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FOURIER ANALYSIS OF MULTIGRID METHODS
FOR GENERAL SYSTEMS OF PDES

PER LÖTSTEDT AND BERTIL GUSTAFSSON

Abstract. Most iteration methods for solving boundary value problems can

be viewed as approximations of a time-dependent differential equation. In this

paper we show that the multigrid method has the effect of increasing the time-

step for the smooth part of the solution leading back to an increase of the

convergence rate. For the nonsmooth part the convergence is an effect of damp-

ing. Fourier analysis is used to find the relation between the convergence rate

for multigrid methods and singlegrid methods. The analysis is performed for

general partial differential equations and an arbitrary number of grids. The dif-

ference in the behavior of the iterations between first- and second-order equa-

tions is discussed. The theoretical results are confirmed in simple numerical

experiments.

1. Introduction

The convergence analysis of multigrid methods for solving numerical approx-

imations to partial differential equations is usually based on the assumption that

the problem is solved exactly on the coarsest grid. In this way high convergence

rates are often predicted, at least for elliptic model problems. The situation is

different for large-scale real-life problems, where the geometry and the structure

of the grid is such that a grid coarse enough to permit exact solutions is never

reached. Instead, the smoothing operator (for example Jacobi, Gauss-Seidel,

conjugate gradient, Runge-Kutta iteration) applied on the finer grids is also

used on the coarsest grid, and the number of grids is usually low, typically two,
three or four. The convergence rates observed for this kind of computations are

often lower than the ones predicted by too simplified model problems.

The traditional way of performing convergence analysis is to estimate the

magnitude of the eigenvalues of the iteration matrix M. For equations of

simple structure, boundary conditions can sometimes be included, since the

set of eigenvectors can be derived, which in turn permits the calculation of

eigenvalues. However, the analysis is in most cases based on Fourier modes (see,

for example, [1], [16], [18]), which means that the solutions are assumed to be

periodic in space or that the domain is unbounded. If Ç is the wave number, h

is the fine-grid stepsize, the differential equation has no lower-order terms, and

M(hc¡) is the symbol of M, there is always one eigenvalue X(ht¡) of M(hÇ)

with X(0) = X. However, under the assumption that an exact solution can be
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obtained on the coarsest grid, it is often possible to show that the magnitude

of the eigenvalues are uniformly bounded by 1 - 6 for ht, > 0, where ô > 0

is independent of h¿¡. If one assumes that the constant mode corresponding

£ = 0 is not present, the number 1 - ô is then given as the convergence factor.

If the fine-grid smoother is used also on the coarse grids, the eigenvalues of

the modified symbol M are continuous functions of h£,. This means that the

convergence rate is arbitrarily low for small values of h¿¡. The interpretation is

that the iteration procedure is closely connected to a time-dependent differential

equation. This was illustrated in [5] for a simple model problem. It was shown

that for low wave numbers the two-grid procedure used plays the role of scaling

up the time-variable, compared to what it would have been for the single-grid

method. For first-order equations this means that the long waves move faster,

but there is very little damping. On a finite domain fast convergence can still

be obtained because the long waves move quickly out of the domain. The

important fact is that both the wave propagation properties and the damping

properties must be taken into account when constructing multigrid methods for

first-order systems.
In this paper we first prove that under very natural conditions multigrid meth-

ods are consistent with a time-dependent differential equation where the time

variable is scaled up compared to the corresponding singlegrid method. This
was conjectured by Jesperson [11], see also [10]. However, the properties of the
time-dependent differential equation obtained in this way can be used only for

the smooth part of the solution. The remaining part of the discrete solution is

completely independent of the differential equation. In our analysis we take into

account the interaction between the two parts. We use Fourier analysis to derive
precise results concerning the behavior of the low and the high wave number

parts of the solution. The analysis is carried out for discretizations of general

constant-coefficient differential equations of arbitrary order for a F-cycle on an
arbitrary number of grids in two space dimensions.

Based on the results of this paper, grid-independent convergence is proved

for systems of first-order PDEs in [14]. The usefulness of Fourier analysis in

predicting convergence rates for such problems has been demonstrated recently
in [3]. An early and short version of this paper is [6].

Our approach of introducing a time-variable is only for the analysis, and

it has been used for other iteration methods, see e.g. [4]. We emphasize that

our aim is not to solve time-dependent problems. Attempts have been made

to use the multigrid technique to speed up the calculation also for that kind of
problem, see e.g. [11]. However, in that case the solution must be accurate also

on the coarse grids. Since the fine structure in the solution can be represented

only on the fine grids, the true time-dependent behavior can never be obtained

on the coarser ones where larger time-steps are used. Therefore, the multigrid

technique is useful only if the finest grid is unnecessarily fine for some reason.

2. Consistency with a time-dependent system

In this section we shall prove that a full multigrid iteration is consistent with a

time-dependent differential equation where the time-variable is scaled compared

to the equation which corresponds to a singlegrid iteration. We begin by giving

the notation.
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We shall use L + X grids {G/}f=0, where GL is the finest one. For conve-

nience it is assumed that the stepsize h¡ on grid G¡ is equal in all directions.
Qi is an ordinary finite difference or finite volume approximation of the linear
differential operator

'-SX^fér)"    "^(2.1) V        ' \öxi ) \dxd<

Av € R1 x R*, v = (vx,...,vd), x = (xx,..., xd)T,

on the grid G¡, I = 0, X, ... , L. The matrices Av are assumed to be suffi-
ciently smooth. We seek the solution to

(2.2) QLu = f,

where u and / are vector functions with s components. The restriction op-

erator from G¡ to C/_i is r¡, and the prolongation operator from C/_i to G¡

is pi, I = X, 2,..., L. On each grid G¡ there is an iterative method

Ri(u,f) -*u,

which is applied p times before and q times after the coarse-grid corrections.

