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ANALYSIS OF A ROBUST FINITE ELEMENT
APPROXIMATION FOR A PARABOLIC EQUATION

WITH ROUGH BOUNDARY DATA

DONALD A. FRENCH AND J. THOMAS KING

Abstract. The approximation of parabolic equations with nonhomogeneous

Dirichlet boundary data by a numerical method that consists of finite elements

for the space discretization and the backward Euler time discretization is stud-

ied. The boundary values are assumed in a least squares sense. It is shown

that this method achieves an optimal rate of convergence for rough (only L1)

boundary data and for smooth data as well. The results of numerical computa-

tions which confirm the robust theoretical error estimates are also presented.

1. Introduction

Consider the initial boundary value problem

y, + A y = 0   in Q. x [0, T],

(1) y = g   onTx[0,T],

y(- ,0) = v   on Q,

where Q is an open bounded convex polygonal domain in R2 with boundary

T. We assume the elliptic operator

A=-Iliix-i{aij{x)éj)

has smooth coefficients, say C2(Q), and the 2x2 symmetric matrix with entries
a¡ > j is uniformly positive definite on Q .

In this paper we are primarily concerned with rough boundary data g which

belong to either the space L°°(0,T; L2(T)) or L2(P,T; L2(Y)). This is typi-
cal of certain problems in control theory where the control g has the bang-bang

property (see [17]). As such our scheme for approximating the solution of (1)

is a building block for solving these control problems.

For Neumann boundary control problems of parabolic type the finite element

approximation has been analyzed by Winther [22]. For related time-optimal

control problems see Knowles [16].

Received by the editor October 18, 1991 and, in revised form, December 23, 1991 and February

10, 1992.
1991 Mathematics Subject Classification. Primary 65N30.
Key words and phrases. Finite elements, parabolic equations, backward Euler method.

The first author's research was supported in part by the U.S. Army Research Office through grant

number 28535-MA.

© 1993 American Mathematical Society
0025-5718/93 $1.00+ $.25 per page

79



80 D. A. FRENCH AND J. T. KING

Ground-breaking work on parabolic control problems with boundary Dirich-

let control was done by Lasiecka [17, 18, 19]. Approximation by finite element

methods of problem (1) was also considered by Lasiecka [17, 18] and Choudury

[6]. One such method that is analyzed in [18, 6] uses piecewise linear elements

in space which vanish on Y. Optimal-order convergence is proved for the

continuous time method in [17] and for a fully discrete scheme in [6]. This

nonstandard approach, while optimal for rough g, is suboptimal for smooth

g-
The scheme we propose and analyze is optimal for both rough and smooth

boundary data. Our approximation u consists of piecewise constants in time

and finite elements in space, and assumes the boundary values in a least squares

sense. Specifically, let Vk denote the space of piecewise constant functions on

a partition 0 = to < tx < ■ ■ ■ < ín = T, where t„ = nk and k > 0 is the

time step. Then ip e Vk if ip = Y^f=x y/jXi¡, where Xi¡ is the characteristic

function of Ij = (tj-X, tj]. We denote by Vh a finite element space on Q with

parameter h . In our estimates with rough boundary data we require

(2) k = ch2;

however, this restriction is not necessary in our analysis for smooth boundary

data.
To define our scheme, we need to introduce some L2 projections. Let

Vh° = {xeVh:X = 0onY}

and Vn(Y) denote the restriction of Vh to Y. Define the L2 projections

Qh: L2(Y) - Vh(Y) and Pk: L2(0, T) -» Vk, and set Q = QhPk = PkQh.
We denote on /„

Pkw = Pgw = -r      w(t)dt.

Our numerical method is as follows: Find u&Vh®Vk such that

N

(3) £[(M"-M"-1,.?3) + MM'I,<«] = 0,        V^^Ft,
n=l

with u = Qg on £ = Y x (0, T], u° = 3°^v , where u" is the restriction of u

to fi x /„ , 3°%: L2(Q) -<• Vh is the L? projection,

and (w, z) = ¡awzdx. In Theorem 1 we will consider v G H~ll2(Q),

bounded linear functionals on //'/2(Q), and define &>%: //"'^(Q) -► Vh by

vi<t>) = i3>h°v,<t>),       <t>eVh.

Subsequently we denote the duality pairing for v e //_1/2(Q) and <fr e Hll2iCl)

by iv , <f>).
It is straightforward to demonstrate that (3) is uniquely solvable since for

each n = I, 2, ... , N

iun - un~x, <p) + kaiun , <p) = 0
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for all </> € Vh° , and on Y

U" = U Qhg(-,t)dt.

This method is equivalent to backward Euler and is the simplest discontinu-

ous Galerkin method (see, for example, [14]). For more general discontinuous

Galerkin methods, see [8, 9, 15]. Observe that defining the approximate bound-

ary data through interpolation would be inappropriate, since the data, g, is not

continuous.

We will prove the following error estimates.

Theorem 1. There exists a constant C independent of h, u, and y such that if

(2) holds then

(4) ||y - u\\LHOtT;LHQ)) < Chx/2(\\g\\L2{yz) + ||u||tf-i/2(a))

for v e H~xl2(Çi) and g e L2(l).

Theorem 2. For any e > 0 there exists a constant C independent of h, u, and

y such that if (2) holds then

(5) maxN\\(y - «)(•, i„)|b(n) < Chl'2-ei\\g\\L*,(0iT.LHr)) + \\v\\HiP{a)),

where v e Hxl2(Q) and g e L°°(0, T; L2(Y)).

We denote by C a positive generic constant that is independent of h, k,
and the data pair (v , g).

A key ingredient in the proofs of these error estimates is the orthogonal

decomposition of Vh : Vh = Vf{ ®(V^)±, where

(VhY = {<j>eVh:(4>,x) = 0, xeVh0}

or

(VhY = {<p£Vh:a(cp,x) = 0, ^F»}.

Following Bramble, Pasciak, and Schatz [3], we refer to the latter choice of

(Vfi)1- as discrete v4-harmonic functions.

The outline of the remainder of the paper is as follows. In §2 we discuss

problem ( 1 ) in our setting with fi a convex polygonal domain. We present a

weak formulation for this problem that is suitable for our analysis and obtain

a priori estimates in L2(0, T; L2(ü)) and L°°(0, T ; L2(Q)). In §3 we state
the approximation-theoretic and inverse properties of Vh needed in the proofs

of the error estimates. We also derive certain useful estimates for functions in

(V®)1-. In §4 we establish a stability estimate for the method and prove the L?

error estimate. Section 5 is devoted to the L°° error analysis. In §6 we sketch

the proofs for optimal L2 and L°° error estimates when y is smooth. Finally,
in the last section we present some numerical experiments.

