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A PARALLEL ALGORITHM FOR COMPUTING
THE EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX

PAUL N. SWARZTRAUBER

Abstract. A parallel algorithm, called polysection, is presented for computing

the eigenvalues of a symmetric tridiagonal matrix. The method is based on a
quadratic recurrence in which the characteristic polynomial is constructed on

a binary tree from polynomials whose degree doubles at each level. Intervals

that contain exactly one zero are determined by the zeros of polynomials at the

previous level which ensures that different processors compute different zeros.

The signs of the polynomials at the interval endpoints are determined a priori

and used to guarantee that all zeros are found. The use of finite-precision

arithmetic may result in multiple zeros; however, in this case, the intervals

coalesce and their number determines exactly the multiplicity of the zero. For

an NxN matrix the eigenvalues can be determined in 0(log2 A^ time with N2

processors and O(N) time with N processors. The method is compared with

a parallel variant of bisection that requires 0(N2) time on a single processor,

O(N) time with A^ processors, and 0(log N) time with A^2 processors.

1. Introduction

A parallel algorithm, called polysection, is presented for computing the eigen-
values of a symmetric tridiagonal matrix

~bx    cx
Cx    b2   c2

c2
(1.1) A =

CN-l

Cn-i

bx

If c, = 0 for some i, the problem can be reduced to two independent eigen-

problems and hence it is customary to assume that the off-diagonal elements are

nonzero. In theory this also separates the eigenvalues but in practice, with finite-

precision arithmetic, "multiple" eigenvalues are not uncommon. The method
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presented here is particularly effective in locating multiple eigenvalues. We be-

gin with a brief review of existing methods.

The QR algorithm has been the method of choice for computing the eigen-
values of a matrix on a single processor. However, the choice is less clear in
the context of parallel computing. Nevertheless, there is a noteworthy paper

by Sameh and Kuch [13] which describes a parallel implementation of the QR

algorithm for symmetric tridiagonal matrices. This paper, as well as the paper
by Stone [17], for the parallel solution of symmetric tridiagonal systems, con-
tains parallel algorithms for solving two- and three-term recurrence relations

that provide key computational tools for much of the subsequent work in this

area. More recently, Cuppen [3] developed a method based on the splitting

where Ti and T2 are symmetric tridiagonal matrices and C has one nonzero
element in its lower left-hand corner. The eigenvalues of Tj and T2 can be

computed in parallel, followed by an update procedure in which the eigenvalues

of A are computed from the eigenvalues of Tj and T2. This approach can

be applied recursively by splitting Ti and T2 and so forth until matrices of

order one are obtained. The parallelism is now evident in the recursive pro-

cess of computing the eigenvalues of successively larger matrices from those

of smaller matrices. This approach has been analyzed extensively by Dongarra

and Sorensen [6] as well as Sorensen and Tang [16], who solved many of the

practical problems that arise in its implementation and demonstrated that ze-
rofinding provides a viable technique for computing eigenvalues. In particular,

they used deflation to improve reliability and performance [2].

Eigenvalues have also been computed as the zeros of the characteristic poly-

nomial of A. Sturm sequences are fundamental to the method of bisection,

which provides a straightforward method for computing eigenvalues. Bisec-

tion is based on the theorem that states that the number of sign changes in the

Sturm sequence is equal to the number of eigenvalues that are less than the

current estimate. As early as 1962, Wilkinson [20] stated that "the theorem

[bisection] can be used to locate an individual eigenvalue without locating any

of the others." Although he was not concerned with parallel computing at that

time, his observation forms the basis of a parallel algorithm. The pfh processor

uses interval bisection to find the largest value such that the Sturm sequence

has p agreements in sign; i.e., the /?th processor determines the pfh eigenvalue

independent of the other processors. With N processors all eigenvalues can

be computed in O(N) time. This result is valid even if one uses the highly

sequential three-term recurrence relation for computing the Sturm sequence.

The accuracy of bisection is known to be high [4, 9] and superior to the QR

algorithm.
A variant of bisection, called multisectioning, was recently developed and

analyzed in [12]. Sturm sequences are developed on multiple subintervals to

isolate the eigenvalues. The eigenvalues are then determined by bisection or

Newton's method or the zero-in method that combines bisection and the secant

method. Multisectioning is particularly appropriate if only a few eigenvalues

and/or eigenvectors are of interest. Ipsen and Jessup [8] have made a detailed

comparison of Cuppen's method, and multisectioning on the hypercube.
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In this paper we introduce a method, called polysection, which is based on the

parallel algorithm developed in [ 17, 19] for computing the characteristic polyno-
mial. Krishnakumar and Morf [10] also use this parallel algorithm to compute
the eigenvalues of a symmetric tridiagonal matrix in O(NXogN) time; how-
ever, their method of separating the zeros is different from the one presented

here. The characteristic polynomial is evaluated on a binary tree structure using

a quadratic recurrence in which the degree of the polynomials doubles at each

step. We show that the zeros of the polynomials at any step in the quadratic

recurrence are separated by the zeros of the polynomials at the previous step.

Hence, the zeros can be determined by recursion, beginning with the single zeros

of linear polynomials and ending with the zeros of the characteristic polynomial.

Each processor is given an interval that contains a unique zero, which ensures

that different processors compute different zeros. In the presence of multiple or

near multiple zeros, the intervals tend to coalesce and their number determines

the multiplicity of the zero. This eliminates the traditional problems experi-

enced by some methods for computing multiple zeros. Computational results

are presented in §7 for a large symmetric matrix which, to machine precision,
has many eigenvalues with a multiplicity of two.

For large N and/or || A||, the possibility of over/underflow exists when com-
puting the characteristic polynomial. Usually, this can be handled by an a priori
scaling of A ; however, dynamic parallel scaling [17, 19] provides a more reliable

approach in which catastrophic over/underflow is eliminated, since intermedi-

ate computations are maintained at 0(1). This approach is reviewed in §6.