On the coarsest grid we use p + q iterations. The complete multigrid F-cycle
is defined by (see [7, §4.1])

procedure MG(l,u,f)
if I = 0 then for j := X step X until p + q do u:= Rq(u , f)
else
begin

for j := X step X until p do u := R¡(u, f) ;
d:=r(Q¡u-f);
v:=0;
MG(l -X,v,d);
u:=u- pv;

for j := X step X until q do u := Rt(u, f) ;
end;

u := u" ;

MG(L,u,f);
un+x :=u;

We write the iteration operator as

(2.3) R,(u,f) = Slu + T,f,

where consistency requires

(2.4) TiQ, = I-S,.

When analyzing the error and its convergence to zero, it is sufficient to consider

the case f = 0. Let n be the iteration index. Then the multigrid F-cycle can

be written as, cf. [7, Lemma 7.1.4],

M-x=I,

(2.5) M, = SI (I - p,(I - Mt-x)QTlx riQi)Sf ,        l = 0,X,...,L,
un+x =MLun.
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(If the exact solution is computed on Co , then M0 = 0 in the recursion (2.5)

for / > 1.)

From now on we use the notation u® for a grid function defined on G¡.

Consider the time-dependent problems

(2.6) ^_ + ß/M(/) =/(/),        / = 0,1,...,L,

and introduce the time steps At¡, I = 0, 1, ... , L. We also use the notation

At = AtL,        h = hL,        a/ = ^j,     / = 0,1,...,L.

The idea is to consider the iteration R¡(u^, ß1') as one time step At¡ in a

solution procedure of (2.6). If the whole multigrid cycle (2.5) is considered as

one time step At, we want to relate it to the time-dependent problem (2.6) with

l = L.
When calling a function u smooth on a certain grid G¡, we mean that the

divided differences Dv+Uj are bounded on that grid.

In all of the following assumptions, u denotes a smooth function, u e S,

and g denotes a bounded function, g e B .

Assumption 2.1 (assumptions on Q¡).

(i) Qi is consistent with P, 0 < / < L, i.e.,

Qiu = Pu + h¡g.

(ii) AtiQi is a bounded operator.

If Qi is an ordinary difference operator, then the condition 2.1 (ii) implies

(2.7) Ai, < const. A/max(,/|+l/2+-+'/á).

(For first-order systems: At¡ < const. h¡.) Also by (2.1), Pu is a smooth func-

tion.

Assumption 2.2 (assumptions on S¡).

(i) S,u = (I- At¡Qi)u + At,h¡g, 0 < / < L.
(ii) S¡ is a bounded operator.

Assumption 2.3.
(i) Qj\riQiStU = v + hiAtig,  X <l <L, where v e S.

(ii) Q~TxxriQi is a bounded operator.

Assumption 2.4 (assumptions on p¡, r¡).

(i) p¡r¡u = u + h¡g,  X <l <L.
(ii) p¡, r¡ are bounded operators.

Theorem 2.1. If Assumptions 2.1-2.4 hold, and if the multigrid iteration (2.5) is
considered as one time step At in a time-dependent procedure, then it is consistent

with

r) L

(2.8) Ji + lj, + g)YtalPu = 0.
1=0

For p = X, q = 0, a¡ = 2L~l, I = 0, X, ... , L, it is consistent with

jj + (2L+X - X)Pu = 0.
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Proof. The major part of the proof is found in Lemma A.2 of Appendix A in

the Supplement section, where an expression for M¿u is derived. In general,

Mlu cannot be expected to be smooth, since p¡ may be such that it returns
a nonsmooth function, even if it is applied to a smooth one. However, the

nonsmooth part is of O(hAt).
It follows from (2.5) and Lemma A.2 that with u" smooth,

(2.9) un+x = MLun = ll-(p + q)Atjra¡QL\u" + hAtg,

where g is bounded.
Consider now a smooth solution u(x, t) of the differential equation (2.8)

substituted into the iteration formula (2.5). The truncation error x is defined

by

Atx(x, t) = u(x, t + At) - MLu(x, t),

and consistency requires that x(x, t) -> 0 as Ai -> 0, h -► 0. We have by
(2.9) and Assumption 2.1(i),

u(x, t + At) - u(x, t)     ,        . v^    „    , ,   ,
x(x, t) = -i-2-^-L_!_l + ¡j, + q) £ a,QLu(x, t) - hg(x, t)

1=0

du L
= —(x, t) + 0(At) + (p + q)J2 a,Pu(x, t) + 0(h) - hg(x, t)

1=0

= 0(At + h),

which proves the theorem.   D

The theorem shows that on a fixed number of grids the iteration formula

converges to the modified time-dependent equation (2.8) as At -> 0. In practice

this means that for first-order systems we can expect the waves corresponding

to low wave numbers to move (Y!,f=oai) times faster by using the multigrid

procedure instead of a singlegrid solver. Alternatively, we can of course consider

the procedure as an increase in the time step for the original system (2.6),
and this interpretation applies to all types of operators P. Note that we have

assumed consistency also on the coarsest grid Go. The practical implication

of this is that Go must be fine enough such that the low-frequency part of the
solution can be represented. If there are only two points, say, in each direction

of Go , the theorem has no meaning. This does not mean that one should avoid

very coarse grids if the geometry of the computational domain permits it. On

the contrary, it may accelerate the convergence as a result of stronger damping.

