
mathematics of computation
volume 57, number 196
october 1991, pages 703-721

CHEBYSHEV-VANDERMONDE SYSTEMS

LOTHAR REICHEL AND GERHARD OPFER

Dedicated to the memory of Lothar Collatz

Abstract. A Chebyshev-Vandermonde matrix

is obtained by replacing the monomial entries of a Vandermonde matrix by

Chebyshev polynomials /> for an ellipse. The ellipse is also allowed to be

a disk or an interval. We present a progressive scheme for allocating distinct

nodes zk on the boundary of the ellipse such that the Chebyshev-Vandermonde

matrices obtained are reasonably well-conditioned. Fast progressive algorithms

for the solution of the Chebyshev-Vandermonde systems are described. These
algorithms are closely related to methods recently presented by Higham. We

show that the node allocation is such that the solution computed by the pro-

gressive algorithms is fairly insensitive to perturbations in the right-hand side

vector. Computed examples illustrate the numerical behavior of the schemes.

Our analysis can also be used to bound the condition number of the polynomial

interpolation operator defined by Newton's interpolation formula. This extends

earlier results of Fischer and the first author.

1. Introduction

Let E , for some p e [0, 1], be the closed ellipse with boundary curve

(1.1) dE :={eil + pe~n:0<t<27t},        i:=\f-î.

Define the polynomials in z = w + pw~ ,

(12) po(*):=l.

{Pj(z):=wJ + (p/w)J-,       j= 1,2,3,....

It can easily be shown (see, e.g., Smirnov and Lebedev [17, Chapter 5]) that the

Pj are Chebyshev polynomials for E with leading coefficient one, i.e., among

all monic polynomials of degree j, p¡ is the unique polynomial of minimum

uniform norm on E .
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Example 1.1. Let p := 0. Then EQ is the closed unit disk, and the p are the

monomials pfz) = zJ, j >0.   D

Example 1.2. Let p := 1. Then dEx = Ex is the interval [-2,2], and

the Pj are the 'ordinary' Chebyshev polynomials on [-2, 2], i.e., pÂz) =

2cos(;'arccos(z/2)), j > 1.   D

Chebyshev-Vandermonde matrices (henceforth abbreviated CV matrices)

V = V = [Vjk]Uj k=0, vjk := Pj(zk), arise naturally in polynomial interpola-

tion problems when the basis (1.2) is used for Un, the set of polynomials of

degree at most n. Let (zk, fk) e C , 0 < k < n, be the given data, where

the nodes zk are assumed to be pairwise distinct. The computation of an in-

terpolating polynomial qn e Y\n such that qn(zk) = fk, 0 < k < n, in the

form

(1.3) qn(z) = J2ajP](z)
;=0

can be accomplished by solving a dual CV system, namely

(1.4) Vj* = t,

where a := (a0, ax,..., an)r and f:= (f0, fx, ..., fn)T. Primal CV systems

(1.5) Vp* = S>       g:=(S0>Si'--->S«)T>

arise in the computation of weights of interpolatory quadrature rules with nodes

zk when the polynomial basis (1.2) is used. We note that the CV matrix V

simplifies to an 'ordinary' Vandermonde matrix when p = 0 in (1.2) (cf. Ex-

ample 1.1).
Our interest in the basis (1.2) and in fast solution methods for the linear sys-

tems of equations (1.4) and (1.5) stems from our ability to bound the growth

with n of the condition numbers of the CV matrices V for certain progres-

sively allocated nodes on dE . Introduce the condition number

(1-6) rCp(Vp):=\\Vp\\p\\Vp-l\\p,

where || || denotes the usual matrix p-norm on c("+1)x("+1) [12, p. 56]. We

show in §3 that for our progressively determined nodes the condition number

Koc(Vp) 8rows at most polynomially with n for any (fixed) p e [0, 1). For

p = 1, the condition number kx(Vx) grows at most like n . The latter

'This bound has for p = 0 recently been improved by A. Cordova, W. Gautschi, and S. Rusche-

weyh (see Addendum at the end of this paper).
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bound should be compared with recent results by Gautschi and Inglese [8], who

show that for real nodes zk the condition number k^Vq) generally grows at

least like 0(2"' ) with n . Related results and examples can also be found in [9,

10, 11]. These results indicate that unless special care is taken when allocating

the nodes zk, the condition numbers of Vandermonde and CV matrices in

general grow exponentially with n .