Over/underflow can also be avoided by reformulating the problem in terms of

self-scaling rational functions. This approach together with the polynomial im-

plementation are presented in §5 and their accuracy is compared with the QR

and bisection algorithms in §7.
In §7, the accuracy of polysection is compared with a variant of bisection in

which the Sturm sequence is computed using the parallel algorithm developed

in [17, 19]. With this approach all eigenvalues can be computed in 0(XogN)

time with 7Y2 processors. The numerical results in §7 show that the parallel
algorithm for the Sturm sequence provides a highly accurate algorithm for the

eigenvalues. The accuracy of both bisection and polysection is shown to be

superior to the QR algorithm, particularly for the case of near multiple zeros.
Bisection with the parallel computation of the Sturm sequence is discussed in

§6. This straightforward variant will be called parallel bisection, and although it

has not appeared in the literature it is known to the computational community

(see acknowledgments).

The asymptotic time for bisection is less than polysection, and the two meth-

ods have comparable accuracy. These results, combined with the simplicity of

bisection, make it reasonable to question the relevance of polysection. However,

polysection has three attributes that are not necessarily shared with bisection.

First, the theory of polysection developed in §§3-5 guarantees its reliability in

the sense that N zeros will always be found. Although this attribute is shared

with the serial bisection algorithm [21, pp. 304-305], it remains to be demon-
strated for parallel bisection. Second, "deflation" can be used with polysection,

which can substantially reduce the amount of computation. An example is

given in §7 of a matrix with order 4096 whose eigenvalues were determined
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from polynomials with degree less than 15. Third, Newton's or other high-

order methods can be used with polysection to speed zerofinding. The most

appropriate method may likely depend on the particular application.

2. A PARALLEL ALGORITHM FOR EVALUATING

THE CHARACTERISTIC POLYNOMIAL

In this section we will review the parallel algorithm given in [17, 19] for

computing the characteristic polynomial of A. It is computed in terms of
characteristic polynomials d¡j of principal submatrices consisting of rows (and
columns) / through j . Expanding about the jxh row, we obtain the well-known

three-term recurrence relation

(2.1) diJ = (bj-X)diJ-x

If we define the sequence

(2.2) ei>j = Cjdij-x,

we obtain the two-term matrix recurrence

Cj-idi,j-2.

(2.3)
di,j
ei,i

di,j-l

ei,j-l

X   Ci

To solve this recurrence relation, we define

(2.4)
bk-X
-ck-x

k=i

Next we show that (2.4) has the closed form

Cj-X

Ck

0

(2.5) Q.-.7
dij cjdij-x

-Ci-xdi+x j    -Ci-xCjdi+xj-x

with elements that can be determined from the characteristic polynomials of
four submatrices. The desired characteristic polynomial dx, # is given as the

upper left element of Qx,n • The proof of (2.5) is by induction on j . Equation

(2.5) can be verified by direct computation for j = i+X. If we define d¡+x,i =

diti-x = X and rf/+i,¿_i = 0, then equation (2.5) is also true for j = i. Now

assume that it is true for j - X ; then

(2.6) Qij -
Cj-i

-Ci-xCj.

di,j-2 bj-X
0

dij-i
-Ci-idi+xj-x    -Ci-\Cj-xdi+xj-2

After matrix multiplication, (2.1) can be used with (2.6) to verify (2.5), which

completes the proof.
The associative property of matrix multiplication provides a splitting formula

that is fundamental to the parallel algorithm. For any i < k < j ,

(2.7) Qij - Qi,kQk+l,j-

Consider now the parallel algorithm for computing Qi _ N for the case TV

Step X. For / = 1, 2, 3, and 4 compute

(2.8) Q2,-1,2/
bzi-x -X

-Cli-2

C2i-X

0
b2l - X

-c2,-\

c2l

0
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Step 2. Compute

(2.9) Qi,4 = Qi,2Q3,4   and   Q5 8 = Qs.eQr.g-

Step 3. Compute

(2.10) Ql,8=Ql,4Q5,8-

The computations within each step can be performed simultaneously. For

general N, the first step requires 5 multiplications and 3 additions per matrix

multiplication for a total of 4N flops. The rth step requires X2N/2r flops

for r = 2, ... , log2N, which totals about 6A7 flops. Therefore, on a single

processor, the computation of the characteristic polynomial totals about XON

flops. With N processors the first step requires 4 flops (since 2 processors are

available for each matrix multiply), 3 flops are required for the second step

and 2 flops are required for each step thereafter. A minimum of two flops are

required since the additions must follow the multiplications. Hence, a total of

2 log2 TV + 3 flops are required to compute the characteristic polynomial using

N processors.

In the sections that follow we will use the elementwise form of (2.7), which

is obtained by substituting (2.5) into (2.7):

(2.11a) dij = di,kdk+x j - c2kd¡,k_xdk+2j,

(2.11b) dij-x =diikdk+ij-x -c2kditk_xdk+2j-x,

(2.11c) di+lj = di+x,kdk+x,¡ -ckdi+x,k-\dk+i,j,

(2.1 Id) di+xj-x =di+xtkdk+xj-x - ckdi+x,k-\dk+2j-x-

Equations (2.11b) through (2.1 Id) are the same as (2.11a) but with a suitable

shift in the subscripts i and j . Nevertheless, all four equations are required to
"close" or complete the recurrence relations. The parallel algorithm developed

in this section can be used to solve a general tridiagonal system of equations

[19], although equations (2.11) were first developed in block form for solving

separable elliptic partial differential equations [18]. Although equations (2.1 la-

tí) are valid for any i < k < j, the parallel algorithm presented in §4 uses

k = (i + j-X)/2.  '

3. The separation theorem

In this section we will show that if X¡ are the collated zeros of the four

characteristic polynomials on the right side of equation (2.1 la), then the zeros of

dij occur one per interval in every other interval (X2¡, X2t+x). This result also

holds for (2.1 lb) through (2.1 Id) but it will only be demonstrated for (2.1 la)
since the proofs are almost identical. The separation theorem is fundamental to

the parallel algorithm and ensures that each processor will find a different zero

and that all zeros will be found. To prove the theorem and develop the precise

nature of the separation, we will need the following four lemmas.

