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FOURIER ANALYSIS OF MULTIGRID METHODS
FOR GENERAL SYSTEMS OF PDES

PER LOTSTEDT AND BERTIL GUSTAFSSON

ABSTRACT. Most iteration methods for solving boundary value problems can
be viewed as approximations of a time-dependent differential equation. In this
paper we show that the multigrid method has the effect of increasing the time-
step for the smooth part of the solution leading back to an increase of the
convergence rate. For the nonsmooth part the convergence is an effect of damp-
ing. Fourier analysis is used to find the relation between the convergence rate
for multigrid methods and singlegrid methods. The analysis is performed for
general partial differential equations and an arbitrary number of grids. The dif-
ference in the behavior of the iterations between first- and second-order equa-
tions is discussed. The theoretical results are confirmed in simple numerical
experiments.

1. INTRODUCTION

The convergence analysis of multigrid methods for solving numerical approx-
imations to partial differential equations is usually based on the assumption that
the problem is solved exactly on the coarsest grid. In this way high convergence
rates are often predicted, at least for elliptic model problems. The situation is
different for large-scale real-life problems, where the geometry and the structure
of the grid is such that a grid coarse enough to permit exact solutions is never
reached. Instead, the smoothing operator (for example Jacobi, Gauss-Seidel,
conjugate gradient, Runge-Kutta iteration) applied on the finer grids is also
used on the coarsest grid, and the number of grids is usually low, typically two,
three or four. The convergence rates observed for this kind of computations are
often lower than the ones predicted by too simplified model problems.

The traditional way of performing convergence analysis is to estimate the
magnitude of the eigenvalues of the iteration matrix M . For equations of
simple structure, boundary conditions can sometimes be included, since the
set of eigenvectors can be derived, which in turn permits the calculation of
eigenvalues. However, the analysis is in most cases based on Fourier modes (see,
for example, [1], [16], [18]), which means that the solutions are assumed to be
periodic in space or that the domain is unbounded. If & is the wave number, A
i/s\ the fine-grid stepsize, the differential equation has no lower-order terms, and
M(h&) is the symbol of M, there is always one eigenvalue A(h&) of M(h¢&)
with 4(0) = 1. However, under the assumption that an exact solution can be
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obtained on the coarsest grid, it is often possible to show that the magnitude
of the eigenvalues are uniformly bounded by 1 —J for A¢ > 0, where 6 > 0
is independent of AZ. If one assumes that the constant mode corresponding
¢ =0 is not present, the number 1 —J is then given as the convergence factor.

If the fine-grid smoother is used also on the coarse grids, the eigenvalues of
the modified symbol M are continuous functions of 4£. This means that the
convergence rate is arbitrarily low for small values of 4¢. The interpretation is
that the iteration procedure is closely connected to a time-dependent differential
equation. This was illustrated in [5] for a simple model problem. It was shown
that for low wave numbers the two-grid procedure used plays the role of scaling
up the time-variable, compared to what it would have been for the single-grid
method. For first-order equations this means that the long waves move faster,
but there is very little damping. On a finite domain fast convergence can still
be obtained because the long waves move quickly out of the domain. The
important fact is that both the wave propagation properties and the damping
properties must be taken into account when constructing multigrid methods for
first-order systems.

In this paper we first prove that under very natural conditions multigrid meth-
ods are consistent with a time-dependent differential equation where the time
variable is scaled up compared to the corresponding singlegrid method. This
was conjectured by Jesperson [11], see also [10]. However, the properties of the
time-dependent differential equation obtained in this way can be used only for
the smooth part of the solution. The remaining part of the discrete solution is
completely independent of the differential equation. In our analysis we take into
account the interaction between the two parts. We use Fourier analysis to derive
precise results concerning the behavior of the low and the high wave number
parts of the solution. The analysis is carried out for discretizations of general
constant-coefficient differential equations of arbitrary order for a V'-cycle on an
arbitrary number of grids in two space dimensions.

Based on the results of this paper, grid-independent convergence is proved
for systems of first-order PDEs in [14]. The usefulness of Fourier analysis in
predicting convergence rates for such problems has been demonstrated recently
in [3]. An early and short version of this paper is [6].