The numerical solution of the linear systems of equations (1.4) and (1.5) has

received considerable attention when V is an 'ordinary' Vandermonde matrix,

i.e., when p = 0. Then the systems (1.4) and (1.5) can be solved in 0(n2) arith-

metic operations by methods of Björck and Pereyra [1] and Tang and Golub

[18]. This operation count compares favorably with the 0(n ) arithmetic op-

erations required for the solution of (1.4) or (1.5) by Gaussian elimination.

Recently Higham [13, 14] presented (nonprogressive) algorithms for the solu-

tion of Vandermonde-like linear systems of equations involving polynomials

that satisfy a three-term recurrence relation. These algorithms are obtained by

modifying the nonprogressive algorithms for 'ordinary' Vandermonde systems

in [1].

Our scheme for progressively determining nodes zk makes it attractive to

use progressive algorithms for the solution of the CV systems (1.4) and (1.5);

i.e., the solution of ( 1.4) and ( 1.5) for n = m + 1 is computed by modifying the

solution obtained for n = m. Progressive algorithms allow us to conveniently

solve (1.4) and (1.5) for increasing values of n until the computed interpo-

lation polynomial qn approximates a given function sufficiently accurately, or

until the determined quadrature rule yields a small enough integration error. In

§2 we modify progressive algorithms of Björck and Pereyra [1] in order to ob-

tain progressive CV solvers that require 0(n2) arithmetic operations and O(n)

storage locations for the solution of (1.4) and (1.5) for any p e [0, 1] and

V e C("+ . If p = 0, then our progressive CV solvers simplify to the

progressive Vandermonde solvers in [1].

The error propagation of CV solvers does not only depend on the condition

number Kp(Vp), but also on the ordering of the nodes zk . For instance, let

p = 0 (unit disk case, cf. Example 1.1) and let the nodes zk, 0 < k < n,

be some enumeration of the n + 1 roots of unity {exp(2nik/(n + l))}"k=0.

Then the Vandermonde matrix V0 is a scalar multiple of an orthogonal matrix,

and therefore k2(V0) = 1. However, if zk = exp(2nik/(n + I)), the error

in the solution due to propagated roundoff errors grows rapidly with n (see

Figures 4.2.2 and 4.2.4 of §4). On the other hand, the CV solvers yield a fairly

small amplification of roundoff errors if the zk are ordered in such a way that

the nodes in each subset {zk}k=0, 0 < / < n, are 'approximately uniformly

distributed' on the unit circle (see Examples 4.2-4.3 of §4). Such an ordering

is given by

(1.7) zk:=exp(2nick),       0<k<n,
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where {c¿.}£10 is the van der Corput sequence defined as follows. Let the non-

negative integer k have the binary representation

(1.8a)

Then ck is given by

(1.8b)

k = Ekj2J
;=0

^■6 {0,1}.

-j-\
ck-=EkJ2'

7=0

Table 1.1 shows some values of ck and arg(z¿) defined by (1.7) and (1.8).

Table 1.1

The van der Corput sequence

2nc,

0   1

4    2

8     8

0  it
%    7>n    it    5n    3n    In

Properties of the van der Corput sequence are discussed by, e.g., Hlawka [15,

p. 93], and properties of the nodes (1.7) are considered in §3, as well as in [6,

7]. In §3 we use the van der Corput sequence to allocate nodes zk on dE as

follows. If 0 < p < 1, then we let a e R be an arbitrary but fixed constant

and define
zk := exp(2ni(ck + a)) + p exp(-27ii(ck + a)) e dE ,

(1.9)

If instead p = 1, then we define nodes on [-2,2] by

Â: = 0, 1,2,

(1.10)
z0:=-2,

( zk:=2cos(nck_x),        k = 1,2,3, ... .