Instead of (2.6) we could of course consider the more general systems

where D¡ are nonsingular operators. But this is just a preconditioning of the

original system, e.g., with "local time-stepping" or residual smoothing [10], [2].
Let the preconditioner D¡ be included in Q¡ everywhere, also when the residual

is determined. Then, with minor modifications of Assumption 2.1, a theorem



478 PER LÖTSTEDT AND BERTIL GUSTAFSSON

similar to Theorem 2.1 can be proved when  Q¡  and P are not necessarily

difference and differential operators.

3. Fourier analysis of the multigrid cycle

In the previous section we have analyzed the multigrid method in a general

case with smooth solutions by considering the multigrid procedure as an iter-
ation forward in time (or pseudotime). In this section we present a complete

convergence analysis, where we take also the nonsmooth part of the solution

into account. We restrict the analysis to the constant-coefficient case in order
to be able to use Fourier analysis as our main tool of investigation. The results

are less general here, but more details about the convergence are revealed. For

the sake of notational simplicity the analysis is carried out for two space di-

mensions, but the results generalize to any finite number d of dimensions. All

variables are associated with level / except when the level is explicitly written

as a subscript or superscript on the variable. The norm in what follows is the
Euclidean vector norm and the subordinate spectral matrix norm.

The main result of the analysis is that two effects are responsible for the

convergence: the amplification of the time scale for low wave number modes

and damping of intermediate and high wave number modes.

3.1.   Fourier representation.   In the analysis we need a Fourier representation

of the solution

/OO        /"OO/    e^ù^d^xd^,       x = (xx, x2)T, Ç = & , Ç2)T.
-OO J—OO

We are interested in the solution of the Cauchy problem at discrete points xßv

on level /,

(3.1 )     xßv = xo + hi    j , (p, v) eZxZ, Z = {the integer numbers}.

Then u^(xßV) can be written

(3.2)

Kpv)

-.At)/.
Kpv)U,u, = U{l)(xßu)

/OO        /»OO/     exp(/(íi(x¿ + ph) + 6(x02 + vh)))ù(Ç) dix dÇ2 -
-OO J — OO

Replace the integral over £x in (3.2) by

/oo i-(j+l)-2n/h ç2njh

m )dÇx = Y, I       nt¡ )#■ = £/   w+j- 2n/h) dz\,
-oo jeZJj-2n/h j€ZJ°

where

£,x=tl'x+j-2nlh,    jeZ,    i\e[0,2n/h].

The integral in (3.2) over ¿¡2 is rewritten in the same manner and ¿¡2 is substi-

tuted by
c¡2 = ¡t2 + k ■ 2n/h ,    keZ,    Ç2 e [0, 2n/h\.

After simplification and introduction of

Û'(É') -   Y. exP^ ' x°)"téí + J • lnlh ^2 + k' 2nlh) >
kjez
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the expression for ußV is
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«V = / exp(/(fia* + ̂ )h)u'(0 del',
(3.3) Jq

d? = dt[ d£, C, = [0, 27T/A,] x [0, 2jr/A,].

The integral (3.3) is split once more into a sum of integrals,

r m~i    rU+ l)-2n/h0 m-l    .2n/h0

/ /({', ) rfíí = £ / /(<?', ) rftf = E /        /({{' + ; • 2tt/Ao) <,

where

<fi = íí' + i • 27t/ho,    m = 2l,    h¡ = ho/m.

With a similar treatment of the (^-variable the integral in (3.3) takes the form

(3.4)
m — 1 m — \

uv» = /    S S expíi'KÍ'/iA + 7 • 2np/m))
'co  fe=o 7=0

• exp(/(£VA + k • 2«i///w))û'({î' + ; • 2^/A0, £' + k • 2n/h0) d£" .

Henceforth, we drop the primes on t¡ and w.
In the analysis of the multigrid iteration in one space dimension, two wave

numbers £ + j • 2n/ho and £ + (./ + w/2) • 2n/ho, j = 0, 1, ... , m/2 - X, on
a grid / correspond to one wave number Ç + j ' 2n/ho on the next coarser grid

/ - 1 [5]. In d space dimensions, 2d wave numbers on mesh / are reduced to

one wave number on the next coarser grid / - 1 by "aliasing" in the restriction

process. In two space dimensions it is natural to treat the wave numbers in

groups of four. In Figure 3.1 the wave numbers in Q are mapped on Q_i

when we restrict a solution on grid G¡ to grid G/_[. In the prolongation process

from level / - 1 to / the wave number domain Q_ i is expanded to Q .

6

2«r//«(

•2'/In

•I*/hU-i

Ci

C¡

(I        2ir/7i,_,   2ir//i,_, 2t//i,    £,

Figure 3.1. The definitions of the wave number domains Q,

C/_i, and C/_2
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The notation is simplified if at xßv and level / we let

e) = exp(/(^ + ; • 2n/h0)xxßl/),

e¡ = exp(/(£> + k • 2n/ho)xl„),

ûjk = û(Çx + j • 2n/h0 ,Ç2 + k- 2n/h0).

For wave numbers t\x such that 0 < <¡fi < £*, where £» is small and xß = ph ,

ex0 =txp(ic¡xph)

has a slow variation with p . This is also true for exm_x with t¡x = 2n/ho - Ç[ ,

o < í; < f.,

(3.5) exm_x = exp(i'({i + (m - X) ■ 2n/h0)ph) = exp(-iÇ[ph).

The function exm,2 with ¿¡x small is highly oscillatory, since

exm/2 = exp(i'(ii + mn/h0)ph) = exp(/i,/iA)(-l)/i.

