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ON THE REMAINDER OF GAUSSIAN QUADRATURE FORMULAS
FOR BERNSTEIN-SZEGÖ WEIGHT FUNCTIONS

F. PEHERSTORFER

Abstract. We give an explicit expression for the kernel of the error functional

for Gaussian quadrature formulas with respect to weight functions of Bernstein-

Szegö type, i.e., weight functions of the form (1 - x)"(l + x)ß /p(x), x e

(-1, 1), where a, ß £ {-\,\} and p is a polynomial of arbitrary degree

which is positive on [-1, 1]. With the help of this result the norm of the error

functional can easily be calculated explicitly for a wide subclass of these weight

functions.

1. Introduction and notation

We consider Gaussian quadrature formulas with respect to a nonnegative

weight function w on the interval [-1, 1],

(1.1) /  fix)wix)dx = YkjfiXj) + R„if,w),
■'-> j=i

where x¡ = Xjt„ are the zeros of the rath-degree monic orthogonal polynomial

7>„(-, w) and kj = kj,„ are the corresponding Christoffel numbers. If / is

analytic in a domain D which contains in its interior the interval [-1, 1] and

a contour T surrounding [-1, 1], the remainder term can be represented as a

contour integral (see, e.g., [3])

(1.2) Rnif,w) = ±jj K„iz,w)fiz)dz,

where the kernel ÄT„(-, w) is given by

(1.3) Kniz,w) = Rn(y—,w\

or, alternatively, by

"•<> «*■•>-$$■

where £>«(•, w) is the rath function of the second kind, i.e.,

(1.5) Q„iz,w)= [   Pn("X,W"lwix)dx   forzeC\[-l, 1].
J-X      z — X
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Let us note that by (1.3), Kn(-, w) has the following series expansion:

(1.6) Kn(z, w) = Y R"%\W)    for |z| > 1.
k=2n

From (1.2) the following well-known estimate of the remainder, based on con-

tour integration, follows:

(1.7) \Rnif, w)\ < l-^-max \Kn(z,w)\ max \f(z)\,
in   zer zer

where l(T) denotes the length of Y.
Another useful method to estimate the remainder for a function analytic in

Cr = {z £ C: \z\ < r), r > 1, has been suggested by Hämmerlin [4], namely:

For a function f(z) = Y^k=oak(f)zk analytic in Cr define

|/|r := sup{\akif)\rk : k £ N0 and R„ixk , w) ¿ 0}.

Then, | • |r in the space

Xr := {f: f analytic in Cr and \f\r < co}

is a seminorm. The error functional Rnif, w) is continuous in (3tr, | • \r), and

we have

!*,,(/, w)| <||Ä„|||/|r,

where ||7?„|| can be estimated by

(1.8) ¡¡R,H<tl-^r^.
k=2n

Equality holds (put /(z) = l/(r - z), resp.  l/(r + z)) if for all k > 2« the
condition

(1.9) R„ixk,w) >0,     resn.i-l)kR„ixk ,w)>P,

is fulfilled. Since by [3, Theorem 2.1], proved in [2], and the proof of Theorem

3.1 in [3], the condition

(1.10) w(x)/w(-x) nondecreasing on (-1, 1),

resp.

(1.11) w(x)/w(-x) nonincreasing on (-1, 1),

implies that condition (1.9) holds for all k £ No, it follows by (1.6) (see [3,
Theorem 3.1]) that

j Kn(r, w)        if w satisfies (1.10),
max\Kn(z,w)\ = j ^(_^ ^    .f ^ ^.^ ^^

and
, rKn(r, w) if w satisfies (1.10),

7?„? il - / rK"{r

"" " I -rKn( -r,w)   if w satisfies ( 1.11 ).

Thus, we see that for the estimation of the remainder it is very desirable to have

an explicit expression for the kernel 7C„(z, w).
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Very recently, Notaris [8] computed ||7?„|| explicitly for weight functions of

the form

(1.12) wix) = il - x)ail + x)ß/p2ix)   for xe (-1,1),

where a, ß £ {-\, \) and p2 is a polynomial of degree at most two which is

positive on [-1, 1] and satisfies condition (1.10) or (1.11). For the special case

when p2 is a polynomial of degree one or a particular even polynomial of degree

two, this has been done before by Akrivis [1] (see also Kumar [5, 6]). Let us

also mention that a detailed study of the kernel function for the four Chebyshev

weight functions, i.e., P2ÍX) = 1 in (1.12), can be found in Gautschi and Varga

[3]. In this note we derive an explicit expression for the kernel AT„(z, iu)(||7?„||)

for all Bernstein-Szegö weight functions w (which satisfy condition (1.10) or

(1.11)), where a weight function is called a Bernstein-Szegö weight function if

it is of the form

(1.13) nwaJ(x,pm) = (l-x)a(l+x)lilpm(x)   for xe (-1,1),

with a, ß £ {-j, j} and pm a polynomial of degree m, m arbitrary, which

is positive on [-1, 1].