Example 1.3. Let / > 0 be an arbitrary integer. Assume first that p = 0. Then
2'-l

the set of nodes {zk}k=0  defined by (1.9) is a set of equidistant points on the
2'-l

unit circle. More generally, for any fixed p e [0, 1), the set of nodes {zk}k=0

is a set of so-called Fejér points on dE . Fejér points are defined in, e.g., [17,

Chapter 1] and [6, 7].   D

2>
Example 1.4. Let / > 0 be an arbitrary integer. Then the set of nodes {zk}k=0

defined by (1.10) is the set of extreme points of the Chebyshev polynomial

p2i(x) := 2cos(2 arccos(x/2)) for the interval [-2,2].   a

In §3 we present bounds for the propagated error due to errors in the right-

hand side for the CV solvers when the matrices V   are defined by the nodes
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(1.9) or (1.10). These bounds grow slower than exponentially with n. If we

would use ck :=k/n in (1.9) and (1.10), then the error in the computed solution

would grow exponentially with n . This is illustrated by computed examples in

§4.
We finally remark that for a fixed value of n , and the nodes (1.9) or (1.10),

the solution of ( 1.4) can be computed by the fast Fourier transform method in

0(«log«) arithmetic operations (see, e.g., Ellacott [4] for a discussion on the

use of nodes (1.9)). However, it is difficult to make this approach efficient in a

progressive algorithm.

2. Progressive algorithms for CV systems

This section describes progressive algorithms for the solution of linear sys-

tems (1.4) and (1.5), and introduces notation to be used in the analysis of §3.

Our derivation of the algorithms follows closely the derivation by Björck and

Pereyra [ 1 ] of progressive algorithms for the solution of 'ordinary' Vandermonde

systems. ■y
Let (zk, fk) e C , 0 < k < n, be given data with pairwise distinct nodes

zk . We wish to compute the coefficients a(p of the polynomial

(2.1) qn(z) = J24)PJ(z),
7=0

which is uniquely determined by qn(zk) = fk, 0 < k < n. Following [1], we

first express qn in Newton form

(2.2) Qn(z)=:±cf_;X{(z-zk) = qn_x(z) + cfj{(z-zk),
7=0 /t=0 k=0

where empty products are understood to have value one. Assume that the co-

efficients a{"~x) of qn_x are already known, and write the product on the right

in formula (2.2) as a linear combination óf the polynomials p., i.e.,

(2.3) ¿¿;%(z):=n(z-z,).
/=0 k=0

In order to determine the coefficients ¿/n), we write (2.3) in the form

(2.4) £bfPj(z) = (z- zn_x)"f[(z - Zj) = (z - V,)|>5n~V2)>
7=0 7=0 7=0

and assume that the coefficients bj"~l) are already known. The M"' can now be

determined by substituting (1.2) and z = w + pw~x into (2.4), and comparing

coefficients of equal nonnegative powers of w on the left and right. We obtain
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in this manner, for n > 2,

b(n)

e -1

-'„-.C'+v»

b   -,   - z   ,bn-2 «—1   n—1    '

("-1)
1 '

B-l)

1 <j<n-2,

Finally, substituting (2.1) and (2.3) into (2.2) and comparing coefficients of the

Pj yields expressions for the cr"' in terms of the coefficients a"~   :

,(0)
— /rj!

af = a^x)+c^bf,
a(n) =    (n)b(n)
un c0   un    •

j = 0,l,...,n-l

Combining the above formulas gives rise to the following algorithm.

Algorithm 1. Progressive algorithm for the solution of dual CV systems.

Data: p; (zn,fn), n = 0, 1, 2, ...
JO) ._  f .      (0) r .c0    -— -'0 '  a0    -     -'0 '

or n := 1, 2, 3,... until no more nodes do

: compute divided difference Cg   :
M

fn
for j := n - 1, n - 2,..., 0 do

(B-l)
cf := (cM7+i    cy -')/(zn-Zj);

(n).
: compute coefficients ¿r

if « = 1 then
U(D.__Z . a(D.= 1.Lyo   -_   zo ' üi   •   x '
else

6<0     .- ¿pox zn-\u0 '

for ;':= 1, 2,...,«- 2 do

lbf:=b^-zn_xbr] + pb^;
_^.:=e-21)-^-.ei1);^):=i;

: compute coefficients a" :

for ;' := 0, 1, ... , n- 1 do
a(,!):=a("-1

; 7
,(«) :=c,

(n).

0    '

7(".'0   uj+ ein)b[n)-

We remark that the nodes in Algorithm 1 are arbitrary pairwise distinct nodes.