The basis function ek has the same properties. Let

(3 6) Ejk = {e'j ' e'j+m/2) ® (^2 ' ^+m/2) ®Is € C' X °4í '

Ujk = (Ûjk , Ûjik+m/2 , Ûj+m/2,k ' Ûj+m/2,k+m/2)    e ^    •

The Kronecker product is denoted by ® and is defined in [13], and Is is the

identity matrix of dimension s . The number of unknown variables at each grid
point is s as defined in §2. The array Ejk in (3.6) consists of the four Fourier

basis functions that coalesce into the basis function exe\ on level / - 1. The

Fourier coefficients associated with the wave numbers in Ejk are stored in Ujk .

Finally, define

Epv = E(-V') — (-£bo> ••• > Ejk, ...),        ü = ((Uoo)   ,--.,(Ujk)   ,...)   .

The exact order of the components in E and ü will be determined later. Then

(3.4) can be rewritten

(3.7) ußv= [ E„„ûd{.
JCo

The difference operator Q is described in §2. Here we assume that Av in (2.1 )

is constant. The symbol of Q is denoted by Q, and

(3.8) Qjkitxh, &A, h) = ß((i, +; • 27t/h0)h ,(Z2 + k- 2n/h0)h ,h)eCxC.

Four of the matrices Qjk are collected in a block diagonal matrix Qjk such
that the blocks on the diagonal correspond to the wave numbers in Ejk . Then

create a matrix Q of dimension sm2,

Q = diag(Qjk),    Qjke C4sxC4s,

j = 0, X, ... , m/2- X,    k = 0,X, ... , m/2- X.

When Q operates on ußV in (3.7), we arrive at

(3.9) QußV= [ Q%ßVüdc\= I E^QüdCx.
JC0 JCo
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We now turn to the matrix structure of the symbol of the restriction operator

r. Assume that r can be written as

(3.10) r = rx®r2®Is.

The restriction in the x'-direction is denoted by r, in (3.10). As an example,
take 5 = X and

rt = \E¡-l + \ + \Ei,        i*=l,2,

where E¡ is the shift operator in the x'-direction.  Then the stencil of r in

(3.10) is

(
i    i    L)
4      2      4) 1

± i ±
16 8 16
I i i
8 4 8
111
16     8      16

The restriction of Ejk in (3.6) is

(3.11) rEJk = (rxe) , rxexj+m/2) ® (r2e2k , r2e2k+m/2) ® Is = e)e2kRjk ,

where

Rjk = {hj, glh ,j+m/2) ®{hk, g2f2,k+m/2) ®UC'x C4i,

and

hj = ?/((& + j ■ 2n/h0)h),        i =1,2,

is the symbol of the one-dimensional restriction r,, and g¡ is a constant such

that g¡e'j = e'j+m/2 ■ In the above example,

rij = cos2((Cl + j'27c/h0)h/2),

(3.12) ru+m/2 = sin2(fó- + j • 2n/h0)h/2),

gi = X   on a mesh xßv = (ph, vh).

Collect the submatrices Rjk along the diagonal of R e Cim2/4 x Csr"2. If the

wave numbers are ordered properly, then the conclusion from (3.11) is that

ryEijk > -fcj ,k+m/4 j £'j+m/4,k > -C,y'+m/4,k+m/4)

= (e¡ekRjk , ejek+mj4Rj¡k+m/4, ej+m/4ekRj+m/4<k,

ej+m/4ek+m/4P-j+m/4,k+m/4)

/Rjk   _ 0\

Rj,k+m/4

Rj+m/4,k

(3.13)

7i-i
'jk

\ 0 Rj+m/4,k+m/4 I
7 = 0, l,...,m/4-l, k = 0, X,...,m/4-X.

The last matrix in (3.13) is a 4s x 16j submatrix on the diagonal of R. The
restriction of ußV in (3.7) is now

(3.14) ru pv = f rEßl/üdcl= f Ei-xRùdc\.
Jcn Je»

The simple structure of R relies on the order of the wave numbers in Eßl/.

Suppose that the order is the suitable one on level / - 1  in El~vx.  Then it
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follows from (3.13) how the wave numbers shall be grouped on level / in Eßu .

At the coarsest level / = 0, e\e\ is the only component in E°„ and therefore

always in the first position. In this way the order of the indices of EL in EßV

is determined recursively beginning at / = 0. The result is that the first matrix

EL  in Eßv at every level / > 0 has index j = k = 0.

The structure of the symbol P of the prolongation operator p from level
/ - 1 to level / is determined by an analysis similar to the analysis of the

restriction. The matrices P and RT possess the same zero pattern outside the

diagonal blocks.

In the sequel we assume that the symbol matrix S of the smoothing operator

S has the same block diagonal structure as the ß-matrix. This is, e.g., the case

if we use Runge-Kutta time-stepping in the smoothing iterations as in [9]. A
reader familiar with numerical linear algebra would call this smoothing scheme

Richardson iteration [19].

The definitions and discussion concerning the two-dimensional problem in

this subsection are easily reduced to one space dimension or extended to the

three-dimensional case.

3.2. Analysis of the iteration matrix. In this subsection the properties of the

Fourier transform M of the multigrid iteration matrix M in (2.5) are derived.

The results hold for differential equations of arbitrary order. It follows from

(3.9) and (3.14) that

rQußv= [ E'-xRQüd^.