2. Main result

First let us recall the well-known fact that the so-called Joukowski transfor-

mation

(2.1) y = \(z + z~x)

maps [z £ C: \z\ < 1}\{0} ({z e C: \z\ > 1}) one-to-one onto C\[-l, 1] and

that the inverse transformation is given by

(2.2) z = V(;)v^rrT,

where that branch of s/~ is chosen for which sjy2 - 1 > 0 for y £ ( 1, co).

Note that the transformation (2.1) maps the circumference \z\ = 1 onto the

interval [-1, 1].
The following version of the Fejér-Riesz Theorem on the representation of

positive trigonometric polynomials (compare Theorems 1.2.1 and 1.2.2 in [10])

will be needed.

Lemma. Let pm be a real positive polynomial on [-1, 1] of exact degree m.

Then there exists a unique real polynomial

m

(2.3) gmiz) = Y[iz- zv)   withO<\zv\<lforv = l,...,m
v=l

such that

(2.4) pm(costp) = c\gm(e'n\2   fortp£[P,2n],

where c £ R+ .

Proof. Let pm(x) = c\[™=l(av - x), where ceR and the a„'s are either in

R\[-l, 1] or appear in pairs of complex conjugate numbers. Hence, if we set

(2.5) zv=av-\Ja2-l    for v = 1, ... , m,
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then

0<|z„|<l    and   av = \(zv + z~x)   for v = 1, ... , m.

Thus,
m    / i   ,     2 \ m

pm(coscp) = c\\ [       Z" - cos<p ) =cT\\ei,p - z^\2,
lli v2z-     /  a

since

(e* - z„)(e-* - z,) = 2z„ f^^ - cosç>)

and the z„'s are real or appear in pairs of complex conjugate numbers.

Now the uniqueness remains to be shown. Suppose that
m

pmicos<p) = d]l\ei*-vv\2,
i/=i

where d £ R+, vv e {z e C: \z\ < 1}\{0} for v = I, ... ,m, and the v„'s

are real or complex conjugate.  Then it follows as above that (vv + v~x)/2,

u = I, ... , m, is a zero of pm(coscp) and thus, since 0 < \vv\ < 1 and since

the Joukowski transformation is one-to-one, the uniqueness follows.   □

Let us note that other representations of pm of the form (2.4), but with gm

having m - I, resp. /, / e {1, ... , m} , zeros inside, resp. outside, of the unit

disk, can be obtained by replacing (2.5) by

(2.6) zVj = aVj + yja2. - 1    for j = 1,...,/,

where {vx, ... , u¡) is an arbitrary subset of {1, ... , m}, and

zv=av- \Ja2 - 1    for v £ {1, ... , «7.}\{^i, ... , /'/}■

Now let us set

nwix, pm) = l/(\/l - x2pmix))   for* e(-l,l)

and let gm be the unique polynomial from the above lemma. Then it follows

by well-known results of Bernstein and Szegö (see, e.g., [10, p.   31] and set

ram(z) = s/cñzmgmi\) there) that, with z = ei(f and x = eostp ,

m

2n-XPnix,wi-,pm)) = Y"jTn-Ax)

7=0

= Re{z"-m£m(z)}   for 2n>m,

m

2"-17>„_1(x, (1 -x>(., pm)) = Y"jUn-i-jix)

7=0

= lm{zn~mgmiz)}/sin <p   for 2« > m,

2»P„ix, il+x)wi-, pm)) = J£ajT~i-j(x) + T.-Â*)
7=0

= Re{z"-m+1/2(?m(z)}/cos(ç)/2)   for 2« + 1 > m,

2«7>„(x, (1 -x)w(-, pm)) = f^a.Tn+i-j(x)-Tn.jix)

7=0

= Im{z'!-m+1/2^m(z)}/sin(çj/2)   for 2« + 1 > m,

(2.7)
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where gm(z) = Ylf=oaJzmj an<^ 2y> resP- ^j'» denotes the Chebyshev poly-

nomial of degree y of the first, resp. second, kind on [-1, 1].