The value of p determines the polynomial basis. Two FORTRAN subroutines

for Algorithm 1 are listed in [16]: one for complex nodes and 0 < p < 1, using

complex arithmetic, and one for the important special case of real nodes and

p = 1, using real arithmetic only. The codes are available from the authors. The

subroutines require 0(n) storage locations in order to compute the coefficients
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{û'n)}"=0 of (2.1). The operation count for computing these coefficients by the

code for real nodes and p = 1 is \n2 + 0(n) multiplications or divisions and

\n2 + 0(n) additions or subtractions. If we compute the coefficients {<z,")}"=0

by the code for complex nodes and 0 < p < 1, and convert complex arithmetic

operations into real ones, then 10« +0(n) real multiplications or divisions are

required. This operation count is based on the observation that one complex

multiplication takes three real multiplications, and one complex division takes

six real multiplications or divisions.

We now turn to the derivation of a progressive algorithm for the solution of

primal CV systems (1.5). Following the approach used in [1] for the derivation

of Vandermonde solvers, we first make a matrix interpretation of Algorithm 1.

The matrices introduced will be used in the error analysis of §3.

Let m be an arbitrary integer larger than or equal to n . For 0 < k < m ,

define the matrices

0(h

L,:=

and

Z\:=diag[l, 1>

k+l \

1
-1

0
1

-1

''k+l *o)"

-1

'k+2

0

0
1 J

(m+l)x(m+l)

-*l)" (z    — Z\   m m—m—k—\'

eC
(m+l)x(m+l)

where /. denotes the identity matrix of order j.  Introduce the coordinate

vectors e , i.e., e ■ is the (/ + l)st column of Im+X. Then the divided difference

c[Q ' in formula (2.2) can be written as

(2-5) c[n) = ^Dn_xLn_x

Introduce the tridiagonal matrices

iK- • Dc.Lci, 1 < n < m.

1

0

W]:=

2p      0 0  \

P
-Z  ;

''j

V o
0 < j < m , and let

hin) := (b{"], bin

*w ■= M
1   '

(#1)

n

1

0

0,0,..

0,0,...

0

p
-z.

eC
(m+l)x(m+l)

m+\
,0)   eC
, 0)T 6 Cm+1

0< n < m,

0 < n < m,
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where the ¿>|n) and a(p are defined by (2.3) and (2.1), respectively. Then

(2.6) tin) = W„-xWn-2---wo*o>        l<n<m,

(2.7) ä(B) = ä("-1} + b{n)c{¿] = ä{n-X) +S„Í,       0<n<m,

where

Sn-=Wn_xWn_2--.W^nDn_xLn_xDn_2Ln_2.--D,L0,

1 < n < m,

(2.9) ä{n) = J2Sjf,        l<n<m.
7=0

Let V denote the CV matrix of order m + 1 defined by the node set {z }J=0

and p e [0, 1]. It follows from (1.4) and (2.9) that

m

(2.10) ^T = E57>
7=0

and therefore
m

(2.11) V~x =¿ZS].

7=0

From (2.11), and the fact that the W. commute, we obtain the following algo-

rithm for the solution of (1.5):

Algorithm 2. Progressive algorithm for the solution of primal CV systems.

Data: p; (zn, fn), n = 0, 1, 2,...

f(0) ._  f .      (0) ._  f .      (0)        j .-'0    -— •'O ' "o    -— -'0 '  "o   •     l '

for n:= 1,2,3,... until no more nodes do

: compute f¡n) := ej« ■ ■ • <_,f :

/•(")_/■  .

or Ä: := 0, 1,...,«- 2 do
A")  ._ /•(«)      _   r(n-l)  ,   „A"-1) .
Jk+\ ■- h   ~ zkh       + Ph

Lif^ = «-2then/a:=/a+/J/r2);
An) ._  An)   _ An-1) .

Jn     -~Jn-\       Ln-\Jn-\     '

: compute u(w) := (l/w{0n), l/ti/f0,... , l/iuj0)7, where

^ = («,<"> , <>, ... , W«)T := lX^i ■ • • í-A-A :
{»)C ■= i ;

l'or k := 0, 1,..., n — 1 do

4"):=(^-z>ri);
L   «?> := (zn - zk)u["> ;
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: compute *w := ¿*~l) WH)J?} :

for k := 0, I, ... , n - I do

Two FORTRAN subroutines for Algorithm 2 are listed in [16]: one for com-

plex nodes and 0 < p < 1, and one for real nodes and p = 1. The codes

are available from the authors. Similarly as for Algorithm 1, the nodes for Al-

gorithm 2 are assumed to be pairwise distinct but otherwise arbitrary, and p

determines the polynomial basis (1.2).