The successive application of operators to ußV corresponds to multiplication of

the symbol matrices inside the integral. Hence, for the multigrid operator M

performing one F-cycle,

(3.15) MußV= [ EßvMüdt\,

where

(3.16) M = SHI - P(I - M,_x)(Qi-i)-]RQ)Sp ,

cf. (2.5). The transform matrices R,Q,P, and S are defined and discussed

in §3.1.
Let the superscript i on «' denote the number of the iteration as in (2.5).

By (3.15) we find that

(3.17) ü" = Mnü°.

The convergence of the iteration depends critically on the behavior of M" . We

analyze this matrix in the theorem of this subsection.
First we need some additional notation and state a few assumptions. The

symbol of the difference operator Qjk is defined in (3.8). The restriction and

prolongation symbols are functions of
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Di„ Ü

C,

(3.18)

0 2w/h,      Í,

Figure 3.2. The definition of C¡ = DQ0 UD'0l UD[0 Uö|, as a

subset of C/

We are interested in the properties of certain submatrices of ¥. Of special

interest are the wave numbers of modes with slow variation and the corre-

sponding submatrix of M. On each grid these wave numbers are contained in

C* defined as follows:

D0 = [0,^],D[=[2n/h¡-^,2n/hl],

Doo = D0xD0,        Dl0l =D0xD[,

D[0 = D[xD0,        Dln=D[xD\,

q=DmUDlmöD[0\JDln.

In order to have good resolution on the coarsest grid, we take i*ho/2n -c 1. In
Figure 3.2 the definitions in (3.18) are illustrated.

If c\x G D[ , then with t\x = 2n/hi - ¿¡[ , we obtain

exp(i(2n/hi-c;[)phi) = txp(-i¿,[ph¡)

as in (3.5). Hence, for a wave number i in CJ the spatial variation is slow.

Since £, < n/ho, there is no overlap on the coarsest mesh

Gq c Co.

Moreover, if t]\ € D[ , then |i e D°, where

ii=& + (m-l).2jr/Ao.

With

ii = 2n/h, -i[= 2n/h0 - Z[ + (m - X) ■ 2n/h0,        {{ e D0,

it follows for a difference operator, e.g., Q with its symbol Q defined in (3.8),
that

(3.19)
Qm-i,k((2n/ho-i'x)h,c;2h,h) = Q(ixh,(i2 + k-27c/ho)h,h)

= Q(-Í'xh,(Í2 + k-27i/ho)h,h) = Q0k(-Í'xh,Í2h,h).
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The restriction and prolongation symbols have the same property. For com-
pleteness we formulate all the assumptions we need in the Fourier analysis,

even if some of them follow from the assumptions in §2. Note that

(ii + (m/2) • 2n/h0)hi = nü + 7i,        i =1,2.

Assumption 3.1.

ño = fio(nu) = 1 + 0(\\n¡\\)   for small \\nt\\,

fi,m/2 = ho(riii + n) = 0(\\ni\\),        i =1,2,

Pij has the same properties,      0 < I < L.

This assumption concerns the behavior of the restriction and prolongation

operators at low wave numbers with \\ni\\ small (cf. Definition 2.1) and at

oscillatory wave numbers rjn + n with \\nn\\ small. This assumption is very

natural and is satisfied in (3.12). Its counterpart for the physical variables is

Assumption 2.4(i). The requirements on r and p with respect to the order of

Q are derived by Fourier analysis in [8]. The low- and high-frequency order in

the terminology of [8, equations (16), (17)] is at least 1 in the assumption.

Assumption 3.2.

(ß/-i)öo(ö/)oo = / + 0(||^_,||),        1 < / < L.

Suppose that the numerical approximation of Q is at least first-order accurate

and that

(Q,)oo = Q(I + 0(\\n,\\)),

where Q is the symbol of Q, see (3.8). With such a Qoo the assumption is

fulfilled. The assumption corresponds to [8, equation (31)].

Assumption 3.3. S¡ is a block diagonal matrix as specified in §3.1 and bounded

uniformly when i € Cq . The upper left block is

(Sl)oo = I-to,H, + 0(Atl(At, + \\ril\\)),

where H¡ is the leading term in i in the smoothing operator for small i , and

At i is a small parameter of O(hf), v > 1, 0 < / < L.
The assumption is related to Assumption 2.2(i). In case we choose Runge-

Kutta time-stepping in the smoothing iterations, then

QUihl,hl) = Hm + 0(\\m\\),

i.e., H¡ is the symbol Q. It is remarked in [14] that Chebyshev iteration [15]

has the same property. In numerical experiments in [14], GMRES [17] also
appears to have a similar property but with At¡ dependent on the iteration

number n.
The time step At¡ can be regarded as a smoothly varying scaling parameter

of the equations. With a Runge-Kutta scheme, the remainder term in (5/)oo is

Ai/ times the sum of the truncation error due to the discretization in space of

0(||?7/||) at least and ßAtiHt(Hi + 0(||>7/||)), where ß is a constant depending

on the scheme.
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Assumption 3.4. Define

fj+am/2,k+ßm/2(Tll) = h ,j+am/2h,k+ßm/2gx S2 Qjkaß »

Qjkaß — (Ql-l)Jk (Ql)j+am/2,k+ßm/2,

j,k = 0,X,2,...,m/2-X,   X<l<L, a,ß = 0,X,

where g¡, i = X, 2, are defined in (3.11). For all I, j, k, a, and ß ,

Wfj+am/2,k+ßm/2\\

is bounded for n¡ such that \\n¡\\ < Ô .
This rather technical assumption is a sufficient condition to obtain bounded

elements in M. Note that Qjkaß may be unbounded, but /' is not. This is the

case in the simple one-dimensional example in [5, §5.3]. When comparing with

the assumptions in §2, we note that the bound in Assumption 2.3(h) includes

also oscillatory modes. The main result in [8] provides necessary conditions

for the assumption to hold in a two-grid iteration. It follows already from

Assumptions 3.1 and 3.2 that \\f0l0\\ is of 0(1).