2. Regularity

Lasiecka proved in [17] that there exists a unique solution to (1) on a domain

Q with smooth boundary Y which satisfies an a priori L°° in time estimate

(see (21)). Lions and Magenes [20] proved similar results which were L2 in

time but still require a smooth boundary. We shall need both L°° and L2 in
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time estimates in the case where Ci is a convex polygon. Although we suspect

such results are known to specialists in partial differential equations we could

not find them in the literature. Therefore, we sketch the proofs of these and

related results for use in later sections.

We denote by Hm(Q) the usual Sobolev space of integer order m > 0 with

norm ||-||m. Note that H°(Q) = L2(Q.). Similarly, Hr(Y) denotes the Sobolev

space of integer order r > 0 on Y with norm | • |r, and on H°(Y) = L2(Y) the

inner product is given by

(w , z) =     wzdo.

As usual, the Sobolev space of order one with functions that have trace equal

to zero on Y is denoted H0X(Q). Also, H~X(Y) is the dual of HX(Y), and

//-'(Q) is the dual of HX(Q). For real 5 the spaces HS(Q.) and HsiY) are

defined by interpolation.
We will have occasion to use the following norm interpolation inequality (see

Proposition 2.3 in Chapter 1, §2 of [20] or [5, Theorem 3.2.3, p. 180])

(6) \\w\\gr+{x-e)s<C\\w\\er\\w\\Xs-e,

where 0 < 8 < 1 and 0 < r, s < 2. Also, from Grisvard [13, Theorem 1.5.10]
we have for e > 0 and z e Hx (Q) the inequality

(7) |z|2<^||z||2 + e||z||2.

From this it follows, for v e H2(Q.), that

dv

duA
<^\\v\\22 + e\\v\\2,

o      fc

where
2

dv       v^        ,  .3«

and v = (vx, v2) is the unit outward normal to Y. Applying (6) to the second

term on the right side and then the arithmetic-geometric mean inequality, we

obtain

(8) 
d̂vA

On if = fix[0, T] let Hs-r(&) = L2(P, T; Hs(Q))nHr(P, T;L2(Q)) with

norm
1/2

< j Mil + £3|Mlo-

IM,,r=  (   I      \\W(-, t)\\2 dt +   [ \\W(X, •)II?.[0.71¿K
\Jo Ja j

where  || • ||r,[o,r]   denotes the norm on  Hri[P, T]).   Similarly,   Hs'ril.) =

L2(P, T; Hs'(Y))DHr(0, T; L2(Y)), and the norm on //if(Z) will be denoted

by   \'\s,r-

The elliptic operator A defined by a(u, v) = (Au, v) for v e M¿(Q) satis-

fies (see Grisvard [13, Chapter 3])

(9) ||u||2<CMu||o,
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where 3(A) = H2(Çl)<~)H0x(Çl). There is a continuous extension of A to L2(Í2)

which we also denote by A and which is defined by (Au, v) = (u, Av) for

v € H¿(Q). This operator has an orthonormal in L2(£l) basis of eigenfunctions

{<pm}m=i c 3(A) and real eigenvalues 0 < Xx < k2 < A3 < • • •  such that

a(cbm, v) = km((j)m, v)   VveH0x(Q.)

with

a(<t>m , 4>l) = ^m(4>m , 4>l) = ^m^ml .

where Sm¡ denotes the Kronecker data (see Babuska and Osborn [1]).

Following Bramble and Thomée [4], we denote by HS(Q) the subspace of

L2(Q) consisting of functions v suchthat

/ 00 \ 1/2

NliHO)=  (iZ^m^J        <00,

where vm = (v , <j)m). It follows, for 0 < 5 < 2, that

\\v\\Hs(Çl) = US'2vh,

where A* is defined by A?u = J2m=i WnUmK ■ We note that H2(Q) = 2(A),

HX(Q) = H0X(Q) = 3(AXI2), H°(Q.) = L2(Q), and Hs(0) = £P(Q) for

0 < s < j. Also by the A^-method of interpolation introduced by Lions

and Peetre (see Butzer and Berens [5, p. 166]) one gets /P(fl) = 3(As/2) =

[HX(Q),L2(Q)]S for 0<5< 1.

For g = 0 the solution of ( 1 ) is given by

00

(10) E(t)v = £ e-^lvmcj>m .

m=l

For smooth Y one has the well-known smoothing property for / > 0 and

0</<s:

(11) \\Eit)v\\Ma)<Cr^-^2\\v\\ma),       veH'iCl).

For a convex polygon ii the solution Ei-)v is only guaranteed to lie in 31 iA) =

H2(Q). It follows that (11) is valid for 0 < / < s < 2, by the same proof as in

[4].
To establish the solvability of (1), we need the Dirichlet map D: L2(Y) —►

HX'2(Q.) defined by

(12) (Dg, Acj>) = - (g, ^j    V<pe3(A).

It is well known that D is a bounded mapping.

We denote the solution to (1) with inhomogeneous right side f,v = 0, and

g = 0 by

Bf= f
Jo

E(t-s)f(-,s)ds.

Using the bounded mapping T: L2(Q) —> 3(A), defined by

a(Th,cj)) = (h,(t>)   V0 G//„'(«),
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we can show by energy arguments that

||Ä/||i,o<C||r/||,,o   and   ||5/l|o,o<C||7y|lo,o,

as well as for the E operator

||£(0«lli,o < C||u||o   and   \\E(-)v\\o,o < C\\v\U .

Taking f = An in the previous inequalities for B, we obtain

||^//||1,o<C||?/||i,o   and    ||iL4/,||o,o<C||rç||o,o.

By interpolation (see Theorem 5.1 in Chapter 1 of [20]) it follows that BA :

Hs<°(&) -» Hs'°(@) and £(•): HS~X(D) -* HS'°(S) are bounded maps for

0<s<1 .
We now turn to defining y as a solution of the following very weak formu-

lation of (1): Find y defined on S such that

(13) J iy,wt-Aw)dt = J   lg,^-\dt-(v,w(-,0))

for all w e H2*X(S) n//0'(Q) with w(-, T) = 0, where v and g are given.

We will specify appropriate spaces for v, g, and the solution y in what fol-

lows. We note that uniqueness holds since the only solution for zero data is

y = 0 (choose wt - Aw = y). Moreover, formulation (13) is essentially the

transposition procedure of Lions and Magenes [20, Chapter 4, §8] and will be

the starting point for the error analysis of our method. We will obtain L°° and

I? (in time) a priori estimates in terms of the data.