3. Condition number bounds

In this section we assume that the nodes zk are given by (1.9) or (1.10). We

derive bounds for the rate of growth with n of the condition numbers (1.6) of

the CV matrices V of order n + 1. Also, we present bounds for propagated

errors due to errors in the right-hand side vectors in (1.4) and (1.5). These

bounds are derived by bounding the quantities computed by Algorithms 1 and

2; i.e., in order to bound V~ , we bound the mapping from the right-hand side

vector in (1.4) to the divided differences cy_: in (2.2), and the mapping from

the divided differences to the solution vector a. Our analysis extends previous

results in [7] on bounds for the condition number for the Newton interpolation

formula. This application will be discussed in Remark 3.1 below.

Introduce the mappings Mx:Cn+x -> C"+1 and M2: Cn+X -+ Cn+X defined

by

(3.1) Mxf.= c=(c^,cf,...,c(:))\
it i\ » a- i   («)       (") («)\T
(3.2) M2c:=a = (al\ ', a\ ', ... , ay)  ,

where the ép are the divided differences of the Newton form (2.2), and a

solves (1.4). By using the orthogonality of the p.j with respect to one of the

inner products

(3.3a)    (Vx,V2)p:=±JEWxJz-)V2(z)\z2-4p\-x/2\dz\,       0 </>< 1,

(3.3b)   <¥,, ¥2>„ := i J2 Vx(x)V2(x)\x2 -4\-x,2dx,       p=l,

we can bound the mapping M2 in a fairly straightforward manner. The deriva-

tion of a bound for Mx requires more work and will be discussed first. Most

of the proofs are just outlined; details can be found in [16].

Equip C"+l with the uniform norm,

I|v||°°:=o<kJ^'1'        v = (v0,vx,...,vn)T,
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and let \\M]W^ denote the induced operator norm. In order to bound H-A/J^,

we first note that the divided differences cp can be written as

(3.4) cP^Y—-à-,        0<j<n,
k=0 11.1=0,1 ¿k\zk     zv

(see, e.g., Davis [2, §2.6]). A lower bound for the products in (3.4) was derived

in [7] for zk given by (1.9) and 0 < p < 1. This bound is used in the proof of

the following theorem.

Theorem 3.1. Let the nodes zk, 0 < k < n, be defined by (1.9) for an arbitrary

constant a e R, and let 0 < p < 1. Then there are nonnegative constants

dx, d2 depending on p, but independent of n, such that

(3.5) Pilleo <4(« + l)i'2,        «*l-
Proof. By (3.4),

j    j
(3.6) \\M, II    = max llcll    < max ^P Y^ |z. - z,\
v     i n    m«,     ||f||oo=1n noo-0<;.<„^^i *      /i

The right-hand side of (3.6) can be bounded by applying Lemma 2.5 of [7], and

(3.5) follows.   D

In a sequence of lemmas we now present some auxiliary results that we use

to bound HAfjH^ for p = 1 and the nodes (1.10):

Lemma 3.1. Let the nodes zk be defined by (1.10). Then

2'

(3.7) [] \zk - zj\ > 2l+X,        0<k<21,

7=0
j*k

for any integer / > 0.

Proof. Let Un(x) := sin((n + 1)6)/sinö, where x = cosö, denote Chebyshev

polynomials of the second kind. Then

2'

(3.8) H(z - Zj) = (z2 - 4)U2,_X (|) ,        -2 < z < 2.

7=0

By evaluating, and then estimating, the derivative of (3.8) at z = zk we obtain

(3.7).    D

Let the nodes zk be defined by (1.10). Then Lemma 3.1 yields

n 2

(3-9) ni^-^r1^2"'-1  II  l**-*;l.        0<k<n,
7=0 7=n+l

m
where as usual the empty product is defined to have value one. The lemma

below bounds the right-hand side of (3.9).
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Lemma 3.2. Let the nodes z. be defined by (1.10) and assume that 1 < n < 2 .

Then

(3.10) n
m=n+\

z\ < 2Ki+D

Proof. The bound is obtained by partitioning the product (3.10) into subprod-

ucts, each of which contains factors \zk-zm\ with nodes zm that are distributed

like the first 2 points determined by (1.10) for some integer / > 0. Such a

partitioning is described by [6, Lemma 2.4]. Each subproduct can be bounded,

and (3.10) is obtained.   G

We are now in a position to show a result for the nodes (1.10) analogous to

Theorem 3.1.