Our approach of introducing a time-variable is only for the analysis, and
it has been used for other iteration methods, see e.g. [4]. We emphasize that
our aim is not to solve time-dependent problems. Attempts have been made
to use the multigrid technique to speed up the calculation also for that kind of
problem, see e.g. [11]. However, in that case the solution must be accurate also
on the coarse grids. Since the fine structure in the solution can be represented
only on the fine grids, the true time-dependent behavior can never be obtained
on the coarser ones where larger time-steps are used. Therefore, the multigrid
technique is useful only if the finest grid is unnecessarily fine for some reason.

2. CONSISTENCY WITH A TIME-DEPENDENT SYSTEM

In this section we shall prove that a full multigrid iteration is consistent with a
time-dependent differential equation where the time-variable is scaled compared
to the equation which corresponds to a singlegrid iteration. We begin by giving
the notation.
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We shall use L+ 1 grids {G}},, where G is the finest one. For conve-
nience it is assumed that the stepsize 4; on grid G, is equal in all directions.
Q, is an ordinary finite difference or finite volume approximation of the linear
differential operator

a 141 a Vq
oy =240 (g) - (5m)
A, R xR, v=(v,...,105), x=(x", ..., xH)T

b

onthegrid G;, / =0,1,..., L. The matrices A4, are assumed to be suffi-
ciently smooth. We seek the solution to

(2.2) Qru=f,

where u and f are vector functions with s components. The restriction op-
erator from G; to G;_, is r;, and the prolongation operator from G,_; to G,
is pj, [=1,2,..., L. Oneach grid G, there is an iterative method

Ri(u, f) - u,

which is applied p times before and g times after the coarse-grid corrections.
On the coarsest grid we use p + g iterations. The complete multigrid V-cycle
is defined by (see [7, §4.1])

procedure MG(l, u, f)
if =0 then for j:=1 step 1 until p+q do u:= Ry(u, f)
else

begin
for j:=1 step 1 until p do u:= R)(u, f);
d:=r(Qu-f);
v:=0;
MG(l-1,v,d);
U:=u-pv;
fJor j:=1 step 1 until q do u:= Ry(u, f);
end,
u:=u";
MG(L,u, f);
wtl =y,

We write the iteration operator as

(2.3) Ri(u, f)=Su+Tf,
where consistency requires
(2.4) 7,9, =1-5.

When analyzing the error and its convergence to zero, it is sufficient to consider
the case f = 0. Let n be the iteration index. Then the multigrid V-cycle can
be written as, cf. [7, Lemma 7.1.4],

M_ =1,
(2.5) M, =S/ - p(I - M;_)Q; ' rnQ)S?, [=0,1,...,L,

un+1 — MLu" .
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(If the exact solution is computed on Gy, then M = 0 in the recursion (2.5)
for />1.)

From now on we use the notation u() for a grid function defined on G;.
Consider the time-dependent problems

)
(2.6) ‘%+Q,u<’)=f“>, [=0,1,...,L,
and introduce the time steps At;, /=0, 1, ..., L. We also use the notation
At = Aty h=hg, al=AA—tt[, [=0,1,...,L.

The idea is to consider the iteration R;(u), f)) as one time step Af; in a
solution procedure of (2.6). If the whole multigrid cycle (2.5) is considered as
one time step Az, we want to relate it to the time-dependent problem (2.6) with
I=L.

When calling a function u smooth on a certain grid G;, we mean that the
divided differences D% u; are bounded on that grid.

In all of the following assumptions, # denotes a smooth function, u € S,
and g denotes a bounded function, g € B.

Assumption 2.1 (assumptions on Q).

(i) @y is consistent with P, 0</< L, i.e,

Qu=Pu+hg.

(i1) A¢;Qy is a bounded operator.

If Q, is an ordinary difference operator, then the condition 2.1(ii) implies
(2.7) At; < const. Bt
(For first-order systems: At; < const./;.) Also by (2.1), Pu is a smooth func-
tion.

Assumption 2.2 (assumptions on S;).
(i) Sju=U—-AyQnu+ Athg, 0<I<L.
(i1) S; is a bounded operator.
Assumption 2.3.
() @ \nQiSu=v+hAyg, 1<I<L,where veS.
(ii) Q7@ is a bounded operator.

Assumption 2.4 (assumptions on p;, r;).
(1) priu=u+mhg, 1<I<L.
(i1) p;, r; are bounded operators.
Theorem 2.1. If Assumptions 2.1-2.4 hold, and if the multigrid iteration (2.5) is

considered as one time step At in a time-dependent procedure, then it is consistent
with

L
ou

(2.8) E+(p+q)§a1Pu=0.