Let {f/"}^! be a sequence of infinitely differentiable functions which have

compact support in Q for all t, and let {v"}~ , c C°°(Q). Take z" to be the

solution of
znt + Azn = -nnt    onéf

with z" = 0 on T and z"(-, 0) = v" - n"i-, 0). Through integration by parts

in both t and x it is easy to show for w e H2 -x iS) n ¿/¿(ß), iu(-, T) = 0,

i (z" , wt - Aw) dt = - [ (nn, wt) dt + (vn , w(-, 0)).
Jo Jo

Setting y" = zn + n" , we find

(14) / iyn , wt - Aw) dt = [ inn,Aw)dt + ivn,wi-,0)).
Jo Jo

Moreover, z" is given by

(15) zn = Ei-)ivn -n»i-, 0)) -Bnf,

and using integration by parts on the second term, we obtain

(16) y" = E(-)vn + ABrf .

Note that A and B commute on L2. From the boundedness of the mappings

E(-) and BA it follows that

(17) l|y"ll./2,o<C(|K||-1/2 + ||^|l./2,o).
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Assuming v" —► v in H~X/2(Q) and n" -» Dg in Hxl2^(@), we have y" -+ y ,

and from (14) it follows that y satisfies

(18) / (y,wt-Aw)dt= [ (Dg,Aw)dt + (v,w(-,0))
Jo Jo

for all w 6 H2'xi@) n //¿(u) with «;(., T) = 0. Also, from (16) we have

(19) y = Ei-)v + ABDg.

By the definition of Dg, y satisfies (13) and

(20) ILv||./2.o<C(|M|_1/2 + |¿r|o,o).

With the same argument as in [17] it follows that for v e HXI2(ÇÏ), g e

L°°(0, T;L2(r)) (hence, DgeL^(0, T; Hx'2(Çl))), and e>0,

(21) \\y\\L^(0,T;Wß-'(il)) < C(\\v\\l/2 + lle?llL°°(0,r;Z.2(r))) •

Formula (19) and estimate (21) were obtained in [17] for the case where Y is

smooth.
Inequalities (21) and (20) give estimates on the regularity of the solution in

terms of the data. We establish a priori bounds in Propositions 1 and 2 for the

approximate solution, u, using the same data norms as in (21) and (20).

Finally we state results for the following backward in time parabolic problem

that will be used in our analysis. If / e L?((S), then

Wt - Aw = f   in ß x [0, T],

w = 0   on Tx [0,71,

w(-, T) = 0   onfi

has a unique solution w e H2X ((S) n H¿ (Í2). It is not difficult to prove that

(22) IMl2,i<C|L/]|o,o
and

(23) ||«;(-,0)||i<C||/||o.o.

3. Approximation properties

In this section we give a precise definition of our finite element space. We

also list the required approximation properties of various projection operators

we use and present several key technical results.

Let 0 < h < 1 and V/, be the space of continuous piecewise linear func-

tions relative to a quasiuniform triangulation Th of Q. That is, for some a

(independent of h) each triangle x e Th contains a disc of radius ah and is

contained in a disc of radius h .

Define Pj}: L2(Q.) -» V¡¡ to be the L2 projection, and let Pxh : HX(Q) - V°

denote the elliptic projection:

a(Pxhv ,</>) = a(v, 4>)   V0eKA°.

We now list, for later reference, some well-known (see Ciarlet [7, §3.1]) prop-

erties of Vh and V¿>. For z e HS(Q), l<s<2,

(24) inf (110 - z||o + h\\<¡> -z||i)< Chs\\z\\s,
<t>£Vk

(25) \(I-Qh)z\o<Chs-x'2\\z\\s.
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We also use the inverse properties for x £ Vh :

(26) WxWs-^ch-^WxWi,      0<l<s<l,

(27) \x\i,2<Ch-x'2+r\x\r,        0<r<i.

Remark. Inequality (25) follows from (24) by the use of (7) with e = h~x .

Remark. Using a duality argument together with (25), one obtains

(28) (/ - Qh)
dz

dvA
<Chx'2\\z\ zeH2(Q).

Indeed, for Aw = 0 in il and w = dz/dvA on Y, we have by (25) and elliptic

estimates

(i-Qh)
dz

du A
\(I-Qh)w\o<Chx'2\\w\\x<Chxl2

dz

du a
1/2

from which (28) follows by the trace theorem.

For V¿> it is well known that, for z e HS(Q.) n H0X(Q) with 1 < s < 2,

(29) inf i\\4> - z\\o + hU -z\\x)< Chs\\z\\s.

Remark. An immediate consequence of (29) and a standard duality argument

is:

(30) ||(/-P*1)r||/<CÄ'-/||z||J,       zeH0x(Ci)nHs(Ci), 0<l<l<s<2.

From (30), the boundedness of Pjf in L2 , and the norm interpolation inequality

(6) it follows that

(31) ||(/-if)*llo<CA'||z||„       0<5<2, ze3(A).

By similar arguments it follows from (24) that

(32) IKZ-^VIIo^CTt'IIzII,,        0<5<2,  z€Ä*(fl).

Remark. We note that (25), (28), (30), (31), and (32) are valid for any space

Vh satisfying (24), (26), (27), and (29).
Finally we list two approximation properties of the space Vk for a generic

Hubert space H :

(33) ||(/-^)z||L1(0>r;//)<CÂ:||z/||L1(o,r;//),        z e H\0, T; H),

(34) \\PkZ\\v(0,T;H)<C\\z\\V{o,T;H), Z £ L1 (0 , T; //) .

We now prove three lemmas that involve the following splittings of an arbi-

trary u e Vh :
u = un + Up   and   u = uh + up,

where up = Pjju and up = Phxu. Note that

(35) iuh,X) = 0,        xeVh°,

and

(36) aiuH,X) = 0,       xeVh°.

The first two lemmas are slight generalizations of some results of [3].
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Lemma 1. Let u e Vh, and suppose z e H2(Cl) satisfies a(z, (f>) = 0 for all

4> 6 H0X (fí) and z = u on Y. Then

(37) \\z-uH\\x<Ch-x'2\u\o.

Proof. By (3.34) of [3], uH - z e H¿(Q) satisfies

(38) \\uH-z\\i < Cax'2(z - uH, z - uH) < C\u\x/2,

and (37) follows by the inverse property (27).   D

The next result follows from Lemma 1 by the triangle inequality, elliptic

estimates, and (27).

Lemma 2. For any u e Vh ,

(39) \\uH\\x <Ch-x'2\u\o.

Lemma 3. Suppose u e Vh ;  then

(40) IImaIU < C7äi/2_*|m|o,        0<5<1.