Theorem 3.2. Let the nodes zk, 0 < k < n, be defined by (1.10), and let p = 1.

Then

(3.11)

Proof. From (3.6) we obtain

IWL < 2"
3+log2 n

n > 1

(3.12) \\M,Hloo < max
0<7SEE i

-   k=0 w=0
m^k

Z, — Z   ,k        m<
,-1

= max <

7       7

1<7?
k=0 m=0

m^k

}  ■

Let / > 0 be the unique integer such that n < 2 < 2n . An application of

(3.7) and (3.10) yields

7        7

max
1<7<

--V     llw=7 +
',  Y  T   [   \Zk - Zm\        ~   maX   Y -J„¿^ 11 '   k mi 1<7<«^ n2

1 \*k

k=0 m=0
m±k

sn m=0,m¿k\Zk      Zm\

< max 2
l<7'<n

1

-l-\ En zk - z  \     < max 2
* m Kj<n

k=0m=j+l -J- k=0
E2

/(/+1)

,/•/ , 1
= ^(n + l)2N <^(n+l)(2n)' < (n + 1)«2+1°82" ,        n>\.

Substitution of this inequality into (3.12) shows (3.11).   D

Remark 3.1. In [7] the stability of the Newton interpolation formula is discussed

for interpolation at nodes on a smooth Jordan curve. The nodes considered are

Fejér points ordered by the van der Corput sequence, such as the nodes (1.9).

A mapping T is defined that maps the vector f := (f0, fx, ... , fn) to the

polynomial qn e Yln in Newton form (cf. (2.2)). The range and domain of T
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are equipped with the uniform norm, and it is shown in [7, Theorem 2.6] that
1 In

limfI_oocond(r) ' = 1, where cond(T) denotes the condition number of T.

By using Theorem 3.2, this equality can also be shown when interpolation is

carried out at the nodes (1.10). This result follows by substituting (3.11) into

the proof of [7, Theorem 2.6].   D

We now derive a bound for 11 vW211 oo . This is achieved by first bounding the

products n(lo(z _ Zk> m ^e Newton form (2.2), and then using the orthogo-

nality of the Pj with respect to one of the inner products (3.3).

Lemma 3.3. Let 0 < p < 1 and let the nodes zk, 0 < k < r, be defined by

(1.9). Then

r-\

(3.13) \\\z-zk\<4r2,        r>l,  zedEp.
k=0

If, instead, the nodes zk, 0 < k < r, are defined by (1.10), then

r

(3.14) \\z-zk\<4r0h2r,        r> I,  ze[-2,2].

k=0

Proof. The product (3.13) is partitioned into subproducts, each of which con-

tains 2 nodes zk that are distributed roughly like the first 2 nodes (1.9).

Such a partitioning is described by [6, Lemma 2.3]. These subproducts can be

bounded, and (3.13) is obtained. The proof of (3.14) is analogous.   D

We are now in a position to bound the mapping M2. The bounds show that

the norm of M2 grows fairly slowly with n .

Theorem 3.3. Let the nodes zk, 0 < k < n, be defined by (1.9), and let 0 <

p < 1. Then

(3.15) P^lloo ^8"3'        n^2-

If, instead, the nodes zk, 0 < k < n, are given by (1.10), and p = 1, then

(3.16) HMJ^IO«2^",        n>2.

Proof. Let the values of p in the definition (1.2) of the polynomials p. and in

the inner product (•, •)   given by (3.3) be identical. Then

(3.17) (Pj,Pk)p = 0,    kjij,        l<(Pj,Pj)p<2,    ;>0.

We obtain from (2.1) and the orthogonality of the p. that

(3.18) aP = (qn,pj)p/(pJ,pj)p,        0<j<n.

Now (3.2), (3.17), and (3.18) show that

(3.19) II^IU = ||maxi Ua^ < mm  max \(qn, Pj)p\.
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Substituting

(3.20) \(q , Pj) | < max \q(z)\ max \p(z)\,        max \p(z)\ < 2,
1  f        z&dEp ztdEp zZdEp

and (2.2) into (3.19) yields

n   7-1

(3.21) IIMJI    < 2 max max \q„(z)\ < 2 max Y^   \\z-z.\.
y      ' "   2"°°-   \\c\\=izeoE,™ n~   I6a£^lli        fci

The right-hand side of (3.21) can be bounded, using Lemma 3.3, and the theo-

rem follows.   G

We note that formulas similar to (3.15)-(3.16) are valid also if the Chebyshev

polynomials p are replaced by polynomials that belong to some other family of

orthogonal polynomials, such as Legendre polynomials. The proof of Theorem

3.3 only requires that an inequality of the form (3.17) is valid.

