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COUNTEREXAMPLES
CONCERNING A WEIGHTED L2 PROJECTION

JINCHAO XU

Abstract. Counterexamples are given to show that some results concerning a

weighted L projection presented earlier by Bramble and the author are sharp,

i.e., that certain error and stability estimates are impossible in some cases.

1. Introduction

Motivated by the numerical solution of second-order elliptic boundary value

problems with discontinuous coefficients, certain weighted L projections were

studied in [1]. Owing to some technical difficulties, the error and stability es-

timates obtained in [1] are contingent upon some additional assumptions. In

this paper, we study the problem further. The results we obtain are negative

and demonstrate that the main results in [1] cannot be improved.

Let ßcE ( 1 < <¿ < 3 ) be a bounded domain. For simplicity, we assume

that ß is a polyhedral domain, i.e., an interval for d = 1, a polygon for d = 2

and a polyhedron for d = 3. Assume the domain ß admits the following

decomposition:

(l.i) ß = Un<>
;=1

where ß; are mutually disjoint polyhedrons.

Given a set of positive constants {«,}/=], we introduce two weighted inner

products,

1.2) (u, v)Li,a, = '^ioi I   uvdx
i=i     ^a>

and

J r

[1.3) (u>v)Hlia) = YlœiI   Vu-Vvdx
"        7TT     Jn,
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with the induced norms denoted by IHIL2,n) and | • \Hi,^ , respectively. More-

over, we define a full weighted H   norm by

„2 2 2
IHIff¿(íi) = InIl^íí) +1 • lff¿(íi)-

If (oi = 1 for each i, we have the usual Sobolev space and the symbol w will

then be dropped.

Next we introduce a finite element space. For 0 < h < 1, let ¿^ be a

triangulation of ß with simplices K of diameter less than or equal to h . An

additional assumption is that this triangulation be lined up with each subdomain

ß(. Namely, ß( is the union of a set of elements of 5£. We assume that the

family {3^} is quasi-uniform, i.e., there exist positive constants c0 and cx

such that
hK ^ max*€^ hK ^

max -^ < cn,        —j-h—¡— < c,,    VA.

Here, hK is the diameter of K and pK the diameter of the largest ball con-

tained in K. Corresponding to each triangulation ETh, we define a finite element

subspace Sh c H^ (ß) that consists of continuous piecewise (with respect to the

elements in !Th ) linear polynomials vanishing on <9ß. For G c ß, Sh(G) de-

notes the space of functions in Sh restricted to G.

The weighted L2 projection Q™ : L2(ß) <-> Sh is defined by

(1.4) (Qwhu, v)L2jri) = (u,v)L2jn),        Vu£L2(Çl),v£Sh.

If wi = 1 for all i, we get the usual L2 projection, denoted by Qh. The

following estimate is known (cf. [1, 3] and the reference cited therein):

II" - QhuWû(a) + h\Qhu\H\a) ̂  ch\u\H\a) >    Vm e Ho(a)-

We are interested in similar estimates for the weighted L projections with

the regular norms replaced by the weighted norms, and with the constant C

independent of the weights œi 's. This problem has been carefully studied in

[1].
Before we review the results of [1], we introduce the following notation:

x  < y,    f >  g   and   u>ív

meaning, respectively,

x < Cy,    f >cg   and   cv <u <Cv ,

where C and c art positive constants independent of the variables appearing

in the inequalities and the other parameters related to meshes, spaces and espe-

cially the weights <y 's. We shall use the term "interface" to denote the union

of the boundaries of all ß ■ inside of ß.

The first result shows that optimal estimates can be obtained in a special case.
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Theorem 1.1 [1]. Assume that d = 1, or that the decomposition (1.1) has no

internal cross points, i.e., there is no point on the interface that belongs to more

than two ß; 's. Then, for all u £ H0 (ß),

(1.5) \\V-Qt)u\\Ll{a) + h\Qtu\Hùa) % Al"k(nr

If there are internal cross points, nearly optimal estimates can be obtained

under additional conditions.

Theorem 1.2 [1]. If for all i, the (d - T)-dimensional Lebesgue measure of

<9ß; n dß is positive, then for all u £ ¿/¿(ß)

(1.6) H(/-o™)Mll4(0) + AIO""lfl¿(n)  ~ h\logh\^\u\HLm.

In order to obtain estimates without the restriction on the measure of öß( n

öß, as in the above theorem, we consider a special class of functions instead

of all of Hx. For a given triangulation ^, we consider a finer quasi-uniform

mesh ^ with h < h which is obtained by refining ^ in such a way that

Sh c Sh_.

Here, Sh c Hx (ß) is the finite element space corresponding to 3~h .

We have shown previously:

Theorem 1.3 [1]. For any u £Sh,

ll(/-Ô>IUn) + A|Ô>Un)  £
logg)   \u\Hija),    ifd = 2;

j)   !"!//>)'        ifd = 3.

The purpose of this paper is to show that the assumption in Theorem 1.2

concerning the measure of <9ß, n dß is necessary and that the estimate for

d = 3 va. Theorem 1.3 is sharp.

2. Counterexamples

In Theorem 1.2, the estimate (1.6) is established only under the condition

that all the subregions meet the boundary of the original region on a subset

of a positive (d - l)-dimensional measure. A natural question is then if this

constraint is essential. The following two theorems show that this is the case.