Forp=1,q=0, ay=2L"1,1=0,1,..., L, it is consistent with

ou L+1 _ -
6[+(2 1)Pu=0.
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Proof. The major part of the proof is found in Lemma A.2 of Appendix A in
the Supplement section, where an expression for My u is derived. In general,
Mypu cannot be expected to be smooth, since p; may be such that it returns
a nonsmooth function, even if it is applied to a smooth one. However, the
nonsmooth part is of O(hAt).

It follows from (2.5) and Lemma A.2 that with 4" smooth,

L
(2.9) ut = My = (1 ~(p+aary a,QL) u" + hAtg,
1=0

where g is bounded.

Consider now a smooth solution u(x, t) of the differential equation (2.8)
substituted into the iteration formula (2.5). The truncation error 7 is defined
by

Att(x,t)=u(x,t+At) - Mpu(x,t),

and consistency requires that 7(x, ) — 0 as At - 0, » — 0. We have by
(2.9) and Assumption 2.1(i),

u(x, t+At) —u(x, t)

L
At +(P+G)EGIQL14(X, t)—hg(x, 1)

1=0

(x,t) =

L
= ?,—l:(x, 1) + O(At) +(P+t1)1§=%a1Pu(x, 1)+ O(h) - hg(x, 1)

=O(At+ h),
which proves the theorem. 0O

The theorem shows that on a fixed number of grids the iteration formula
converges to the modified time-dependent equation (2.8) as At — 0. In practice
this means that for first-order systems we can expect the waves corresponding
to low wave numbers to move (E,L=0 a;) times faster by using the multigrid
procedure instead of a singlegrid solver. Alternatively, we can of course consider
the procedure as an increase in the time step for the original system (2.6),
and this interpretation applies to all types of operators P. Note that we have
assumed consistency also on the coarsest grid Go. The practical implication
of this is that G, must be fine enough such that the low-frequency part of the
solution can be represented. If there are only two points, say, in each direction
of Gy, the theorem has no meaning. This does not mean that one should avoid
very coarse grids if the geometry of the computational domain permits it. On
the contrary, it may accelerate the convergence as a result of stronger damping.

Instead of (2.6) we could of course consider the more general systems

au(l)
- F D,Qu" = D f",

where D, are nonsingular operators. But this is just a preconditioning of the
original system, e.g., with “local time-stepping” or residual smoothing [10], [2].
Let the preconditioner D, be included in Q; everywhere, also when the residual
is determined. Then, with minor modifications of Assumption 2.1, a theorem
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similar to Theorem 2.1 can be proved when @, and P are not necessarily
difference and differential operators.

3. FOURIER ANALYSIS OF THE MULTIGRID CYCLE

In the previous section we have analyzed the multigrid method in a general
case with smooth solutions by considering the multigrid procedure as an iter-
ation forward in time (or pseudotime). In this section we present a complete
convergence analysis, where we take also the nonsmooth part of the solution
into account. We restrict the analysis to the constant-coefficient case in order
to be able to use Fourier analysis as our main tool of investigation. The results
are less general here, but more details about the convergence are revealed. For
the sake of notational simplicity the analysis is carried out for two space di-
mensions, but the results generalize to any finite number d of dimensions. All
variables are associated with level / except when the level is explicitly written
as a subscript or superscript on the variable. The norm in what follows is the
Euclidean vector norm and the subordinate spectral matrix norm.

The main result of the analysis is that two effects are responsible for the
convergence: the amplification of the time scale for low wave number modes
and damping of intermediate and high wave number modes.

3.1. Fourier representation. In the analysis we need a Fourier representation
of the solution

u(x) = /_°° /_°° e ) déide,,  x=(x' 3N, =&, ).

We are interested in the solution of the Cauchy problem at discrete points x,,
on level /,

(3.1) Xxp=x0+ h(l:) , (u,v)€eZxZ, Z= {the integer numbers} .

Then u)(x,,) can be written
Uyy = u(l)(-x;w)

3.2 00 poo
7 =/_ / exp(i(&1 (x5 + ph) + & (X3 + vh) (&) d&  d&, .

Replace the integral over &, in (3.2) by

0 (j+1)-2n/h 21 /h
RG> /.;,,h 1eyda =3 [ 1+ 2mimdg;,

jezJ JEZ
where
§|=€;+j-27z/h, JEZ, & €0, 2n/h].