We mention in passing that if gm in (2.7) is replaced by a polynomial gm

which also satisfies (2.4) but does not have all zeros in the open unit disk, then

the polynomials on the right-hand side in (2.7) are not orthogonal with respect

to waißi-, pm), a, ß £ {-j , ¿}. In fact (see [9, Corollary 5], corresponding

results hold also for a = —ß = ±¿), they are orthogonal with respect to a

functional *F of the form

¥(p)=        P(x)waJ(x, pm)dx + L(p)   forpeP,

where L is a functional given by

r    h

j=l  K=l

and the aVj's are those zeros of pm which correspond to the zeros of gm lying

outside of the unit disk by (2.6), lj is the multiplicity of the zero aUj, and the

Pkj's are certain real numbers.

We now give the announced explicit expression for the kernel function

Kn(z,watß), \a\ = \ß\ = \.

Theorem. Let pm be given by (2.4). Then we have for y e C\[-l, 1], ora writing

y = \(z + z~x) with |z| < 1, i.e., z = y - s/y2 - 1, that

4z2"+1

cKniy , «(., Pm)) = {x^z2)g;n{z){z2n-mgm{z) + gm{z)]

for 2« > m,

2z2"+1(z + 1)

*(,,(! ,i,^(-, /-»)) - (1 . l)AW{lî~.-£W(î)fiW}

for 2n + I > m,

z2n+líz2_ !j
cAT„(y, (1 -x2)u;(-, />w)) =

g* (z){z2»+2-«^m(z) - ££(Z)}

/or 2« + 2 > raí,

where gmiz) = zmgmi\).

Proof. Let 7? and S be monic polynomials of degree at most two such that

R(y)S(y) = y2-i,

and let us put for abbreviation

P„ix) := Pnix, Rwi-, pm))   and   P„ix) := P„ix, Swi-, pm)).

Using the simple fact that for k £Z and tp £[P, 2n]

(2.8) [Rß{eik'gmiei'm2 + VMe"" gmie*)}]2 = \gmie'n\2,

we get, using (2.7) and (2.4), that with I = n + dR-l, where 97? denotes the
exact degree of R,

(2.9) RP2 - SPf = knPm,
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where „   „
{2-2n+2/c for Rix) = 1,

-2~2n/c for R(x) = x2 - 1,

(î)2-2"+1/c for7î(x) = x + l (x-1).

Furthermore, it follows from Theorem 3(a) of our paper [9] that for 2« >

m+l-dR

(2.10) RP2 - S(YP„ + pmP(n{\)2 = dnPm ,

where P„\ denotes the associated polynomial of P„ , i.e.,

pwiiy)= rl pnW-p^x)R{x)w{x,Pm)dx,
j-i     y — x

and Y £Pfi, p = max{raj - 1, dR - 1}, is uniquely determined by the condi-

tions that at each zero av of pm(x) = c\\^=x(av -x)m", where c e R and mv

is the multiplicity of the zero av ,

(2.11) Yd\av) = (R/sJy2-l)^(av)   for j = 0, ..., mv - 1,

and that for y —► co

p.!?, WvZTTT/_IM = 0(,-1);

furthermore,

(2.13) dn = 2 I     P2(x)R(x)w(x, pm)dx.

(We note that in the definition of 1/ra in [9, p. 461] (-l)'-k/s/^H is to

be replaced by (-l)l~k/ns/^H.) It now follows from [10, (2.6.5)] that the
leading coefficient of the orthonormal polynomial of degree « with respect to

7?u;(-, pm) is equal to s/2/k„ for 2« > raj +1 -97?, which implies that d„ = k„
and thus, in view of (2.9) and (2.10),

(2.14) ±P, = YPn + pmP(nlx    for 2n> m+l-dR.

For a function / defined on C\[-l, 1] and for x e (-1, 1) we write, provided

the limits involved exist,

/<->(*):=   ¡im   fiz),

zee'-»

+
where C(~> := {z e C: lmz(>}0} . Observing that by (2.11) and (2.12)

,2,5) »W:=Wv^-r)M
Pm\y)

is analytic on C\[-l, 1] and vanishes at infinity, and that the boundary values

0±(x), x e (-1, 1), from the upper (lower) half plane satisfy the relation

$+(*)-<&-(*) = 7     ,R{%-,   for xe (-1,1),
' Pm(x)s/l -X2
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where we have used the fact that

(v9^T)+(x) - iVi - x2 = -(s/y2-i)-(x),

we get by the Sochozki-Plemelj formula (see, e.g., [7])

<b( ) = L f+l     l RW d
(2.16) W     nj_x y-xpm(x)s/T^   X

= Qo(y,Rw(-,Pm))   foryeC\[-l, 1].