Lemma 1. Let p(X) = po H-h pkXk and q(X) = qo H-h qk-\Xk~x be poly-

nomials with real and strictly interlacing zeros. If pk and qk_{ have the same

sign, then r(X) = p(X)/q(X) is monotone increasing on any interval that does

not contain a zero of q(X). If they have the opposite sign, then r(X) is mono-

tone decreasing. More specifically, if pk/qk-\ > 0 then r'(X) > pk/qk-\ , or if

pk/qk-x < 0, then r'(X) < pk/qk-\ .
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Proof. The partial fraction expansion of r(X) is

(3.3) r(A) = Jk_X + Pk-^k-i-PkQk-2 + g _««/

where A/ are the zeros of q(X) and tu/ = p{X¡)/q'(X¡). Therefore,

•«I ^.¿.-g-^.

If At and qk_x are both greater than zero, then si%n[p(X¡)] = sign(-l)/_fc and

sign[?'(A/)] = sign(-l),-A:+1 and hence w¡ < 0. This result together with (3.4)

implies the desired result r'(X) > pk/qk-x ■ A similar proof for negative pk and

qk-x yields the same result, and for pk and qk_x with opposite sign we obtain

r'(X)<pk/qk-x.   0

Lemma 2. Let R(X) = rx(X)r2(X) -c2, where rx(X) = p(1)(A)/i(1)W and r2(X) =

p^ (X) / qW (X) are like r(X) in Lemma X and c^O is an arbitrary real constant.

Let X, be the collated zeros of p{x)(X), q{X](X), p{2)(X), and q{2)(X). From
Lemma X, the sign of r[(X) is the same on all intervals (A/_i, X¡). We will

assume that r'2(X) has the same sign as r[(X). Define

(3.5) d(X) = qW(X)qM(X)R(X) = p(1)(A)/>(2) W - c2q{X\X)q^(X).

Then d(X) does not have more than one zero in any interval (X¡, X¡+i).

Proof. By hypothesis, r\(X) and r'2(X) have the same sign. If R(a) is zero,
then rx(a) and r2(a) must have the same sign and hence they have the same

sign on the entire interval (X¡_x, X¡). Therefore, R'(X) = r[(X)r2(X) + rx(X)r'2(X)

does not change sign on (A/_i, X¡), which implies that R(X) is monotone and

hence a is a unique zero. Since q(x\X)q(2)(X) ̂  0, a must also be a unique
zero of d(X).   D

Lemma 3. Let X¡ and d(X) be defined as in Lemma 2. If d(a) = 0, where a

is in the open interval (A/_i, A/), then both d(X¡_x) # 0 and d(X¡) ^ 0; i.e.,
neither of the interval endpoints are zeros of d(X).

Proof. The product q<~x\X)qM(X) # 0 on (A/_i, A/) ; hence from (3.5), R(a) =
0. But from the proof of Lemma 2, R(X) is monotone and therefore nonzero

at the endpoints A/_! and X¡. If d(X¡) = 0, then from (3.5) either q(x\X¡) = 0

or q{2)(Xt) = 0. But then (3.5) also implies either p(1)(A/) = 0 or p{2)(X¡) = 0.
However, since the zeros of the ^-polynomials strictly interlace with those of

the ¿»-polynomials, the only possibilities are either p^(X¡) = q^2x(X¡) = 0 or

p^(X¡) = qw(X¡) = 0. Without loss of generality we can assume the former,

which implies that lim^^ rx (X) = 0 and lircu^, |r2(A)| = oo . However, this

contradicts the hypothesis that r[(X) and r'2(X) have the same sign and the result

that rx(X) and r2(X) also have the same sign as demonstrated in the proof of

Lemma 2. Hence, we obtain the desired result; namely, that d(X¡) ^ 0. A

similar proof yields d(X¡_ x ) / 0.   D

Lemma 4. Let X¡ and d(X) be defined as in Lemma 2. Then d(X) has at most

one zero in any two adjacent intervals (A/_], X¡), (X¡, X¡+1).

Proof. If neither interval has zero length, then only one of the polynomials

p(1)(A), P(2)(X), q{X)(X), qM(X) changes sign at X,. Therefore, p^(X)p{-2\X)
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and q(x\X)q{-1)(X) must have opposite signs on one of the intervals, which by

(3.5) implies that d(X) does not have a zero in that interval. If d(X) has a zero

on the other interval, then by Lemma 2 it must be unique.

At least one of the intervals must have nonzero length, for otherwise some X¡

would have multiplicity greater than two, which contradicts the strict interlacing

of the zeros of qw(X) with those of p(1)(A) and the zeros of q{-2)(X) with those

of p{-1)(X). If the interval with nonzero length contains a zero, then, by Lemma

3, the interval with zero length does not contain a zero. This argument also

implies that if the zero length interval contains a zero of d(X) then the interval

with nonzero length does not contain a zero of d(X). Note that an open interval

with zero length is replaced by a closed interval consisting of a single point.   G

The separation theorem. Let X¡ for I = X,... ,2(j - i) be the ordered zeros

of the characteristic polynomials dik, dk+lj, diik-x,and dk+2j augmented
with Xo and A2(;_,)+i as the lower and upper bounds, respectively, on the zeros

of dij . If the off-diagonal elements of A are nonzero, then the characteristic

polynomial d¡j defined in (2.1 la) has j - i + X zeros located one per every

other interval in (X2¡, A2/+1 ) for I = 0, ... , j - i.