The integral in (3.2) over &, is rewritten in the same manner and &, is substi-
tuted by

&H=&+k-2n/h, keZ, &el0,2n/h].
After simplification and introduction of

(&)=Y exp(i&-xo)A& +j-2n/h, & +k-2n/h),

k,jez
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the expression for u,, is
o = [ expliteiu-+ @) de
1
d&' =d& dé, C;=1[0,2n/h] %[0, 2n/h].
The integral (3.3) is split once more into a sum of integrals,

m—1
I(& r_
G (él)dél jgo ['

where

(3.3)

J+1)2n/hy

m—1 27t/h0
TALEEDS / I + - 2m/ho) dEY
2m/hy =0 0

=& +j-2n/hg, m=2", h=hy/m.
With a similar treatment of the {)-variable the integral in (3.3) takes the form

(3.4)
m—1m-—1
U = | D exp(i(&fuh + j - 2mp/m))
Co k=0 j=0

-exp(i(&yvh +k - 2mnv/m))i' (& + j-2n/hy, & + k - 21/ ho) dE" .

Henceforth, we drop the primes on ¢ and #.

In the analysis of the multigrid iteration in one space dimension, two wave
numbers &+ j-2n/hy and &+ (j+m/2)-2n/hy, j=0,1,...,m/2—1,0n
a grid / correspond to one wave number & + j-27/hy on the next coarser grid
I—1 [5]. In d space dimensions, 2¢ wave numbers on mesh / are reduced to
one wave number on the next coarser grid / — 1 by “aliasing” in the restriction
process. In two space dimensions it is natural to treat the wave numbers in
groups of four. In Figure 3.1 the wave numbers in C; are mapped on C;_,
when we restrict a solution on grid G, to grid G,_; . In the prolongation process
from level / — 1 to / the wave number domain C;_; is expanded to C;.

&
27 /Iy
Ci
271'//],_4
Ci
2/ !
Cia
0
1] 'Jﬂ‘/,l’_z 27r//ll‘| 27r//l, f|

FIGURE 3.1. The definitions of the wave number domains C;,
Ci-1,and Cp_,
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The notation is simplified if at x,, and level / we let
e} =exp(i(y +j - 21/ ho)Xp,),
et = exp(i(& +k - 2m/ho)x},),
Wi = +j-2n/hy, &+ k- 2m/hg).
For wave numbers &; such that 0 < & <&, , where &, is small and x}, = uh,
eg = exp(i& uh)

has a slow variation with u. This is also true for e,‘n_l with & =2n/hy - &},
0<¢) <,

(3.5) ey = exp(i(& + (m — 1) - 21/ ho)uh) = exp(—i&puh).

The function e,

ehn = exp(i(& + mn/ho)uh) = exp(ié  uh)(~1)* .

The basis function e has the same properties. Let

, with &, small is highly oscillatory, since

1 1 2 2 4
(36 Ejk=(ej ej+m/2)®(ek,ek+m/2)®15ECSXCS,
: ) U _(*T ~T ~T ~T )T C4s
k= Wk Ui kemyas Yjomya ks Wiempa kvmy2)” €L

The Kronecker product is denoted by ® and is defined in [13], and I; is the
identity matrix of dimension s. The number of unknown variables at each grid
point is s as defined in §2. The array Ej; in (3.6) consists of the four Fourier
basis functions that coalesce into the basis function e} e? onlevel /- 1. The
Fourier coefficients associated with the wave numbers in Ej; are stored in Ujy .
Finally, define
Ey =E(Xw)=(Ew, .-, Ejx,...), = ((Uoo)", ..., (Up)T,..)T.

The exact order of the components in E and # will be determined later. Then
(3.4) can be rewritten

(3.7) Uy = | Epadé.

Co
The difference operator Q is described in §2. Here we assume that 4, in (2.1)
is constant. The symbol of Q is denoted by @, and

(3.8) éjk(flh, &h, h) = Q((& +j-2r/hoh, &+ k - 2m/ho)h, h) € C° x C°.

Four of the matrices ij are collected in a block diagonal matrix éjk such
that the blocks on the diagonal correspond to the wave numbers in Ej; . Then

create a matrix Q of dimension sm?,

0 = diag(Qjx), Qj € C* x C*¥,
i=0,1,...,m/2—1, k=0,1,...,m/2-1.