Recalling the well-known fact (see, e.g., [10, §3.5]) that for sufficiently large \y\

7j(1) (v)
-f^- = Q0(y ,Rw(-, pm)) + 0(y-<2"+1»),

we get, using (2.16) and (2.15), that

(YPn + pmP{nllx)(y) = Pn(y)R(y)/Vy2 - i + o(y-(»+»+«)

and thus, since for 2ra>ra7.+ l-97?

lim y-{n+dR-X){Pn(y)R(y)/Vy2 - 1 + 0(y-("+l»+m)} = 1,
y—>oo

the polynomial YPn + pmPn\ > which by (2.14) is of exact degree ra + 97? - 1,

has leading coefficient one. Hence, the plus sign holds in (2.14). Thus, the rath

function of the second kind is of the form

Qniy, Rw(-, Pm)) = -P(nl\(y) + Pn(y)Qo(y)

(2-17) = y/RjyJPniy) - s/W)Pi(y) ^ K
sMÏ)Pm(y) ' (s/y^Pn + sP,)(y) '

where the second equality follows with the help of (2.16), (2.15), and (2.14),
and the third equality with the help of (2.9). Now the following equalities hold
on the circumference Izl = 1 :

(-iz + Z-X),wi-,Pm))

(2.18)

2"Pn[-(z + Z-X),W(-,pm)Xj=Z'"(z2n-mgm(z) + gm(z)),

2"-17V, (hz + z~x), (1 - X>(•, pm^j

z-n{z2n-mgm{z) _ g*m(z))

z-z-1

2"Pn(Jï(z + Z-X),(l+_)X)w(.,Pm)S)

Z-"(z2"+X-mgm(z)(+_)gm^))'(-)6mv

,1

Since all functions appearing in (2.18) are analytic in the domain C\{0}, it
follows that in (2.18) equality holds also on C\{0}. Hence, we get from (2.17)
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and (2.18) that for y e C\[-l, 1], on writing y = \(z + z'x) with \z\ < 1 ,

2-«+2 zn+l
Qn(y,w(-, pm))

r2\

c     (l-z2)g*m(z)'

y-n   zn+l

(2.19) Qn(y, (l -x2)w(., pm)) = —-——
c    om\z)

2-n+i        zn+l

Qn(y, (l{-+)x)w(.,pm)) =     c    0
(-)'

where we have used the fact that sjy2 - 1 = (z ' - z)/2. Relation (2.19) in

conjunction with (2.18) and (1.4) gives the assertion,   a

In the remark below we state sufficient conditions on the weight function

Wa,ßix, pm), defined in (1.13), suchthat (1.10), resp. (1.11), is fulfilled. Since
the product Wxix)w2Íx) of two weight functions Wx, W2 satisfies condition

(1.10), resp. (1.11) if wx and u>2 satisfy (1.10), resp. (1.11), we consider the
behavior of io(x, pm)/wi-x, pm) for m £ {1, 2} only.

Remark. The ratio iu(x, p)/wi~x, p) is nondecreasing (nonincreasing) on

(-1,1) if

'  (+)(a-x), a G (l,oo) ((-00,-1)),

pix) = l  ia-x)ix-ß),    ae(l,co),  /3e(-oo,-l),  and -ß^a,

k (x - a)2 + ß2,      q€R<-),  ß €R, anda2 + ß2> I,

where the expressions in parentheses refer to the case of nonincreasing ratio.

Setting in the preceding theorem

gi(z) = z + â,    ä e(-l,l),    i.e., \gx(e^)\2 = l+ä2 + 2äx,

resp. for b > 0

g2(z) = z2 + (1 + 2b)~x,    i.e., \g2(el,p)\2 = 4(b2 + (I + 2b)x2)/(2b + I)2,

where x = cos tp , we obtain the results of Kumar [5, 6] concerning the functions

of the second kind, and the results of Akrivis [1] on the norm of the error

functional 7?„(-, u/a>/,(., |«/(<?'>)|2)), j = 1, 2. If we put

2     2(5        /,      2a\
g2iz) = Z2 + jZ+{l--}

with 0 < a < ß , ß ^ 2a, and \S\ < ß - a, which gives

Ç\g2ieln\2 = ßiß - 2a)x2 + 2Siß - a)x + a2 + Ô2 ,

we obtain the results of Notaris [8] on the norm of the error functional, using

his conditions (2.3i)-(2.42) on the parameters a, ß, y, S under which the

function tu(x, \g2Íe"p)\2)/wi-x, \g2Í^'?)\2) is strictly increasing, resp. strictly
decreasing.
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