Proof. Since C0°°(Q) is dense in HP(Q) , p < ± (see [12]), there exists {v"} c

Q°(Q) such that lim,,^ \\v" - uH\\x/2 = 0. Noting that uh = (I - P%)uH , we
then find

||ma||o= lim \\(I-P¡)vn\\o<Chxl2 lim \\v"\\x/2 = Chx/2\\u„\\x/2.
n—»oo n—»oo '

As in the proof of Lemma 1, we have

||W//||l/2 < II"// - zlll/2 + ||z||i/2 ■

By the elliptic estimate ||z||i/2 < C|w|o together with (37) we obtain (40) for

5 = 0. For the case s = 1 the result follows by the inverse property (26) and

the case s = 0. Now the general result follows by norm interpolation.   G

4.   L2   ESTIMATES

In this section we prove Theorem 1. We assume that v e H~X/2(Q) and

g £ L2(T), and hence y € L2(0, T; HX'2(Q)) satisfies (13) and (20).
An integral part of the proof is a particular stability estimate for the numerical

scheme. The stability analysis of the method is of some interest, independent of

its use in proving Theorem 1, and we begin by stating the main stability bound.

Proposition 1 (L2 stability). There exists a constant C independent of h, k,

and the data pair (v , g) such that if (2) holds then for 0 < n < N,

(41) ¿(|k - *-% + ka(uJ, ur1)) + \\u"\\l < Ch-x(\\v\\2_l/2 + \g\2t0).

j=i

Before proving this stability result, we state and prove an auxiliary lemma.

Lemma 4. There exists a constant C such that for 0 < n < N,

(42) ¿(||«¿ - ^-'||2 + kaiuj,, ul)) + \\u"p\\l < Ch-xi\\v\\2_l/2 + \g\lQ).
7=1
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Proof. For any cf> e V£ we have

(uJ -uJ-x ,<p) + ka(uJ,(f>) = 0.

Substituting u = Uh + Up and using (35), we have

(uP -Up~x ,<p) + ka(ujp , cp) = -ka(uJh , 4>)

Choosing 4> = uJp and summing, we have

n     r, i ,

+ xll"""2S   2^Up'Up l\\o + ka(uJp>uÍ>)  T-^nupiio

(43)

= iiKiio-¿M"Í,«¿).
y=i

Using the arithmetic-geometric mean inequality on the right side yields

(44) ;=

¿ (j\\uP - ujr'Wl + \kaiuP, up^j + i||i£|ß

<\H\\2o + \Y,kaiu}h,ui).
2" pMU     2

7=1

Since «p = P93°?v , we have

„   o„ (^>,i»^ HI-./2ll^Vlll/2  ^,-,/2ll    „
Kllo =   sup ii,„n—-   sup   -iTTTTi-~<ch   ' IN-i/2:

where the last step follows from the inverse inequality (26).

By Lemma 3 and the fact that Q is bounded it follows that

¿M«i. «*) = ¿ / aiu{,ui)dt < Ch~x ¿ / Ißsl
j=\ 7=1    ^ 7=1    ''

<Ch-x\\g\\2L2{0ja.iLHr)).    D

Proof of Proposition 1. By the triangle inequality and Lemma 4 it suffices to

consider

¡dt

J2(H-ui~l\\2o + ka(ui'<)) + \\K\\l
7 = 1

Using the inverse inequality (26) and assumption (2), we have

¿(k-«r'llo + M"¿,"¿)) + Kilo <c¿Kn0.
7=1 7=0

The proof of Proposition 1 follows by an application of Lemma 3:

7=1 \    7=1

<C/r'(Ç/c|u;|2 + |M|2_l/2

<Ch-x(\\g\\2LH0jn.,LHr)) + \\v\\2_l/2).   d
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We are now in a position to prove the main result of this section.

Proof of Theorem 1. Letting w e H2>x(&) n H¿(Q) with w(-,T) = 0, we
obtain

T N

f (u,wt- Aw)dt = J2 [ [(un , wt) - (u", Aw)]dt
Jo „=, Jin

N

n=l

-li,.n    „,,n       on"-1k~x(un, w" - w"-1) - a(u" ,w) + (Qg,
dw\

dvA}
dt.

We apply summation by parts to the first term:

(45)

N

Y, I  k-x(un,w"-w"-x)dt
n=l Jl"

N

= (uN,wN)-(u°,w°)-Y / k-x(un -un~x ,wn

n=l J>»

l)dt.

But w" = w(-, T) = 0, so we have

/   (u,w,-
Jo

Aw)dt

(46) ¿ / (-k-x(u"-u"-x,

n=l J'n V

l/,,r>      ,,n-l    -i/i"-''

-a(u\ w) + (Qg, |^\) dt-(u°,w°).

Subtracting this from (13) and letting wt - Aw = e, where e = y - u, we have

N

Ikllo.o = ¿ / (k'x(un - un~x, w"~x) + a(un , w))dt

(47) +J2l ((I-Q)g,^jdt-[(v,w(.,P))-(3>%v,w(.,P))]

= JX+J2-J3.

We estimate the individual terms in reverse order. Clearly,

|/3| = \(v , (I - &°)wi-, 0))| < \\v\\_l/2\\(I - 3>°)wi-, 0)||1/2

< CA1/2||v||_1/2||^(-, 0)I|, < Chl>2\\v\\-x/2\\e\\0,o,

where the last step follows from the parabolic estimate (23).

We estimate J2 by the approximation properties of Pk and Qh , the inter-

polation inequality (8), and the parabolic estimate (22):

h -jfv'-«'-^"^^''"-^* dvAl

= í(<'-Pt)s•¿('-'',M)rf' + í(Pt^'('-ö»0'í,
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Applying the Cauchy-Schwarz inequality to this, we obtain the estimate

\Ji\ < Qg\o,o

Inequality (8) yields

d

£-/'-Pk)w +
0.0

(T   n\dw
{I-Qh)du~A

1/2

0,0;

du a
(I - Pk)w

0,0
<j\\iI-Pk)w\\lQ + emi-Pk)w\\l0

<j\\M\22,o + e3k2\\wt\\lo.

Choosing s = k  xl2 gives

ñp-nm <Ck'l2\\w\\\,
0,0

Since

ii-Qh
dw

du a
<Chl'2\\w\\2,o,

0,0

we obtain, from assumption (2) and estimate (22),

\J2\ < Chx'2\\w\\2,x\g\o,o < CA^Hello.oklo.o.