Proof. Set d(X) = ditj, p^(X) = di>k, q^(X) = di>k^, p^(X) = dk+i,j,
q(2)(X) = dk+2j, and c = ck; then (2.11a) takes the form of (3.5). Before
Lemmas 1 through 4 can be applied to (3.5) we have to establish the validity

of two assumptions. First, Lemma 1 requires strict interlacing and second,

Lemma 2 requires r[(X) and r'2(X) to have the same sign. But strict interlacing
of zeros is a well-known property of any sequence of polynomials that satisfy the

three-term recurrence (2.1) with nonzero off-diagonal elements c,. Therefore,

it remains only to show that r\(X) and r'2(X) have the same sign.

As in Lemma 2, define rx(X) = p^(X)/q^x\X) and r2(X) = pM(X)/qM(X).
From the three-term recurrence (2.1) it can be determined that the high-order

term /J(1'(A) = d¡tk is (—l)k~,+xXk~'+l, hence the highest-order coefficient is

pS1m = (-1)*-/+1 • Similarly, q™. = (-1)*"', pf\ = (-1)/"* , and qf\_x =

(-l)j-k-i. Therefore, sign[p}L),+1/^¡] = ^n[p{2\/qf}k_}] = sign(-l). By
Lemma 1 this implies that r[(X) and r'2(X) have the same sign on all intervals

(A/_i, A/). This completes the validation of the assumptions in the lemmas,

which can now be applied to (3.5) and hence to (2.1 la).

By Lemma 4, d¡j = d(X) does not have more than a single zero in any

two adjacent intervals, including the case in which the length of one interval is

zero. But from the fundamental theorem of algebra, d¡j must have j - i + X
zeros on all 2(j - i) + X intervals. However, the only possible distribution

of these zeros, subject to the restriction of Lemma 4, is one zero per every

other interval, beginning with the first interval (Ao, A.) and ending with the

last interval (A2(;_,), A2(;_,)+1). This completes the proof of the separation

theorem.   D

4. The polysection algorithm and its complexity

An overview of the computations are presented in this section together with

operation counts and a brief discussion of the communication complexity.

Definition 1. Let X¡(i : j) for I = X, ... , j - i -\- X be the zeros of the charac-

teristic polynomial d¡ p j.
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Definition 2. Let A/(/' : j) for I = X, ... , 2(j - i) be the collated zeros of dik,
4+1,;, ¿¿,*-i » and dk+2J , where k = (i + j - X)/2. Also let A0(/ : ;') = A0
and A2(;_,)+1(z : j) = A2U-9+1 be the lower and upper bounds, respectively, on

the zeros of d¡j . The bounds for d¡j can be determined from Gershgorin's

theorem. The bounds for d¡+x j and d¡j-x can be determined from the zeros

of dij, and the bounds for d^xj-x can be determined from the zeros of

either di+xj or dfj-\.

For exposition it will be assumed that N = 2s for some integer 5. This

requirement simplifies the presentation but is not imposed by the algorithm,

since k does not have to be exactly midway between i and j in equations

(2.11). The parallel algorithm for computing the eigenvalues of a symmetric

tridiagonal matrix is then given by:
For r = X, ..., s and

form = 0,...,2w- 1

set / = mlr + X; j = (m + X)2r and compute

X,(i : j) e [A2,_2(i : j), A2/_, (i : ;')]   for I = X, ... , j - i + X,

X¡(i : j - X) G [A2!_2(i : j - 1), A2/_,(/ : j - X)]   for I = X, ... , j - i,

X,(i+X : j) e [A2,_2(i + X :j), A2/_,(/+ 1 : j)]   for I = X, ... , j - i,

Xt(i + 1 : j - 1) 6 [A2/_2(¡ + 1 : ; - 1), A2/_,(/ + X : j - X)]

for /= 1, ... , j -i- X.

The four sets of eigenvalues belong to the four characteristic polynomials

listed on the left side of equations (2.11a-d). The eigenvalues of A are com-

puted in the first of the four steps listed above when r = s, and hence the

remaining three sets do not have to be computed. The amount of computation

doubles when r increases by one until r = s, when it is halved. Therefore, the

amount of computation for the intervals that contain the eigenvalues of A is

about four times the amount that would be required to compute the eigenvalues

of A if the intervals were known.

First we will determine the operation count for polysection on a single pro-

cessor. For r = 1, ... , log2 N - X, a total of 4YV zeros of polynomials with

degree 2r must be computed. For r = log2 N only N zeros must be computed.

From §2, fewer than 10 • 2r operations are required to evaluate a polynomial

with degree 2r. Therefore, the number of operations TFx required to compute

the eigenvalues of a symmetric tridiagonal matrix on a single processor, using

the parallel algorithm for evaluating the polynomials, is bounded by

lo&2N-l

(4.1) TFx < X0neN2 + 40neN   J]   2r < 50neN2,
r=l

where ne is the maximum number of polynomial evaluations that are required

to determine a zero. With N processors each zero can be determined on a

separate processor for a bound of

(4.2) TFN < 50neN.

With N2 processors a characteristic polynomial with degree 2r can be com-

puted with 2r + 3 flops, using the algorithm given in §2.   In addition, each
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zero can be determined on a separate processor, and hence the total number of

operations TFNi is bounded by

log2JV

(4.3) TFN2 < 4ne J (2r + 3) < 4ne log?. N.
r=l

Note that the four polynomials in (2.11) could be evaluated independently with

additional processors for a minimum of ne log2 /V flops.