When Q operates on u,, in (3.7), we arrive at

(3.9) O = [ QEyude = C E,.,Qudé, .
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We now turn to the matrix structure of the symbol of the restriction operator
r. Assume that r can be written as
(3.10) r=r®nel;.

The restriction in the x‘-direction is denoted by r; in (3.10). As an example,
take s =1 and

r,-=%Ei“+%+%E,-, i=1,2,
where E; is the shift operator in the x‘-direction. Then the stencil of r in

(3.10) is
(o] )

The restriction of Ej; in (3.6) is
(3.11) rEji = (rie} , 1e} ) ® (ref, raep, ) ® Iy = el el Ry,

FNE

1
2

Bl—
FNEN TP NES
o=z
OO |+ 00| —
;]._oo|_;|_

where

Rjic = (F1j, 8171, jamp2) ® (Pok » 82F2 kims2) ® I € C* x C¥,
and
Fij = F((&i 4+ j - 2m/ho)h), i=1,2,
is the symbol of the one-dimensional restriction r;, and g; is a constant such
that gie} =ée! In the above example,

j+m/2*

Fij = cos (& + j - 2m/ho)h/2),

(3.12) Fi jomj2 = sin®((& + j - 2/ ho)h[2)
g =1 onameshx, = (uh,vh).

Collect the submatrices R jk along the diagonal of R € C™/4 x Cs™* | If the
wave numbers are ordered properly, then the conclusion from (3.11) is that

"(Ejk> Ej k+m/a> Ejimsa > Ejrm/a,kvmya)
= (ele?R;k, e}e,f+m/4ﬁj,k+m/4 €} om/a€R R jma i
e }+m/4elf+m/4§j+m/4,k+m/4)
(3.13) Ry 0

§j+m/4,k _
0 Rjimya, k+mya
j=0,1,...,m/a—1, k=0,1,..., m/d—1.

The last matrix in (3.13) is a 4s x 16s submatrix on the diagonal of R. The
restriction of u,, in (3.7) is now

(3.14) ru,,,=/ rE”,,ﬁdé=/ EL'Ride.
Co Co

The simple structure of R relies on the order of the wave numbers in E,, .
Suppose that the order is the suitable one on level / — 1 in Eﬁ,;‘ . Then it
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follows from (3.13) how the wave numbers shall be grouped on level / in E,, .
At the coarsest level / =0, eje? is the only component in EY, and therefore
always in the first position. In this way the order of the indices of EJ’.,( in E,,
is determined recursively beginning at / = 0. The result is that the first matrix
E;k in E,, ateverylevel />0 hasindex j=k=0.

The structure of the symbol P of the prolongation operator p from level
[ -1 to level [ is determined by an analysis similar to the analysis of the
restriction. The matrices P and R possess the same zero pattern outside the
diagonal blocks. B

In the sequel we assume that the symbol matrix S of the smoothing operator
S has the same block diagonal structure as the Q-matrix. This is, e.g., the case
if we use Runge-Kutta time-stepping in the smoothing iterations as in [9]. A
reader familiar with numerical linear algebra would call this smoothing scheme
Richardson iteration [19].

The definitions and discussion concerning the two-dimensional problem in
this subsection are easily reduced to one space dimension or extended to the
three-dimensional case.

3.2. Analysis of th/e\ iteration matrix. In this subsection the properties of the
Fourier transform M of the multigrid iteration matrix M in (2.5) are derived.
The results hold for differential equations of arbitrary order. It follows from
(3.9) and (3.14) that

rQu,, = / El'RQudE.
Co
The successive application of operators to u,, corresponds to multiplication of

the symbol matrices inside the integral. Hence, for the multigrid operator M
performing one V-cycle,

(3.15) Muy,, = | E,Madé,
G
where
(3.16) M = S%(I - P(I - M;_,)(Q-1)"'RO)S?,

cf. (2.5). The transform matrices R,Q,P,and S are defined and discussed
in §3.1.

Let the superscript i on &' denote the number of the iteration as in (2.5).
By (3.15) we find that

(3.17) "= M"i0.

The convergence of the iteration depends critically on the behavior of M". We
analyze this matrix in the theorem of this subsection.