Finally, we turn to the estimation of Jx . We have

N

j. = Y,(un - u"-x, wn~x) + ka(un , P£w)

n=l

N

= £(u" - un~x, wn~x - PhlP£w) + ka(un, (I - P¿)P£w).

n=l

Application of the Cauchy-Schwarz inequality gives

(48) |/i|<7>.r2,

where

Tx = r^(\\un-un-x\\l + ka(u\un))\

1/2

and

1/2

T2 =   J2(\\W-X - PxhP£w\\2o + kaiil - P¡¡)Pk"w, (/ - Phx)P£w))
\n=l

In view of Proposition 1 it suffices to estimate T2. First we note that by (30)

(49)
w"-x - P/,P£w\\o < \\w"-x - P£w\\0 + || (/ - Phx)Pkw\\o

< \\w"-x - P£w\\o + Ch2\\P£w\\2,

and again by (30)

(50) a((I - Pxh)P£w , (I - Pxh)P£w) < Ch2\\P£w\\22.
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It is straightforward to show that

(51) IK"1 -Pgw\\o < kx/2\\wt\\L2iIn;L2m

and

(52) ll^^ll2<^~1/2||^||z.2(/„;//2(ii)).

Hence, by (2) and the previous estimates (49)-(52),

(N \l/2

T2 < C Í $>4 + kh2)\\P"kw\\2 + k\\wt\\2mh.Llm\

"fN V'2
< Ch I 2jMli*(/„;ff'(n)) + Wwt\\h(in;Lim\

<Ch\\w\\2A.

By the parabolic estimate (22) we have ||if||2,i < CIMIo.o and hence T2 <

Ch\\e\\o,o ■ Combining this with (48) and Proposition 1 completes the proof.   D

5.   L°°   ESTIMATES

In this section we prove Theorem 2 as well as an L°° stability estimate

in time. We assume v £ Hxl2(Çï) and g £ L°°(0, T;L2(Y)), and hence

y £ L°°(0, T; Hx/2~e(Çl)) satisfies (13) and (21). We will use the spectral

properties of the discrete elliptic operator Af¡ : V^ —» Vjf defined by

a(X, 4>) = (AhX, 4>)   V0€FA°.

Let {y/f, A*}^. be an orthonormal eigensystem for Ah , that is,

airf, <p) = Xhiiipt, <p)
for all 4> £ V° with 0 < k\ < Xh2 < ■ ■■ < XhN¡¡, where Nh = dim(i;0) and

(\p¡ , iPj) = ôij. In our analysis we will use the norm

Ar*

£(x,v,Wr,    o<s<i,2
i

i=l

where x £ V® is given by x = Y^,¡=X(X> V*)V* • It is easy to see that

Nh

io = £(*,^)2 = iiixin„
(=i

and

a(X,X) = (AhX,X) = 111*111? •
By interpolation, Bank and Dupont [2] prove there exist constants Co and Cx

so that

C0||;d|,< W/W, ̂C.WI,,       0<s<l, XeVh°.
Since A¡¡ is symmetric positive definite, we may also define

Nh

¿^EüS^XA?)'^.        0<q<l.
i=i
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It follows that

WAfxWl = (Ashx, x) = £(z, vhHiïY = 111*1í^vll? — f A* v    v\ — VVv    „M^ci^s _ niviip

The following lemma is critical to our proof of Theorem 2.

Lemma 5. There exists a constant C such that for 0 < q < I

(53) \\AliI + kAh)-n\\<Ct-".

Remark. The inequality (53) is a discrete version of a key semigroup inequality

used in [6, 17].

Proof of Lemma 5. We first assume 0 < q < 1. We have

\\A¡(I + kAh)-"\\ =   sup  f(k),
\£o(Ah)

where f(t) = tq(l + kt)~n , and o(Ah) denotes the spectrum of Ah . A short

calculation shows that on [0, oo) the absolute maximum of / occurs at X* =

q/(k(n - q)). It follows that

(54) /(A) < /»•) = (jçi-j)' (l + jlj)" = ,•(»*)-« (¡4j)" -

Thus,

(55) ||i4J(/ + ̂ A)-»||<^(T-L_y "ç'<CfÇ«.

The analysis above is valid for q = 1 , except when n = 1 and / has no

maximum. However, the estimate for this case is obvious.   G

The following lemma establishes the boundedness of the projection 3°® .

Lemma 6. There exists a constant C such that for all z £ Hsi£l)

(56) II^Ml^CHzH,,        0<j<1.
Proof. Let a*¿ : Hx(Çï) -» Vh satisfy

i3B¿z,<f>)x = iz,(p)x,        <)>£Vh,

where (•, -)i denotes the inner product on Hx(£l).

It follows by a standard duality argument that

(57) ll(/-^¡í)í||o<CA||z||,,        z£Hx(Cl).

By definition, 3°® is a bounded linear operator from L2(Q) into itself. Also

we have

\\3*°z\\x<\\(3°°-3»x)z\\x + \\3°xz\\x

< Ch-x(\\(I-3»°)z\\o + ||(/ - ^)z||o) + ||z||,

<C||z||i,

where we used the approximation properties of 3°® and (57) in the last estimate.

Thus, 3^% is a bounded map from Hl(Q) into itself. By interpolation (see

Theorem 5.1 in Chapter 1 of [20]), &>°: Hs(Ci) - HS(Q) is bounded for 0 <

s < 1 .   G

We now give the L°° in time stability estimate.
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Proposition 2 (L°° stability). Suppose v e HXI2(Q) and g £ L°°(0, T; L2(Y)).
Then for 0<n<N,

(58) ||M||L~(o,i„;//'(n))<CÄ-1/2M|u||1/2 + lnUj||^||L^(0;/„;L2(r))J .

Proof. For <fi £ V£> we have

(unp - unp~x, </>) + ka(u"p , 4>) = -ka(unh , cf>),

and since -a(unh , <p) = a(unp - up, tp), v/e obtain

(7 + kAh)unp = unp-x+kAh(unp -unP).

It now follows that
n

unp = (I + kAh)-"u°p + kY,(I + kAh)-JAh(unp-J+x - up-j+l),

7=1

and hence

IH^III, < ||(7 + A:^)-M¿/4|||||M0|||1/2

(59) + k¿ \\Ah(I + kAh)-i\\ \\\u"p-J+x - up-J+l\\\x.

7 = 1

By Lemma 5 it follows that

Klli <Cin-1/4HK°|||1/2 + ckJ2 t-l\\\u»p-J+x-up-J+x\\\x.
7=1

Now we estimate the terms |||w°|||i/2 and  |||m¿ - m£|||i .   We have by norm

equivalence

HKllli/2 < C||«»||1/2 = C\\P°3*°v\\x/2 < C(\\(I - Pl)3»«v\\xl2 + H^Ml./z) -

By Lemma 6, the inverse property (26), and Lemma 3 we find

|||u°|||I/2 < C(Ä-'/2||(7 - P°h)^v\\o + IMh/2) < C\\v\\l/2 .