In the development of these bounds we have, in the traditional way, over-

looked what could be a significant contribution to the total computing time,

namely, the time required for communication. The collation of the zeros of

the four characteristic polynomials in the separation theorem must also be per-

formed in 0(log2 N) time, or the overall algorithm cannot be considered to be

0(log2 N). The collation of ditk , dk+\ j , dik-x, and dk+2j can be done in
the following steps:

1. The zeros of di>k and d¡tk-\ interlace, and hence a shuffle can be used

to combine them in an ordered sequence, say X¡.

2. Similarly, the zeros of dk+lj and dk+2j can be shuffled to produce

an ordered sequence, say X\ '.

3. Finally, the ordered sequences AJ1' and AJ2) can be merged to form the

desired collated sequence.

Two sequences can be shuffled in a time proportional to the logarithm of their

length. Also, if two ordered sequences are juxtaposed, with the first increasing

and the second decreasing, then the combined sequences form a single bitonic

sequence that can also be ordered in a time proportional to the logarithm of its

length. Hence, for a polynomial of degree 2r, each of the steps above can be

performed with 0(r) parallel transmissions, and therefore the overall time for

communication with N processors is proportional to

log2N

(4.4) 5>«log2/V.
r=0

Therefore, the overall algorithm, including communication, is 0(log2 N) if the

architecture of the multiprocessor supports the algorithmic requirements of the

shuffle and merge. The hypercube and related interconnection topologies sup-

port both the parallel computation and communication that are implicit in the

algorithms presented here.

5. Implementations of polysection

In this section we will develop both a polynomial and rational function imple-

mentation of polysection. The polynomial implementation may require scaling

to avoid over/underflow, but it is more accurate than the rational function im-

plementation. The topic of over/underflow is important in the context of com-

puting characteristic polynomials and is discussed further in §6. Over/underflow
can also be eliminated by reformulating the method in terms of rational func-

tions, which is the reason for the second implementation given in this section.

The sign of each polynomial at the interval endpoints can be determined a

priori and used to eliminate the usual problems associated with finite-precision
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arithmetic. This also provides both implementations with guaranteed reliabil-

ity. The computation of near multiple zeros (or multiple zeros if c¡ = 0) is

facilitated by multiple intervals with zero (or near zero length) that provide the

correct multiplicity. The purpose of this section is to describe both implemen-

tations and certain details that are required to ensure that all eigenvalues are

found.

A. Polynomial implementation. In this implementation the polynomials are

computed using the parallel algorithm that was given in §2. We do not discuss

the zerofinding method itself other than to note that the method of interval

bisection was used for the results presented in §7. A considerable amount of

literature is available on this topic and many options exist.

The reliability of the algorithm is greatly enhanced by knowing the signs

of the characteristic polynomials at the endpoints of the intervals. Because

the eigenvalue enters the polynomial with a negative sign, i.e., as b¿ - X on the

diagonal of A, the high-order term in d¡j is (-X)J~'+xXj~'+x . But j-i+X = 2r

is an even integer, which combined with the separation theorem implies that the

signs of dij on A/(i : ;') for / = 0, ... , 2r+x - 1 are + — + + ■■• + + —+ .

Similarly, the signs of d¡ j-\  on A¡(i : j - X) for / = 0, ... , 2r+x - 3 are

-I-h-H—. The signs of di+Xj on A/(i'+l : j) for / = 0, ... , 2r+1-3

are H-\- -\-h H— and the signs of dt+ij-\ on A¡(i + 1 : j - 1) for
1 = 0, ... , 2r+x -5 are + -- + + ••• + + - —I-.

In practice there are two reasons why these sign patterns may be interrupted.

First, as previously noted, dik and dk+2j are characteristic polynomials of

different submatrices and may therefore share a common zero that would also
be a zero of d¡ y. Then, with finite precision, a small value could be obtained

for dij with the wrong sign. Second, although in theory the zeros of dik

and dik_x (or dk+xj and dk+2j) interlace, with finite precision they may
coalesce or cross and again produce a small number with the opposite sign.

Both cases imply that a zero of the characteristic polynomial has already been

found to machine precision, and it would therefore seem reasonable to select

one or the other as a zero. However, endpoint zeros might belong to a different

interval in the presence of near multiple or multiple zeros. The most satisfactory

approach is to replace any endpoint value whose sign differs from the correct

sign by the machine epsilon or any value with the correct sign. The bisection

method or variants thereof can then be used to select the zero. This procedure

is fundamental to the reliability of the algorithm and guarantees that N zeros

will be found. Sign tests are attractive since they are machine-independent.

In practice, some of the intervals usually shrink to zero as the computation

proceeds. This is beneficial because it reduces the amount of computation that is

required to compute the zeros. This "deflation" was also reported by Dongarra

and Sorensen [6] who observed that it could make Cuppen's method competitive

with the QR algorithm on a single processor. Deflation could be initiated with

a machine-dependent test that detects very small intervals. However, a more
satisfactory approach has been to detect interlace faults and set the zeros that

have crossed to their average value. This produces zero-length intervals that are

detectable without the use of a machine-dependent test. A common matrix, for

which deflation does not occur, has elements b¡ = a and c,■■ = X , where a is

arbitrary.
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B. Rational function implementation. The eigenvalues of A can also be com-

puted as the zeros of the rational function R(X) that was introduced in Lemma
2, §3, namely

(5.1) R(X) = rx(X)r2(X)-c2,

where n(A) = dik/ditk_x and r2(X) = dk+lj/dk+2j. All polynomials are
evaluated and stored in factored form in this implementation.

There are three reasons to consider a second implementation of the algo-

rithm. First, the rational function is self-scaling; second, one can take further

advantage of deflation to reduce the order of the rational functions; and third,

the operation count for the rational function implementation is somewhat less

than the polynomial implementation. This must be weighed against a small

loss of accuracy compared with the polynomial implementation. The loss is not

substantial, since only two binary bits are lost when compared with the QR al-

gorithm for a matrix with order 1024. The accuracy of the two implementations
are compared experimentally in §7.