Theorem 2.1. Assume that there is an i0 such that the (d - Y)-dimensional

Lebesgue measure of dß, nöß is zero. Then, there is no constant C indepen-

dent of the coi 's such that

(2.1) W-Q>\\Li(a)<c\u\K(a),   vM€//0'(ß).

Proof. For convenience, we shall use measA.(C) to denote the k-dimensional

Lebesgue measure of G.
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Case 1: d = 3 and meas, (öß, floß) = 0. Without loss of generality, we assume
1 'o

that i0 = 1 and that ß, is the unit cube (0, l)3. It suffices to consider two

cases. In the first, there is another subdomain, ß2 , that touches ß, only at the

origin O. In the second case, O £ <9ß. Because of the similarity in the proofs,

we only present the proof for the first case.

Assume that there is a constant C independent of the coi 's such that (2.1)

holds. By letting <y; = œ for i > 2, we then would have

||(7 - ÔDmIIl2(q,uîi2) ^ C(lwl/i'(n,uc.2) + wlwl//'(n\(n,un2)))-

In particular, the above inequality implies that ||ô™w||L2(£î u£2, is bounded with

respect to œ, hence it has a subsequence that converges to a function Qhu £

Sh(£lx U ß2). Consequently, letting co -> 0 yields

-0) 1

(2.2) ll"-ôA"lli2(nlue.2)^clîV(n1ufi2)'    V«e//0(ß).

Take a function 4> £ C°°(RX) such that </> = 0 for x < \ , <j> = 1 for x > 1

and \<f>'(x)\ < 4 for any x . It is easy to see, for any e > 0, that there exists a

function u £ H0 (ß) such that

"■-{
0(¥) in"i.
0 in ß2.

For example, in the rest of ß, ue can be defined by solving -Aw£ = 0 with

some properly prescribed continuous boundary data. A direct calculation shows

that

(2-3) \us\H\aiua2) = \ue\H\al)  Z  V¿

and

II".-^(«.uo,)   ~  «*.
i-^*j

where u equals 1 in £lx and 0 in ß2. We first observe that 110^ Mell¿2(n un )

is bounded with respect to e . Hence, there exists a function wh £ Sh(£lx U ß2)

and a sequence {em  —» 0} such that

lim 110. u„  -wA\r2tn ,,n , = 0.
m—oo      "   em        n"L (atua2)

Consequently, we conclude from (2.2), with ue — u, and (2.3) that

llw-^ll^in.un,)^0-

This implies ïï = wh , which is a contradiction, since wh is continuous at O

but ü is not.

Case 2: d = 2 . Let ß, and ß2 be similar as before, but £lx — (0, 1) . In this

case, the construction of an appropriate u   is more difficult. Using the fact that
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C^° is dense in H* , we can find a sequence of smooth functions <f>e on <9ß,

that vanish in a neighborhood of (0, 0) and satisfy

(2.4) lim 110,-l||  i        =0.
v     ' £-o    e      "if i (an,)

As we did above, it is easy to find a ue£ H0 (ß) such that

(2<n i-Aw£ = °  in"i>
[   } I u, = 0£     on an,

and

ue = 0   in ß2.

Notice that ue - 1 is harmonic in ß,, and therefore, as e -* 0,

(2-6) l"eltf'(o. un2) = I«. - l|ff'(Q,) S 11^ - lll^i^) - 0-

Here we have used (2.4).

The rest of the proof is the same as in the first case.

Case 3: d = 3 and meas,(<9ß, n öß) = 0. In this case, we may assume that
1 'o

ß,. = ß. =(0, l)3 and
'o '

Öß1nöß = {(0, 0,x3): 0<x3<l}.

We can construct a function ve £ H0 (ß) satisfying

ve(xx ,x2,x3) = ug(xx,x2),       0<x¡ < 1, 1 = 1,2,3,

where ue satisfies (2.5).

By (2.6), we have, as e -* 0,

K'/f'(n,) = lMel//'((o,i)2) ~* 0-

The rest of the proof is similar as above.

The following result concerns the sharpness of the estimate in Theorem 1.3

for d = 3 .

Theorem 2.2. Assume that d = 3 and that there is an index i0 such that

meas,(<9ß( n <9ß) = 0. Then, if Ch is a constant satisfying

(2.7) ll(/-Ô>ll^(£i)<qN/f'(n)'       V«e5,,

there holds

Ch > h~\

Proof. As in the proof of Theorem 2.1, there exists, for any u £ Sh , a function

Q^u £ Sh(Qx U ß2) such that

-O)

(2-8) II" - Qh MllL2(n,un2) ^ Ch\u\Hl(a.ua1r



568 JINCHAO XU

We now take uh £ Sh such that uh — 1 at all the nodes except O on ß,,

and uh — 0 at all the nodes on ß2. A direct computation shows that

KU'(n,un2)  ~  VI-

Using an argument similar to that in the proof of Theorem 2.1, we can find a

wh £ Sh such that

lim ||m4 - ß>jL2(n,un2) = II" ~ ^Hi^n.un,) = ah > °-

Consequently, for sufficiently small A , we have

Ch_ >  ffh(I-ÏÏ°h)u\\û{aiUa2)   >   \ahh-K

This completes the proof.

Remark. The questions concerning logrithmic factors appearing in the estimates

of Theorems 1.2 and 1.3 are more subtle. The author does not know whether

they are necessary.
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