Also, since u™ - up = ufi - u™, the triangle inequality and Lemmas 2 and 3
imply that

(60) m«™ - uftll, < Ch-X'2\um\0 < Ch-ll2\g\L~IIm.mr)).

Combining these estimates gives

(61) IKHí.°°(0,r„;/í'(O.)) <Chrxl2 M|u||i/2 + lni^J||^||L«,(0>f(i.L2(r))J ,

since Y?j=\ kt~x < Cln(jr). It is not difficult, using Lemma 3, to show that

(62) \\Uh\\L°°(0,tn;L1(Q.)) < Chl,2\\g\\Loc{Q>tn.L2{r))

and

(63) max a(u„(-, t), un(-, t)) < Ch-l'2\\g\\Loo{0>tn.LHr]).

Finally, by the triangle inequality, we combine (61), (62), and (63) to give

(58).   G
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We complete this section by giving the proof of Theorem 2.

Proof of Theorem 2. By the triangle inequality,

ll("-y)(-,r)||o<||(u-^V)(-,r)||o + ||(7-^A0M.,r)||0.

Letting t] = iu -3s®y)(-, T) and using the approximation properties of ¿?®

along with the a priori estimate (21), we have

(64)       \\(u-y)(-, Dllo < hilo + CÄ1/2—(||ti||1/2 + 11^11^(0,7-;^))).

Thus, we must estimate n. Let w £ 772,1(^>)n770'(Q) satisfy wt-Aw = 0 and

w(-, T) = n . Starting with (13), the discrete equations for u" , and summation

by parts, we obtain

N

iiu - y)i-, T), t]) = Y / (k-x(u"-u"-x,wn-x) + a(un,

n=l Jl»

w))dt

+
dw\

¿^ ((I-Q)g,^dt-((I-3*»)v
n=l "'"

Adding and subtracting 3°^y(-, T) on the left side, we have, since

iiI-3>°)yi.,T),n) = 0,

N      .

l\\o= Y\ / ik~xiun - u"-x, w"~x) + aiu" , w))dt
„=1 Jin

(65)
n=\

= sx+s2 + s3.

(I-Q)g,^jdt-((I-^)v,w(.,0))

We now estimate the terms Sj. For the last we have

(66) |53| < ||(/-^>||olN(-, 0)||o < Chl'2\\v\\l/2\\ii\\Q,

where the estimate for w(-, 0) follows from (23). We now estimate S2 :

dw \   ,.      fT /„       ,r     n . dw \
S2 -I

Jo
g,(I-Pk)

dvA
)dt + l (pkg,(i-Qh)~)o

By the Cauchy-Schwarz and Holder inequalities we have

dw
1^21 < \\g\\L°°(0,T;L2(r))

(67)

(I-Pk)
du A

+

L'(0,T;L2(r))

dw

du a
d-Qh

O(0,T;V-(Y))t

We estimate the terms on the right side of (67) separately. Using (8), we have

(I-Pk)
dw

du A O(0,T;V-(Y))

0

du a
(I-Pk)w

L'(0,T;Li(r))

<Ce-x'2\\(I - Pk)w\\V{o,T.,H2m + e3>2\\(I - Pk)w\\LH0,T.,L2m.
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Choosing e = k  xl2 , we obtain

OVA    L\0,T;V-(T))

<CA:'/4||(7-P,)U;||L,(0>r;„2(n))+^-3/4||(7-P,)i7i||LI(o>r;L2(n)).

Since wt = -Aw , we have

\\(I - Pk)™\\v(0,T;L\Çi)) < CA||tü/||¿i(0,r;L2(n)) < C/c||w||¿i(0,r;//2(a))

and

so that

(68)

||(7 - Pk)w\\v(0,T;}P(n)) < C\\W\\v(0,T;imCl))>

dw
(I-Pk)

du a
<Ck1/4|MlLi(0,r;//>(£2)).

L'(0,r;L2(r))

To complete the estimation of S2, we turn to the last term in (67). By (28) we

obtain

(69) (I-Qh)
dw

du a
<ChX'2\\w\\V{o,T;H2m.

L'(0,T;L2{r))

Combining estimates (68) and (69) in (67), we have

\s2\ < c(kx'4 + h^Wgh^o^.o^Wwh^o^-mm.

We now apply the estimate (11) with 5 = 2 and / = e :

(70) \\w\\LHOiT;IIHa)) < C [ (T- t)-{2-^2\\n\\Edt < CT\\r,\\e < CrA-e||»/||o,
Jo

where we used the inverse inequality (26) in the last step on n £ Vf,. Thus,

(71) \S2\<Chl'2-e\\g\\Lx{0¡T.LHr))\\rih.

Finally, we turn to estimating Sx . From (3) we have for any </> £ Vff <g> Vk

N

Sx = £((u" - """' » w"~i -</>) + ka(u", P£w - 4>))
n=l

N

J2((u"p -unp-x, P°hw"-X -cp) + ka(uP, PxPk"w - 0))
n=l

N

+ Y,((unh-u"h-x,(I-P°)w"-x) + ka(uH,(I-P¿)P¡;w)).

n=l

The choice 4> = P®w"~x on 7„ gives

s
Sx =YJka(unP,PxhP£w - P%wn-X)

n=l

N

+ Y,Kutth-unk-i,iI-P%)w»-l) + kaiunH,iI-Pl)P£w)]
n=l

= Tx + T2 .
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We estimate the terms Tx  and T2.   By the Cauchy-Schwarz and Holder in-

equalities we have

N

(72) \TX\ < \\u\\La,(0tT.HHQ)) Y,k\\PxhPnkw - P»hw"-X\\x.
n=l

By the triangle inequality and inverse property (26),

\\PXPZw-P¡W\\x<\\iI-P¡,)Pi:w\\x

+ Ch-x(\\(I - P¡)Pnkw\\o + \\P¡(Pnkw - w"-x)\\o),

and hence by (30), (31), and the boundedness of Pj¡ ,

(73) \\P¿P£w - Pflwn-% < C(h\\P£w\\2 + h-x\\P£w - w"-x\\o).

It is not difficult to show

(74) \\P¡:w\\2<k-x\\w\\V{Iri.H2m

and

(75) \\P£w-wn-l\\o<\\w,\\V{In.:L2m.