Assumption 3.5. The wave numbers are ordered such that the first submatrix in

Eßv for each / is

ec\ells, £eA)o,

elei-ih, £eöoi,

em-le0^s > £ e ^10'

em-lem-l^s > i G Dn ,

where the D's are defined in (3.18) and ¿;, is sufficiently small.

The ordering of the wave numbers is chosen as above so that the mode of

slowest variation is located in the first position of Eßv. How to do this for

i G Doo is indicated in §3.1, but the desired ordering can also be obtained for

the other corners in Co by a minor redefinition of Ejk in (3.6).

Partition M in (3.16) for i g D0o, ||»?/|| sufficiently small and X < I < L as
follows:

(3.20) m = (^00 ^0IV     Moo g e x e, Mxx g e<m2-" x ec"2-".
V Mxo    Mxx )

Assumption 3.6. Aio < à , ||//o]| < à , for some ô > 0, when i e C0* defined in

(3.18).
The assumption restricts the size of Ai0 and r¡o = h0i on the coarsest grid.

Assumption 3.7. H¡ has simple eigenvalues for ||rç0|| < S, and H¡ is indepen-

dent of /, H, = H(i).
The first part of the assumption is trivially true for scalar equations. If the

same type of smoothing iteration is chosen at each level, then H¡ remains the

same for each /.

Assumption 3.8. Mxx has simple eigenvalues pk(Mxx), k = 1,2,...,

s(m2 - 1), under Assumption 3.6 and if ô < So, then there is an eo , £o > 0,

such that

\Pk\ < Ö < 1 -e0.
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Two auxiliary lemmas, see Appendix B, are needed in the proof of the the-

orem in this section. The proofs of the lemmas are simplified considerably if
Assumptions 3.7 and 3.8 are satisfied. With the help of the theory in [12] and

more detailed properties of S, less restrictive conditions can be derived.

We are now ready to state the theorem giving the properties of M" . The

parameters a7 are defined in §2. The eigenvector matrices of H and A/n are

denoted by To and V0, respectively.

Theorem 3.1. Let Assumptions 3.1-3.8 be satisfied. If S is sufficiently small,

then the transformed multigrid iteration matrix for a V-cycle at level I after n

iterations for i £ Cq is

^n^((I-otH)» + 0(Ato + \\m\\)    _    O(Ato) \

V 0(Aío!l>/o||) M» + 0(Ato\\rio\\)J '

where
i i

St = (p + q)J2 àtj = (p + q)At Y, <*j ■
j=0 j=0

Alternatively, the upper left corner of Mn can be written

r0diag({^}Li) V + 0(Ato + \\m\\),

where

y» = (1 - StXk(H))n = \y/k\nexp(-inôtlmXk(H)) + O(At0).

In the lower right corner of M" we have

llalli < Foil -IIVIIö"'      o<i.
The proof of the theorem is found in Appendix B. In Theorem 3.1 we have

investigated the behavior of M(i) when i g C0*. For the remaining part of

the wave number domain Co we merely make

Assumption 3.9.

\\M(i)\\ < e < X,       ieC0\Q, 0<1<L.

The consequences of the assumptions and the analysis in this section will be

discussed in the next section.

4. Examples and discussion

We discuss the results of the previous section and present two simple numer-

ical illustrations in this section.
Several conclusions can be drawn from Theorem 3.1. Partition the Fourier

coefficients ü in the same manner as M in (3.20) for i G Doo,

(4.1) ü = (ülo,üJ)T.

The low wave number part is

"oo = û(i\,i2) eCs,
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and the remaining wave number components are collected in üx. Suppose that

the conditions in the theorem are satisfied. Then by (3.17) and the theorem,
after the «th iteration on the finest grid L,

(4.2) û"00 = (/- ôtLH)nûQoo + O(At0 + \\tio\\),

(4.3) ü1 = (ML)^ü0l+0(Ato\\no\\).

The intermediate and high wave numbers in w° are damped by a factor 6 in

each iteration of the multigrid procedure.

The low wave number part in (4.2) behaves as if we had applied the

smoothing operator S to the low wave numbers only, but with "time-step"

(p + q)^tLYiIj=oOtj instead of AtL (see Assumption 3.3 and Theorem 2.1).

At the other end of the spectrum, i G Z)0,, U Z)°0 U D^ , the wave numbers with

slow spatial variation behave as wg0 in (4.2), whereas the remaining Fourier

components are damped as in (4.3). If Assumption 3.9 is fulfilled, then the

description of the evolution of the Fourier components for all wave numbers is
complete in Co, and therefore also in CL .

We summarize in a theorem the preceding discussion with a comparison
between the smoothing iteration and the multigrid iteration.

The Fourier coefficients associated with slowly varying modes, i G C£ , after
n iterations on grid L with only the smoothing operator S are denoted by

(4.4) ûns(i) = ÛL(nAtL,i),       ieC[.

The corresponding coefficients for the multigrid iterations is u^G(i).