To provide the rational implementation with the same degree of reliability

as the polynomial implementation, it is necessary to determine the behavior

of R(X) at the interval endpoints ax, a2. If the interval contains a zero of

(5.1), then rx(X) and r2(X) must have the same sign. They also satisfy the

conditions of Lemma 1, which implies that they are both monotone decreasing

functions, since the ratio of the high-order coefficients is -1. These conditions

are satisfied only if dik or dk+lj are zero at one end of the interval and

d¡ k_\ or dk+2j are zero at the other, which implies that only two cases are

possible, namely the ones listed in steps 4 and 5 below. Consider now the steps

that must be taken to guarantee that all of the zeros will be found.

1. Like the polynomial implementation, any interlace faults are corrected

by replacing the zeros that have crossed by their average value.

2. Any zeros that are identically common to both the numerator and de-

nominator of r\ (X)r2(X) are removed and selected as zeros of d¡j . This

deflation can substantially reduce the amount of computation. A matrix
with order N = 4096 is presented in §7 for which the maximum order

of any computed polynomial is 15!

3. If «i = a2, then ax is selected as a zero of d¡j . This deflation step

can be used with both implementations.

4. If ax ^ a2 and either dik or dk+Xj are zero at a{, then R(a\) is

set to -c\ and R(a2) is set to a large positive number.

5. If ax / a2 and either dik_x or dk+2j are zero at a\ , then R(a{) is

set to a large positive number and R(a2) is set to -c\ .

Case 4 applies to the first interval and case 5 applies to the last interval but

with minor modifications. Machine-independent tests can be used to determine

which of the cases 1 through 5 apply. Once R(ax) and R(a2) are determined

from step 4 or step 5, the zeros can be determined using bisection or any variant

thereof. Only the signs of R(a\) and R(a2) are relevant if bisection is used.

Other zerofinding methods can be used but they should probably be combined

with bisection if reliability is to be maintained.

Although scaling is not required for this implementation, the rational

functions  rx(X)  and  r2(X)  should be computed as a product of quotients
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(A - Xi)l(X- ß{), where A, and /?, are chosen as close as possible. This pro-

hibits the growth of intermediate computations that might result in numerical

difficulties.

6. Parallel bisection

As early as 1962, Wilkinson [20] presented bisection as a method for comput-

ing the eigenvalues of a symmetric tridiagonal matrix. In 1967, Barth, Martin,
and Wilkinson [1] published an improved algorithm that was resistant to over-

flow and made more efficient use of the Sturm sequences. Information obtained

from the Sturm sequences for one zero was used to speed finding the other ze-

ros. Evans et al. [7] also make efficient use of the Sturm sequences to speed

the bisection process. Schreiber [14] uses bisection in defining systolic arrays

for computing the eigenvalues. The accuracy of serial bisection is quite good,

as determined by Kahan [9] in 1966. Recently, Demmel and Kahan [4] and

Demmel and Gragg [5] provided additional results concerning the accuracy of

singular values and eigenvalues.
Both Kahan and Wilkinson recommended a variant of the three-term recur-

rence (2.1), namely

(6.1) qj = bj-X-c2_x/qj-x,

where q¡ = d¡j/d¿j-x. The purpose of this variant is to avoid over/underflow.

The method of bisection is based on the following theorem:

The number of agreements in the sign of consecutive characteristic polynomials

dxj(X) of leading principal submatrices is equal to the number of eigenvalues

strictly greater than X.

The Sturm sequence includes dx 0 = 1 • In [20], Wilkinson noted "The

theorem may be used to locate an individual eigenvalue without locating any

of the others" which forms the basis of an elegant parallel algorithm. The pth
processor uses bisection to find the largest value of X such that dxj(X) has

p agreements in sign; i.e., the pth processor determines the pth eigenvalue

independent of any other processor.

With the use of the sequential recurrence relations (2.1 ) or (6.1 ) together with

N processors, this approach requires O(N) time. On a single processor 0(N2)

time is required. In this paper we will use a parallel algorithm for computing

the Sturm sequence dxj(X). The algorithm will be reviewed only briefly here

since the details can be found in [19]. It is a variant of a similar algorithm

given in [13]. Both Sturm sequence calculations require the computation of the

partial products of a sequence of two-by-two matrices. The parallel algorithm

used for these partial products has been generalized to any associative operator

in [11], where it is called the parallel prefix computation.

In §2 we reviewed the parallel algorithm for computing the characteristic

polynomial of A, namely d{j\(X). As a by-product of this computation certain

other elements of the Sturm sequence were computed, namely dx 2¡ (A). The

remaining elements in the Sturm sequence can be "filled-in", using a parallel

algorithm with the same complexity 0(XogN) as the parallel algorithm in §2.

For the case N = 8 the parallel algorithm in §2 computed the elements dx, i (A),

d\,2(X), dx^(X), and <ii,8(A) in the Sturm sequence. The remaining d\j can

be determined as follows:

Step X.

Ql,6 = Ql,4Q5,6-
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Step 2.

Ql,3 = Ql,2Q2,3>

Ql,5 = Ql,4Q5,5,

Ql,7 = Ql,6Q7,7.

From §2, ION flops are required to evaluate the characteristic polynomial

of A. Asymptotically, an equal number of flops are required to "fill-in" the

Sturm sequence. Therefore, if ne is the maximum number of Sturm sequences

required to compute a zero, then the total number of operations required to

compute N zeros using parallel bisection on a single processor is less than

20neN2 flops. This compares with a bound of 50neN2 flops for computing the

eigenvalues using polysection. The operation counts are compared in Table 0.

