 14 and
again, these sequences are given in Appendix B.

Nonalternating links generally have too many unequivalent diagrams for us

to list here. Thus, for each nonalternating oriented link type we give only

one diagram. This diagram corresponds to a signed sequence which is minimal

when all minus signs are removed. If more than one such signed sequence exists,

then we have chosen one beginning with a positive integer and having the fewest

minus signs. Thus, each nonalternating diagram "sits over" the smallest possible

(with respect to lexicographic order) alternating diagram.

Finally, in Appendix C we list the HOMFLY, Kauffman, Jones, BLM/Ho,

and Alexander polynomials of each link. The Alexander polynomial is given in

the normalized form due to Conway.

We have adopted the following form of the skein relations for these polyno-

mials. The reader is warned that these may differ from conventions used by

other authors. Suppose D+, D_ , and DQ are three oriented diagrams that are

identical except near a single crossing of D+, where they differ as shown in

Figure 4.1(a).

(b)

Figure 4.1
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Then the HOMFLY polynomial satisfies

P:    v~xPD -vPD   = zPD    and   P(unknot) = 1.

The Kauffman polynomial of an oriented link L is defined by

F:    FL(a,x)=a-w(D)A(\D\),

where D is any oriented diagram of L, w(D) is the writhe of D, \D\ is D

stripped of its orientation, and A is the regular isotopy invariant of unoriented

diagrams given by

(i) A(0) = 1,
A:    (ü)A(ta>o) = flA(Z)), A(@>*) = a~xA(D),

(iii) A(D+) + A(D_) = x(A(D0) + A(DJ),

where D+, D_, DQ, and D^ are four unoriented diagrams which are identical

except near a single crossing of D+ , where they differ as shown in Figure 4.1 (b).

Moreover, the Jones, BLM/Ho, and Conway polynomials are given by

V(t) = P(t,tX/2-rX/2),     Q(x) = F(l,x),    and   V(z) = P(l, z).

To abbreviate these polynomials, we use a notation which is now standard.

(See, for example, [10].) A single example should suffice to explain the system.

The entry for 1 x -\-appears as follows.

7, + --    {-2}([0]01 -21)([0]03 -3)([0]031 -1)([0]01 1)

{-2}(-l -2 - 10[0])(2200*)(3530[0])(-3 -300*)

(-3 -5 -5 -30[0])(1 -3 -4000*)

(331 10[0])(34100*)(1 100[0])

{4/2}(l -14-34-33-1)

{-2}(-4 4 11-6-16-688 2)

{-2}(0032)
This means that

P(v , z) = z~ [(v  -2v  + v ) + (3v  - 3v )z

+ (3v  +v  -v )z +(v  +v )z ],

F (a, x) = x~ [(-a~~  -2a~  - a~ ) + (2a~ + 2a~~ )x

+ (3a~% + 5a"6 + 3a~*)x2 + (-3a'1 - 3a~5)x3

,   i    i   -10       c    -8       c    -6       -,    -4s    4+ (-3a      - 5a    - 5a    - 3a    )x

,   ,   -11       -,   -9       .   -7,    5   ,   ,-   -10  ,   .   -8  ,     -6  ,     -4.    6+ (a     - 3a    - 4a    )x + (3a     +3a    +a    +a   )x

+ (3a-9 + 4a~7 + a" 5)x7 + (a-8 + a_6)x8],

V(t) = t2(l - t + 4t2 - 3t3 + 4tA - 3t5 + 3i6 - i7),

Q(x) = x~2(-4 + 4x + 1 lx2 - 6x3 - 16/ - 6x5 + Sx6 + Sx1 + 2x8),

V(z) = z"2(3z4 + 2z6).
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