Theorem 3.4. Let Vp e c("+1)x(B+1). Assume that 0 < />< 0, and let the nodes

zk be given by (1.9). Then there are constants c and d depending on p, but

independent of n, such that

KjVpT)<cnd,       n>\.

If, instead, p = 1, and the nodes zk are given by (1.10), then

k   (KT)<40«5+21og2",        «>1.

Proof. From the second inequality in (3.20) it follows that II^JÏI^ < 2(« + 1).

The factorization V     = M2MX and Theorems 3.1-3.3 yield bounds for V    ,

and the theorem follows.   G

Theorem 3.4 shows that the condition number grows slower than exponen-

tially with n for nodes (1.9) and (1.10). The bounds in Theorems 3.1-3.4 are

not sharp, however, and the numerical experiments of §4 display a quite modest

growth of Kjyj) with n . Bounds for K<yo(Vp) = H^HJI^-'H^ can be ob-

tained by Theorem 3.4 and the observation that for any matrix A e c("+1)x("+1),

(3.22) IMTll00 = Mlli <("+l)Mlloo-
We turn to the propagation of errors in the right-hand side vectors in (1.4)

and (1.5) by Algorithms 1 and 2. A comparison of (2.5)-(2.8) with (3.1)-(3.2)

yields, for n > 1,

eX-lL»-lö»-2L»-2 ■ • ■ ̂¿0 = elM\ >

(3-23) Wn-lWn-2---W^ = M2%>

Sn = M2e0eT0Mx.

The following theorem shows that the propagated errors in the solution vectors

of (1.4) and (1.5), due to perturbations in the right-hand side vectors f and

g, grow slower than exponentially with n. We remark that for many distri-

butions and orderings of nodes zk, the propagated error does, indeed, grow

exponentially with n (see the numerical examples of §4).
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Theorem 3.5. Let 0 < p < 0, and let the nodes zk be given by (1.9). Then there

are constants c, and dx independent of n such that

7=0 7=0

oo,   ^C\n

If, instead, p = 1, and the nodes zk are given by (1.10), then there are constants

c2 and d2 independent of n such that

maxi¿ 115,1^, ¿tl^JlU 1 <c2^l0^w.
{7=0 7=0 J

Proof. The proof follows from H-SqII^ = 1, bounds for IIA/J^ and HtMJ^,
and (3.22)-(3.23).   G

4. Numerical examples

The computed examples of this section illustrate the results of §3. All ex-

amples have been computed on an IBM 3090VF computer. Throughout this

section the parameter a in (1.9) is set to zero.

Example 4.1. This example shows k2(V) k2(vJ)) as a function of n for

different values of p, where V e c("+1)x('!+1). The condition numbers k2(V)

have been computed in double precision arithmetic, i.e., with 15 significant

digits, using the subroutine ZSVDC of LINPACK [3]. Figure 4.1.1 illustrates

the oscillating behavior of n -nc2(VQ), where VQ is defined by the nodes (1.9).

The condition number k2(V0) is smallest when n is such that the set of nodes

{zk)l=0 can be written as the union of only a few disjoint sets of equidistant

nodes. For instance, if n = 2 - 1 for some integer / > 0, then the zk are the

«th roots of unity and VQ is orthogonal, i.e., k2(Vq) = 1.

32 64 96

Figure 4.1.1

Condition number k2(V0) as a function of n
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log(K2GWlog2(n + 2)

O.6O-1

0.30H

0.00

Figure 4.1.2

Growth of k2(Vx) with n

In Figure 4.1.2 we have chosen p = 1  and the nodes (1.10).  This figure

suggests that k2(Vx)

logarithm.

< n
0.451og(«)

for large n, where log denotes the natural

The following examples illustrate the propagation of roundoff errors in Al-

gorithms 1 and 2. Because of the small amplification of roundoff errors when

the nodes (1.9) and (1.10) are used, we are able to solve fairly large CV systems

(1.4) and (1.5) in single precision arithmetic, i.e., with only six significant digits.