Table 0. Asymptotic operation counts for bisection and polysection

processors

1
N

N2

bisection

20neN2

20neN

4ne log2 N

polysection

50neN2

50neN

4neXogiN

If the two Sturm sequence "fill-in" steps given above are combined with the

three steps in §2, then the total number of parallel steps is five. At the expense

of additional sequential computations, the number of parallel computations are

reduced to three in the following parallel algorithm that computes all elements
in the Sturm sequence in three parallel steps. In an early paper, Stone [17]

observed this tradeoff between sequential and parallel computations.

Step X. Compute

Step 2. Compute

Step 3. Compute

Ql,2 = Ql,lQ2,2,

Q3,4 = Q3,3Q4,4>

Q5,6 = Q5,5Q6,6)

Q7,8 =   Q7,7Q8,8-

Ql,3 = Ql,lQ2,3,

Q2,5 = Q2,3Q4,5,

Q4,7 = Q4,5Q6,7,

Ql,5 = Ql,lQ25,

Ql,7 = Ql,3Q4,7,

Q2,3 = Q2, 2Q3 , 3 .

Q4,5 = Q4,4Q5,5>

Qô, 7 = Qè, 6Q7, 7 >

Ql,4 = Ql,2Q3,4,

Q3,6 = Q3,4Q5,6;

Qs,8 = Q5,6Q7,8-

Ql,6 = Ql,2Q3,6>

Ql,8=Ql,4Qs,8.

This algorithm requires about half the time on a parallel computer but twice

the number of processors required by the previous algorithm. In general,

O(NXogN) operations are required on a single processor compared with O(N)

for the previous algorithm.
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For large N or ||A||, the characteristic polynomial may over/underflow the

arithmetic unit. This can be avoided by scaling the intermediate 2x2 matrices

that occur during the parallel algorithm [19]. Scaling is not required at each level
r, which reduces the time for scaling. For example, if scaling is performed for

r = 5, 10, 15,... about N/32 matrices are scaled. Scaling time would be

negligible if it were performed in machine code. If "power-of-two" scaling is

used, then accuracy is unchanged. More specifically, over/underflow can be

avoided by an occasional scaling of the 2x2 matrices in the following manner:

First compute

(6.2) qmax=||Q/,j||00;

next compute

(6.3) / = [log2 qmax] ;

then QI>7 is replaced by

(6.4) Qij = 2-'Qij.

A rounded value of / was used for the computational results in §7.

7. Computational results

In this section we compare the accuracy of: (a) the QR algorithm as im-

plemented in subroutine TQL1 in EISPACK [15]; (b) parallel bisection; (c)
polynomial polysection; and (d) rational function polysection. As mentioned in

§6, the accuracy of serial bisection has been demonstrated to be high. Although

the accuracy of both parallel bisection and polysection is yet to be determined,

the computational results in this section imply that they are both quite accurate.

The entries in the tables below are computed from

(7.1) g=max,|A,-A;|

max,- |A*|

where A, is computed in single precision and A* is computed using a double-

precision version of subroutine TQL1. All the computations were done on the

Sun SPARCstation 2.
Three tables are presented that correspond to three different matrices. Table

1 contains a comparison of accuracy for a matrix with random coefficients.

Table 2 compares accuracies for the matrix W2+k which is a slight variant of

w2k-x m [21. P- 308]. The variant is used because the parallel algorithms

were implemented for matrices with order equal to a power of 2. Although

this restriction can be removed, it nevertheless simplifies implementation. W2k

is of interest because it tests the ability of a method to handle near multiple

eigenvalues. Table 3 (see p. 666) corresponds to the matrix with zeros on the

diagonal and ones adjacent to the diagonal. The following observations can be

made from the tables:

1. In general, the accuracy of the QR algorithm is inferior to the accuracy

of all the other methods with the exception of the rational function

implementation for N < 1024 in Table 3.
2. The accuracy of QR is noticeably inferior in the presence of multiple

zeros, as demonstrated in Table 2.
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Table 1. Accuracy of the QR method and parallel algorithms
for a symmetric tridiagonal matrix with random coefficients

N QR PB PI RI

128

256

512

1024

2048

4096

4.72 x IO"6

5.09 x 10-6

9.96 x IO"6

1.64 x 10"5

1.81 x IO"5

2.12 x 10"5

6.63 x IO"8

7.43 x IO"7

2.93 x IO"7

3.88 x IO"7

2.67 x IO"6

1.15 x IO"5

5.30 x IO-8

5.84 x IO"7

1.17 x IO"7

6.65 x IO"7

3.02 x IO"6

3.60 x IO"5

1.79 x IO"6

5.25 x IO"6

2.99 x IO"6

6.04 x IO"6

7.82 x IO"6

2.55 x IO-5

QR as implemented in subroutine TQL1 from EISPACK

PB parallel bisection

PI polynomial implementation of polysection

RI rational function implementation of polysection_

Table 2. Accuracy of the QR method and parallel algorithms

for a symmetric tridiagonal matrix W2k with near multiple
eigenvalues

N QR PB PI RI

128

256

512

1024

2048

4096

3.77 x IO"6

8.06 x 10"6

2.30 x 10"5

4.46 x IO"5

8.14 x 10"5

1.30 x IO"4

1.18 x IO"7

1.19 x IO"7

1.19 x IO"7

5.95 x IO"8

1.19 x IO"7

5.95 x IO"8

1.18 x IO"7

1.19 x IO"7

1.19 x IO"7

5.95 x IO"8

1.19 x IO"7

5.95 x IO"8

1.18 x IO"7

1.19 x IO"7

1.19 x IO"7

2.38 x IO"7

1.19 x IO"7

1.19 x IO"7

QR as implemented in subroutine TQL1 from EISPACK

PB parallel bisection

PI polynomial implementation of polysection

RI rational function implementation of polysection

3. In general, the accuracy of the polynomial implementation of polysec-

tion is superior to the rational function implementation. Nevertheless,

the difference is relatively small and the errors are comparable in the

presence of extensive deflation, as shown in Table 2.