Combining these estimates, we obtain

J2k\\P^w-P^w"~%
n=l

(76) *
< C 22 A|ML>(/„;hi(o)) + kh '|K||L>(/„;z.2(£2))

n=l

< Ch\\w\\Li{o,T;H2(Çl))>

where we used (2) and wt = -Aw in the last step. By (70), (72), (76), and
Proposition 2 we complete the estimate of Tx :

Tx\<Chxl2~e í|M|1/2 + lní^j llsllz.~(o,r;L2(r))j llfllo-

For T2 we have \T2\ < Fx • F2, where

7ri = ||M/.|Il<*>(0,7";Z.2(Q)) + ^IIm//IIl°°(0,7";.L2(O.)) < Ch      ||^||L°°(0,r;L2(O))

by Lemmas 2 and 3. Moreover (since P^wn~x =w"~x),

F2 = J2 ll(/ - PS)P£w"-% + kh-x\\(I - Pxh)Pnkw\\x
n=l

< E IK7 - Ph)P"k^n~X - ™)llo + ||(/ - PÎ)Pnk™\\o + kh~x\\il - Pxh)Pnkw\\x
n=l

N

< CY, Ww"~l - pkwh + (h2 + k)\\P£w\\2,
n=l

where we used (30) and (31) in the last step. The last estimate together with

(74), (75), and assumption (2) completes the estimation of F2 :

F2 < C\\w\\V(otT.H2m.
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Combining the estimates for Fx and F2, and using (70) gives

\T2\<Chx'2-°\\g\\Loo{oiT;mr))\\»\\o.

This completes the estimation of Sx . Combining the estimates for Sx, S2, S3

in (65) gives the required bound for \\n\\o. Substituting this in (64), we obtain
the required estimate at t^ = T. Since the same argument applies for any tn ,

the proof of Theorem 2 is complete.   G

6. Smooth solution estimates

In this section we show that an optimal-order convergence rate is obtained for

our method when y £ H2X ($). Our analysis is quite similar to that contained

in [14, §8.4; 15]. Note that there are no restrictions on i or A in this section.

As usual, the error is split into two components:

e=y-u=y-ü+ü-u=6-n,

where ü e Vf, <g> Vk is defined on 7„ as follows:

ü = ü" = y I u(-, s)ds,       n > 0,
k Ji„

and u° = u°. The function «(•, t) £ Vh is an elliptic projection:

a((û-y)(-,t),<p) = 0,       <p£Vh°,

for 0 < t < T and û = Qng on Y. The following lemma gives the approxi-

mation properties of û.

Lemma 1. There exists a constant C independent of h, û, and y such that

(77) ||(y-M)(.,i)||o<CÄ2||j;(-,Oll2.
Proof. Define 3sh : Hx (SI) -» Vh by the equation

a(3*hw , x) + h-x(3°hw, x) = a(w ,x) + h~x(w,x)

for all x £ Vf, ■ For ¿; e 77l(i2) define the norm

^i^) = iai^,^) + h-x\^\2)xl2.

It follows that for w £ H2(Sl)

yT((I-3*h)w)= inf./r(<77-y;)<C/2|M|2,
¿en

where the last estimate follows from (7) and (30) by choosing e = h~xl2 and
<f> = Pxw .

We note that a(3°hy, </>) = a(y, </>) for ^ e Vg . Thus, a(u - ^y, 4>) = 0

for all 4> £ Vjf . So, û - ^y is discrete ^-harmonic and therefore by Lemma 2

a(û -3*hy,ù- 3*hy) < Ch~x \Ù - 3*hy\2

<Ch-x(\(I-Qh)y\l + \(I-3*h)y\2)

<Ch-x\(I-3°h)y\2.

This implies by the triangle inequality

yr(û-y)<CyV((I-3°h)y).
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From this we obtain the optimal estimates

a(û-y,û-y)<Ch2\\y\\2

and

\ù-y\2o<Ch'\\y\\2.

Let w £ 3(A) satisfy Aw = û - y on Si. Then for any 4> £ V^°

\û-y\\l = a(û-y,w-<p) + ((I- Qh)y, (I - Qh) Q

<'-<<

dw\

2N1/2

< jV(u - y) I a(w - §,w - <p) + h

<Ch\\w\\2jr(ù-y),

where we chose <p = Py\w on the last step. Thus, by elliptic regularity,

||û - y||o < CA/T(û - y).

Combining this with the previous estimates proves (77).   G

Remark. The function û and the argument used in the proof of Lemma 7

were introduced in French and King [11]. Also, see the related work in Fix,

Gunzburger, and Peterson [10].

By standard arguments we can now show, using the result of Lemma 7,

(78) ||0||o.o<C(A-l-A2)|M|2,i,
N

(79) 5>l|0"llo<C(A + A2)IMl2,i,
n=l

and

(80) I|o||l.(o.í.;l>(0)) < C(A + A2)||y||LOc(0i:r;//2(ia)))

where 8" = y(-, tn) -it" . In contrast to our analysis in §§4 and 5, the solution

y satisfies the following weak form for <f> £ V^ :

(81) / (A" V -y"~l. 4>) + a(y,4>))dt = 0.
Jin

We are now in a position to state and prove the L2 convergence theorem.

Theorem 3. If y £ H2Ai@), then there exists a constant C independent of

h, u, and y such that

(82) ||y-«||o>o<C(A2 + A)||>'||2>1.

Proof. Define z £ Vj¡> ® Vk , so that zN = 0 and

(83) k-x(z"-z"-x,<j>)-a(z"-x,<t>) = (ri",4>),        <p £ Vh°.
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Letting <p = rf and integrating in time, we have

llfllo.o = E / (*~ V - z"~'. I*) - a(zn'x, rf))dt
n=l     "

N

= E / (A"'(z" -z""1, un)-a(z"-x ,un))dt

n=l ■'I"

N

-E / (k-x(zn - z"-x, ün) - a(z"-x, ün))dt

n=l 7/"

N      .

= ~E / (A-1(z"-1,M"-w"-1) + a(z"-1,M'J))í3f/

+ E/ A-'[(z",M")-(zn-1,M"-1)]í/í

N   r
"E / (k~x(z"-zn'x,ün)-a(z"-x,ü"))dt

n=l J>«

N   r
, w°)-E / (k-l(zn-zn-x,ü")-a(z"-x,ün))dt,

„=1 Jin

1Z°;

n=l

where the last line follows from (3) and zN = 0.  Now from summation by

parts we have

N

rç|lo,o = -(z°> «°-m°) + E í (k~l(z"-x, ün-ü"-x) + a(z"-x, ün))dt

n=l "'I-

N

= ~Y / k-x(8" -8"-[, zn~x)dt.
„—I  Jin«=1

In the last step we subtracted the equation

(84) 0 = ¿ [ (k-x(y"-y"-x, <f) + a(y, 4>))dt
n=l Jl"

and used the fact that

(85) j aiy-ün ,4>)dt = P
Jin

for <j> = z"~x . Also, the first term is zero since u° = u°. Summation by parts

gives

(86) ||?/||2>0 = ¿(z'í-z''-1,o"-1),

n=l

where we used the fact that (8°, z°) = ((7 - &>°)v , z°) = 0.