Example 4.2. In this example we solve dual CV systems (1.4) by Algorithm 1

in single precision arithmetic. Let x e C"+1 denote the exact solution of (1.4),

and let x* denote the computed solution. We determine the residual error

(4.1) :=Vpx f

by accumulating sums in double precision arithmetic. The norm UrH^ is a good

estimate for the norm of the error in the solution llx* - xll     because V    is
ii Hoc

quite well-conditioned (see Example 4.1).

Figure 4.2.1 shows Hr]^ when p = 0 and the nodes are defined by (1.9).
„i i

The real and imaginary parts of the right-hand side f e C are uniformly

distributed elements in [0, 1], computed by the random number generator

SURAND of the ESSL program library [5]. The figure shows a slow growth

of |r||     with n.
1   ''oo

The computations for Figures 4.2.1 and 4.2.2 differ only in the ordering of

the nodes. The matrix F0T e c{n+x)x{n+x) used for Figure 4.2.2 is defined by

the nodes

(4.2) z, = exp(2nik/(n + 1)),        0<k<n,

for every n > 1. The nodes (4.2) make F0T orthogonal for every n , but yield

severe amplification of roundoff errors, as shown by Figure 4.2.2.  The rapid
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loSiollrIU

-2t

1 ' ' i ' ■ ■ ' i ■ ■ ■ ■ i ■ ' ' ■ i ' ' ' ' i

0 50 100        150        200        250

Figure 4.2.1

Growth of ||r||     with n for p = 0 and nodes (1.9)

^        «

Figure 4.2.2

Growth of ||r||     with n for p = 0 and nodes (4.2)

Figure 4.2.3

Growth of ||r||     with n for p = 1 and nodes (1.10)



CHEBYSHEV-VANDERMONDE SYSTEMS 719

Growth of ||r|

O 50

Figure 4.2.4

with n for p = 1 and nodes (4.3)

growth of the propagated error is a result of the ordering of the nodes (4.2),

which is unsuitable because it causes many products in the denominators in

(3.4) to have tiny magnitude.

Experiments suggest that the graphs of Figures 4.2.1-4.2.2 are quite insen-

sitive to the choice of right-hand side vector f, as well as to the choice of

0 < p < 1, if p is not very close to 1.

In Figures 4.2.3 and 4.2.4 we set p = 1 and present graphs analogous to

those of Figures 4.2.1-4.2.2. Figure 4.2.3 shows ||r||oo when the nodes z are

given by (1.10) and f = [fj]"=Q has elements uniformly distributed in [0,1].

The computations for Figure 4.2.4 differ from those for Figure 4.2.3 only in the

ordering of the nodes. For Figure 4.2.4 we select for every n > 1 the nodes

(4.3) z, := 2cos(nk/n),       0<k<n.

Example 4.3. We consider the solution of primal CV systems (1.5) by Algo-

rithm 2 using single precision arithmetic. Let x* e Cn+ denote the computed

solution, and define the residual error

(4.4) Vx  -g.

loSio
-2-1

-6

-1        "

0 50 100        150        200        250

Figure 4.3.1

Growth of ||r'||     with n for p = 0.8 and nodes (1.9)
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Figure 4.3.1 shows 11r'11oo for p = 0.8 and the nodes (1.9). The right-hand
side g = [gj]nj=Q is given by g. := exp(z;.).

Numerous numerical experiments indicate that the residual error (4.4) often

is somewhat larger than the error (4.1) for identical matrices V and right-hand

sides. Further computed examples can be found in [16].

5. Conclusions

Fast progressive algorithms are derived for the solution of CV systems, and

in §§3 and 4 these algorithms are demonstrated to be fairly insensitive to per-

turbations for suitably distributed and ordered nodes.
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Addendum. Figure 4.1.1 inspired A. Cordova, W. Gautschi, and S. Ruscheweyh
LI

to completely describe the spectrum and eigenvectors of V0V0 in the paper

Vandermonde matrices on the circle: spectral properties and conditioning, Nu-

mer. Math. 57 (1990), 577-591. In particular, they show that k2(V0) = 0(nx/2)

for V0 e c{n+X)x{n+X) defined by the nodes (1.9) with p = 0. A survey of con-

dition number bounds for Vandermonde matrices can be found in the paper

How (un)stable are Vandermonde systemsl by W. Gautschi, in Asymptotic and

Computational Analysis (R. Wong, ed.), Lecture Notes in Pure and Appl. Math.,

vol. 124, Dekker, New York, 1990, pp. 193-210.
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