4. The accuracy of polynomial polysection and bisection are comparable

and in general superior to the other methods.

The accuracy of the rational function implementation in Table 3 is somewhat

less than in Tables 1 and 2, probably because deflation does not occur in Table

3. Deflation occurred for all the parallel computations in Tables 1 and 2 and

appears to be the rule rather than the exception. For N = 4096 the eigenvalues

of the matrix W2+k are given as the zeros of a polynomial of degree 4096;

however, because of deflation, the maximum degree of any computed rational

polynomial is 15! Similarly, the maximum degree of any computed rational

polynomial for Table 1 is 42.   The eigenvalues of the matrix in Table 3 are
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Table 3. Accuracy of the QR method and parallel algorithms

for a symmetric tridiagonal matrix with zero diagonal and l's
off diagonal

N QR
1.49 x IO"6

1.91 x IO"6

4.41 x IO"6

9.06 x IO-6

8.26 x 10-5

2.59 x IO"4

PB

1.79 x IO"7

3.58 x IO-7

4.17 x IO"7

1.98 x IO"6

2.92 x IO"6

2.98 x 10~6

PI RI

128

256
512

1024

2048

4096

1.79 x IO"7

1.79 x IO"7

7.75 x IO"7

6.56 x IO"7

1.97 x IO-6

3.21 x IO"6

8.65 x IO"6

2.95 x IO"5

2.93 x IO"5

4.23 x IO"5

7.26 x IO"5

8.93 x IO"5

QR as implemented in subroutine TQL1 from EISPACK

PB parallel bisection

PI polynomial implementation of polysection

RI rational function implementation of polysection_

A, = 2 cos in/(N+ X ), which are separated to the extent that deflation is minimal.

Since the submatrices are identical, some deflation does occur but the maximum

degree is 4096 compared to 15 for the matrix W2k presented in Table 2. This
difference in computation may explain the difference between the fourth column

of Table 3 and the fourth column in Table 2.
The extent of the deflation is quite significant, even for random matrices, and

leads one to question its origin. We conjecture that, for most matrices, the eigen-
values may be somewhat loosely coupled to most coefficients; i.e., they may be

determined to considerable accuracy as the eigenvalues of some submatrix and
not influenced to any significant extent by coefficients outside the submatrix.

Since the eigenvalues in polysection are determined from submatrices whose
order increases, it is possible for the eigenvalues to converge rapidly and es-

sentially remain unchanged thereafter, which results in deflation. The limiting

case is the diagonal matrix in which the eigenvalues are determined by a 1 -by-1
matrix and remain independent of any other coefficients. This may be the main

reason for deflation, although multiple eigenvalues also seem to contribute to
deflation. These observations remain to be confirmed with theory.

The results in Table 2 show that near multiple zeros do not present any

difficulties for the parallel methods. Indeed, the amount of computation may

be reduced. Recall that polysection produces exactly N intervals that contain

one and only one zero and therefore, in the presence of near multiple zeros, the

interval length can be near or identically zero. Therefore, a zero can be obtained

directly and with the proper multiplicity without using any zerofinding methods.

For intervals with near zero length the usual concern about slow convergence of

Newton-like methods for multiple zeros is not warranted because first, the zeros

are distinct to machine precision and second, since the intervals coalesce, any

point on the interval is close to the multiple zero and therefore a good initial

approximation to the zero.

8. Summary and conclusions

The polysection algorithm was presented for computing the eigenvalues of a

symmetric tridiagonal matrix in 0(log2 N) time using N2 processors, or O(N)
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time using N processors. Attributes of the method that contribute to reliability

and performance are (i) a separation theorem that ensures that different pro-

cessors find different eigenvalues, (ii) implementations that eliminate the usual

problems associated with finite-precision arithmetic, (iii) reliable treatment of

multiple and near multiple zeros, and (iv) high accuracy. Two implementa-

tions of the algorithm were presented. The polynomial implementation is more

accurate than QR, and the rational function implementation has comparable

accuracy with deflation. The rational function implementation is self-scaling

and takes full advantage of deflation, both from the standpoint of having to

compute fewer zeros of rational functions with lower degree.

The performance of polysection on a parallel computer is a complex issue

that depends on many factors including:

(a) Many methods could be used to determine the zeros within each in-

terval, including Newton's method, bisection, and the secant method together

with variants and combinations. Zerofinding is itself a significant area of com-

putational mathematics. Dongarra and Sorensen [6] use a variant of Newton's

method in which a local quadratic rational approximation to the function is

computed. The zero-in method [ 12] combines bisection and the secant method.

Whatever method is chosen, it should probably be combined with bisection to

ensure that all zeros are found.

(b) Deflation plays a significant role in reducing computing time on either a

single or multiprocessor. The effects are two-fold: first, the number of computed

zeros is reduced and second, the order of the rational functions is decreased.

With deflation, the computing time on a single processor for the results in Table

2, using the rational function implementation, was proportional to N rather

than N2. However, deflation does not occur for the matrix that corresponds to

Table 3, which supports the observation that a matrix with random coefficients

does not provide a stringent test because it probably does not correspond to
either the worst or the best case.

(c) The algorithm requires global communication and will therefore per-

form better on parallel computers that provide efficient global parallel pathways
such as those provided by the hypercube and related interconnection topologies.

(d) The algorithm requires the implementation of the shuffle and merge

communication tasks. To maintain an overall complexity of 0(log2 N), these

tasks must be implemented with parallel communication algorithms on suitable

multiprocessor architectures. Although communication does not change the

overall complexity, it is likely to make a significant contribution to the overall
computing time.

Polysection was compared to parallel bisection, which was found to have

comparable accuracy and lower asymptotic operation count. However, as men-

tioned in the introduction, the reliability and the ability to speed zerofinding

through the use of high-order methods and deflation may make polysection the

algorithm of choice for certain application.
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