Theorem 4.1. Let the sufficient conditions in Theorem 3.1 and Assumption 3.9

be fulfilled. Assume that the Fourier symbol S of the smoothing operator satisfies

\\S(i)\\ < 0 < X,       ieCL\Ci,

and that \\û°(i)\\ is bounded for ieCL. Then for £ G Q,

û"MG(i) = ÛL(nôtL,i) + 0(Ato + \\no\\),

where Ûl and no are defined in (4.4) and Theorem 3.1, respectively. For i e

Cl\C*l,

\\û"s(i)\\<d"\\û0(i)\\,

\\ûnMG(i)\\<cL(i)e" + o(Atx0+l/v),

where cl depends on «°, and v is defined in Assumption 3.3.

Proof. Consider the oscillatory modes, and suppose that i G Cj\C*L, that there

is a i' in Cq and

(i,K)eImm = ImxIm,       Im = {0, 1,..., m- 1},

(-) i = i' + 2n/ho(i, k)t.

Then by Theorem 3.1, when i' G Aw >

ii*mg(£)ii2 = ik*(oii2 <    E    K*(í0ii2
U,k)€Imm\(0,0)

= II«,(OH2 < c262n\\tii(Oil2 + 0(Aio||>fd||)•
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The same bound is valid in D0,, U Z)°0 U Z)0,. Since ||û°(£)|| is bounded for
i e Cl , there is a cl(Í) such that

(4.6) l|oJio(í)ll<^(í)0" + O(Aíolkoll).
In C£ there is a c such that

\\no\\<ho\\iA\<cAt\lv.

When i' in (4.5) fulfills i' G C0\Q , then by Assumption 3.9,

H"mg(oii2 = ii^oou2 < E k*(oi2 < 02iö°(Oii2-
U.k)elmm

With only smoothing iterations, we have

||ôS(Î)ll = ll^(^)û°(i)||<0',||û0(Î)l|.
The results in the theorem for i e Cl\C[ are proved.

If i e Cl, then i' e Q , and it follows from Assumption 3.3 that

oft« = (Sz.)o>°(0 = (/ - &LH)nû°(i) + 0(AtL + \\nL\\) = UL(nAtL, i).

By Theorem 3.1 we obtain

"mg(0 = V- ¿tLH)"û°(i) + 0(Ato + \\r,o\\)

= ÛL(nôtL,i) + 0(At0 + \\rio\\).   □

If we choose Runge-Kutta time-stepping, then

(4.7) H = Qoo,

and the slow Fourier modes are integrated at least first-order accurately in time,

cf. Theorem 2.1, but the time step taken per multigrid iteration is so much larger

than it is with only Runge-Kutta iteration. An interpretation of the theorem
in this case is that time (or pseudotime) proceeds faster with the multigrid

method. This effect is always achieved with multigrid iterations satisfying the

assumptions.
Let us consider two simple examples. The smoothing operator is Runge-

Kutta time-stepping (or repeated Richardson iteration with a fixed number of

steps) and the problem to be solved is scalar, s = 1 . In the first example, the

differential operator P is of first order,

du       du
PU  =   ZT-T +

dxl    dx2'

It is approximated by a first-order accurate difference expression such that

ßoo = ^i+ 6) + 0(hL)

for small i¡, j = 1, 2. According to Theorem 3.1, (4.2) and (4.7), we obtain

on the finest grid L

(4.8) ¿¿go = exp(-i(i, + i2)nôtL)û0oo + 0(hL).

For numerical stability, Aí¿ is of 0(hL). One part of un    corresponding to

low wave numbers is

i4 m    "óVo'^o = exp(i(ix(xxfi„ - nötL)+i2(x2ßl/ - nâtL)))û00o + 0(hL),

ieDoo.
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The result is similar in the other three corners of C*L.  The conclusion from

(4.9) is that the smooth part of unßV is propagated a distance noÍL in both

spatial directions in n multigrid iterations. If only smoothing iterations are

employed at level L, then the corresponding distance is nAr¿ , cf. Theorem 4.1.

The improvement with multigrid iteration with the same number of smoothing

iterations on level / is

/

(4.10) (nötL(p + q))/nAtL = Y,Uj,
i=o

in agreement with Theorem 2.1. In [5] this factor is interpreted as an increase

of the group speed of a plane wave.

In the second example the differential operator is of second order,

\(dxi)2 + (dx2)2) '

Choose the numerical approximation to be at least first-order accurate,

Qoo=ex+&+o(hL)

for small ij, j = X, 2. Analogously to (4.8), we derive

¿4 = exp(-(tf + i22)nôtL)û°oo + 0(hL).

Stability requirements force At¿ to be of 0(h\). Here, we have only damping

of the Fourier coefficient. Suppose that

Ai, = ßhf,
where ß is a constant. Then

or, = Atj/AtL = (hj/hL)2 = 22<z--»

and
L L .

3tL = EQA¿ = A/oEQ>° = Aio • 3(1 - 0.25i+1).
;=0 ;=0

Therefore, the damping of the mode is governed by

exp(-(i2 + i2)4nßh2/3),

essentially achieved by the coarse grid. The improvement of multigrid iterations

over only Runge-Kutta time-stepping is also as in the first case given by Theorem

4.1, but the convergence is becoming progressively slower as ||^|| -* 0.

As an illustration of the theoretical results in this paper, the eigenvalues of

M in Theorem 3.1 are plotted for a one-dimensional example in Figure 4.1

(next page) and three two-dimensional examples in Figure 4.2 (see p. 491). In

Figure 4.1 the model equation to be solved is

(4.11) ux = f.