By setting <f> = zn~x - z" in (83) and using summation by parts, it follows

that
N N

X>-'||z" - z"-'||2 < E WHo HMIo.o-
n=l n=l



100 D. A. FRENCH AND J. T. KING

By the Cauchy-Schwarz inequality applied to (86) we have

w\l.o<(Ek\\oH-l\\i)   (e^v-^-'Ho)
foil \n=l / \«=1 /

<Yk\\e"~l\\o-
n=l

By (79) we have the required estimate for n, and the estimate (82) now follows

from (78).   G

We now move on to the L°° estimate.

Theorem 4. There exists a constant C independent of h,u, and y such that

for any 0 < n < N

(88) ||u» - yn\\o < C [l + In (£)) (* + A2)||y||Lco(0>r;^(n)).

Proof. Let z e FA° <g> Vk satisfy zN = rç* and

(89) A-1(z"-z"-1,(»-a(z',-1,0) = O,        <73eFA°.

Letting (f> = u" - it" and integrating in time, we obtain

N   r
V / [k~x(zn - z"~x, un - ü") - a(zn~x, u" - ün)]dt = 0.

fiJl»

Since u° = u°, summing by parts gives

N

\\nN\\2o = -Y] / [k-xiun-ün -(u"~x -ün~x), zn-x) + aiz"-x,un-ün)]dt.

n=l Jl»

From (83) and (84) this becomes

N   r
\\lN\\o = -E / lk~l(0" - o"-1, z"~x) + aid, z"~x)]dt.

n=l Jl»

Summing by parts and recalling that (8°, z°) = ((7 - 3^^)v, z°) = 0, we find

N

H^ll2 = i8N ,zN)-Y     [k~x(8n-x, z" - z"~x) + a(8, z"-x)]dt.

n=l     "

From (85) we obtain, since zN = nN ,

N

\\riN\\2 = (dN,zN)-Y(zn-zn-l,8n-x)

n=l

N

< 110^011^110+ max UnioEll^-^'llo-
Kn<N *"—'

n=l

From [14, p. 166] we have

E II*" - z"-1llo < C (l +ln (£)) ||z"||0 = C (i + ln (£)) \\nN\\0,
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SO

\\r,Nh<c(l+ln{l))maÍNWh.

From (80) and the fact that N can be replaced by any n the proof is com-

plete.   G

7. Numerical results

In this section we discuss a practical implementation of our method on some

problems with both smooth and nonsmooth boundary data. We let A = -A.

Our scheme, which consists of piecewise linear finite elements in space and the

implicit backward Euler method in time, is standard except for the handling of

the boundary conditions. We use a preconditioned conjugate gradient method

to solve the linear systems that arise on each time step. An incomplete Cholesky

decomposition provides the preconditioner.

The numerical results demonstrate clearly the advantages of a robust method.

In a smooth example the optimal 0(h2) convergence rate is achieved. In ex-

periments with boundary data that has jumps and discontinuities in time and

space, we found the rate of convergence over the range tested is more like 0(hy),

where y > 1/2. Previous methods that required the approximation to be zero

on the boundary could achieve at most an 0(hx/2) convergence rate.

Our practical evaluation of the boundary conditions requires some discus-

sion. To find u"+x from u" , we need the boundary function Qg restricted to

the interval in time 7„ , which is given by

[ ((I-Q)g,X)dt = P,        X£Vh(Y).
Jin

Let {<j)x, ... ,4>j) be a basis for Vh(Y). We have, on 7„ , Qg = ¿ZJj=\ Cj<pj,

and taking x = </»/ giyes

J r

Ycjk(<t>j,<t>i)= / (g,<f>i)dt.
7 = 1 J'«

To simplify the left side, we approximate the inner product by the trapezoid

rule; the matrix then becomes diagonal. On the right side of the equation we

used the trapezoid rule in the smooth case and the rectangle rule with a large

number of subdivisions in the rough data case. In all experiments we took

SI = (0, 1 ) x (0, 1 ), T = 0.1, used a uniform mesh to discretize Q, and chose

k = Ch2.
The results for our experiment with smooth boundary data are displayed in

Table 1 (see next page). We took as the known solution

y(xx,x2) = e-^2sin(7^x)sin(^2).

The order of convergence was computed by the formula

Rate = ln(£2/7±,)/ln(A>//2i),

where Ex and 7s2 are errors on successive meshes, and hx and h2 are succes-

sive triangle diameters on these meshes. As predicted, we obtain an 0(h2) rate

of convergence.
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Table 1. Smooth g

Mesh

4x4

8x8

16 x 16

32x32

N

32

128

Error

0.456(-l)

0.112(-1)

0.280(-2)

0.701(-3)

Rate

2.03

2.00

2.00

Our solution in the second experiment has a jump in time in its boundary

data, g = 0 for t < t and g = 1 for t > t, where t = 0.07071 and v = 0.
The true solution to this problem is obtained by separation of variables. We

find yi-, t) = I + zi', t - t), where

oo .

z(xi, x2, t) = -16 E  —r-e~{a"+b2m)tùnia„xx)smibmx2),

n ,m=l
anb,

an = (2« - l)7i, bm = (2m - l)n, z = 0 on Y, and z = -1 at t = 0 on
SI. We evaluated all boundary integrals using the trapezoid rule, splitting the

integral on the interval Ij that contains t into two pieces, one on each side of

the jump in the boundary data. Table 2 has the results for this case. It is not
surprising that the convergence is better than hxl2, since the solution is smooth

except near /.

Table 2. g discontinuous in time

Mesh

4x4

8x8

16x 16

32x32

N

2

8

32

128

Error

0.728

0.528(-l)

0.150(-1)

0.508(-2)

Rate

3.79

1.82

1.56

In the final test the boundary data is given by

gixx, x2, t) = sgn (sin ( — + \/3 j sirx(4nxx + V^sin^^ + e)\ ,

where sgn is the signum function. Here, g has discontinuities in both space

and time. Since we do not know the true solution in this case, we compared our

approximations to a finite element approximation obtained on a 64 x 64 mesh

with 512 timesteps. Table 3 has the results, which again show the convergence

rate is better than hx/2 .
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Table 3. g rough

103

Mesh

4x4

8x8

16 x 16

32x32

N

2

8

32

128

Error

0.118(+1)

0.671

0.274

0.132

Rate

.814

1.29

1.05
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