The equation is discretized by a cell-centered finite volume scheme with ad-

ditional 4th-order artificial viscosity, see [10]. The smoothing iteration is a

five-stage Runge-Kutta method and At¡ = h¡. The number of presmoothing

steps is 1, and there are no postsmoothing iterations.
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'"^becrxoagœaxgy*^

9« „o

^"°

'/ 0.0

^

Figure 4.1. The eigenvalues Xj(n) of the Fourier transform

of the multigrid matrix M are displayed for the model equa-
tion ux = f and a five-stage Runge-Kutta scheme on 1, 2,

and 3 grids. On the left, \Xj\ is plotted, and on the right,
ImlogAy/CAr/ shows the speed-up factor for \X¡\ close to 1

The symbol of the restriction operator is

f = cos(ih¡/2),

and p = r. _____

In the left column, \Xj(M)\, j = X, 2, ... , m = 2L ,is plotted as a function

of »L = Chi,, where i s Co- Thus,

nLe[0, 2n/m].

In the right column of Figure 4.1 the factor

ImXogXj(M)/t;AtL,

(i, Í€[0,jt/Ao],
C =

\2n/ho-i,    ie(n/ho,2n/ho],
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Kie   J.2I). a = 1.* = 0 U      Fig. 4.2d. o = l,fr = 0. Aliiw>tio|>ic aililinrtl vuroHity

Figure 4.2. Isolines of the maximum of \Xj(n)\ for each n

of the Fourier transform of the multigrid matrix M are dis-

played for the two-dimensional equation (4.12) and a three-

stage Runge-Kutta scheme on 2 grids. The maximum is 1 in
the corners, and less than 1 in the interior of the ^-domain

is displayed as a function of r\L . It follows from Theorem 3.1 that this is the

speed-up factor y = Y!j=oaj °f tne slowly varying Fourier mode with X\ « 1

for small i and Ç close to 2n/h0. The results are in accordance with the

theory in Theorem 3.1. There is one eigenvalue Xx in each of the three cases,

L = 0, 1, 2, for which \Xx \ « 1 when

ie[0,i,]U[2n/ho-i*,2n/ho],

with, e.g., i„ < X/2ho, and when i is in the neighborhood of 0 or 27r/A0 , we
have

y = 2L+X - X.
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For the other eigenvalues,

\Xj(M)\<e<X,        j = 2,...,m.

The two-dimensional model example is

a .^ du     , du      r
(4.12) a_ + ¿_=/.

The equation is discretized by the same method as (4.11).   The smoothing

procedure is a five-stage Runge-Kutta scheme, the multigrid strategy is the same
as above and there are two grids, L = X.

Isolines of

. max.    \Xj(M(i))\
7=1,2,3,4

are plotted in Figure 4.2. The distance between two lines is 0.02. In Figure

4.2(a) and Figure 4.2(b), the coefficients in (4.12) are a = b = X and a = X,
b = 0.5, respectively. When i g C£ (the squares in the corners of the wave

number domain), the maximum of \Xj\ is close to 1 and exactly 1 at the corners.
In the interior of C¿ we have

|A;|<0<1,        7 = 1,2.

The coefficients in (4.12) and Figure 4.2(c) are a = X and b = 0. We still
have good damping properties in the interior, and max|A,| is close to 1 in the

corners. There are no "grid alignment" effects with no damping at all in large

parts of the wave number domain. This is sometimes a problem with upwind

discretizations of (4.12) [16]. The reason why the centered difference scheme is

successful is that the artificial viscosity is isotropic and independent of a and

b in (4.12). Similar results are obtained with a three-stage Runge-Kutta scheme

in [6].
On the other hand, if we scale the artificial viscosity term in the xx-direction

by a and in the x2-direction by b, then we have an obvious "grid alignment"

problem as in Figure 4.2(d). The multigrid method does not reduce the ampli-

tude of the modes with, e.g., tjx small and r\2 ss n/2, simply because there is

no artificial viscosity in the x2-direction.
In [14] we use Parseval's relation for the Fourier representation in §3.1 and

Theorem 3.1 to derive the properties of un in the multigrid iterations.
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PER LÖTSTEDT AND BERTIL GUSTAFSSON

Appendix A

A lemma referred to in the proof of Theorem 2.1 and an auxiliary lemma are proved in this

appendix. The first lemma is concerned with the smoothing iterations. Here, u denotes a

smooth function, u e S , and g with indices denotes a bounded function, g e B .

LEMMA A. 1. Let the Assumptions 2.1 and 2.2 be fulfilled. Then for 0 < / < L ,

Sr, u = (I - rAt, Q,)u + h, At, gs, r > 1.

Proof. The proof is by induction. It follows from Assumptions 2.1 i and 2.2i that

S,u = (I-At, P)u + h,At,g. (A.l)

Our induction hypothesis is

S\u = (I - r At, Q,)u + h, At, gs, r > 1 (A.2)

Then by Assumption 2.1i, 2.2i, (A.l) and (A.2),

S;+1u = S,(I-rAt,P)u + h,At,S,gs'

= (I - At, PHI - r At, P)u + h, At,(g'+ S, gs).
(A3)

Since S, is bounded, the last term in (A.3) can be written h, At, g". The term At, P u is

bounded. By Assumption 2.1 i and (2.7),

S;+1u = (I - (r + DAt, Q,)u + h, At, gs .

Since (A.2) is valid for r = 1 , see (A.l), the induction argument is complete.D

The following lemma is the main result of this appendix.

LEMMA A.2. Let the Assumptions 2.1-2.4 be fulfilled. Then for 0 < / < L ,

i
M,u = (I - c, At, Q,)u + h, At, g,,    c, = (p + q) Z ock/a,, (A 4)

M, is a bounded operator. (A.5)

i 1993 American Mathematical Society

0025-5718/93 $ 1.00 + $.25 per page
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