First we need some additional notation and state a few assumptions. The
symbol of the difference operator Qj; is defined in (3.8). The restriction and
prolongation symbols are functions of

n= ()= (&)
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&
27!'//!/
Dy, Dy,
C
DUU I)Im
0
0 2r/hy &

FIGURE 3.2. The definition of C; = DooU D}, UD} UD}, asa
subset of C;

We are interested in the properties of certain submatrices of M . Of special
interest are the wave numbers of modes with slow variation and the corre-
sponding submatrix of M . On each grid these wave numbers are contained in
C} defined as follows:

Dy =[0,¢&], D = [2n/h - &, 2n/h)],
Do =Dy x Dy, Db =DoxDi,
Diy=D\xDy, D =DixDl,

Ct =Dy U D), uD{ uD!,.

In order to have good resolution on the coarsest grid, we take &.hp/2n < 1. In
Figure 3.2 the definitions in (3.18) are illustrated.
If ¢ € D!, then with &, = 2n/h; — &, we obtain

exp(i(2m/hy — &) uhy) = exp(—i& uhy)

as in (3.5). Hence, for a wave number £ in C; the spatial variation is slow.
Since &. < m/hy, there is no overlap on the coarsest mesh

C(’; c .
Moreover, if & € D!, then E € DY, where

& =£1+(m— 1)-27t/h0.

(3.18)

With
61=27t/h1— i=27t/h0—é;+(m—l)°27t/h0, f;GDo,

it follows for a difference operator, e.g., Q@ with its symbol Q defined in (3.8),
that

Om_1 1((2n/ho = EDR, &k, h) = Ok, (& +k - 21/ ho)h, )
= Q(=&h, (& + k- 2n/ho)h, h) = Qu(=Eih, &2k, h).

(3.19)
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The restriction and prolongation symbols have the same property. For com-
pleteness we formulate all the assumptions we need in the Fourier analysis,
even if some of them follow from the assumptions in §2. Note that

&+ (m/2)-2n/ho)hy =y +m,  i=1,2.
Assumption 3.1.

Fio = Fio(nit) = 1 + O(||my|l)  for small |7l ,
Fiompz = Fo(mg +7) = O(lmll),  i=1,2,
pij has the same properties, 0</<L.

This assumption concerns the behavior of the restriction and prolongation
operators at low wave numbers with ||#;|| small (cf. Definition 2.1) and at
oscillatory wave numbers #;; + © with |n;|| small. This assumption is very
natural and is satisfied in (3.12). Its counterpart for the physical variables is
Assumption 2.4(i). The requirements on r and p with respect to the order of
Q are derived by Fourier analysis in [8]. The low- and high-frequency order in
the terminology of [8, equations (16), (17)] is at least 1 in the assumption.

Assumption 3.2.

(@) (@)oo = T+ O(myll), 1<I<L.

Suppose that the numerical approximation of Q is at least first-order accurate
and that

(@)oo = QU + O(l|ml))),

where Q is the symbol of Q, see (3.8). With such a Qoo the assumption is
fulfilled. The assumption corresponds to [8, equation (31)].

Assumption 3.3. S, is a block diagonal matrix as specified in §3.1 and bounded
uniformly when & € Cj . The upper left block is

(S)oo = I — At H; + O(AL (AL + ||mi]))

where FI, is the leading term in ¢ in the smoothing operator for small ¢, and
At is a small parameter of O(h;), v>1, 0</< L.

The assumption is related to Assumption 2.2(i). In case we choose Runge-
Kutta time-stepping in the smoothing iterations, then

Qoo(Ehy , by) = Hi(E) + O(Imill)

ie., 17, is the symbol Q It is remarked in [14] that Chebyshev iteration [15]
has the same property. In numerical experiments in [14], GMRES [17] also
appears to have a similar property but with A#; dependent on the iteration
number 7.

The time step Af; can be regarded as a smoothly varying scaling parameter
of the equations. With a Runge-Kutta scheme, the remainder term in (S;)gp is
At; times the sum of the tl;ungation error due to the discretization in space of
O(|lm) at least and BAtf;H;(H; + O(||n|l)) , where B is a constant depending
on the scheme.
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Assumption 3.4. Define

fj1+am/2,k+ﬁm/2(”1) = ,j+am/2f2,k+ﬂm/2gi’gf—Q—jkaﬂ >

Qikap = (Ql—l)j_kl(Ql)j+am/2,k+ﬂm/2,
j,k=0,1,2,...,m/2-1, 1<I<L, a,f=0,1,
where g;, i =1, 2, are defined in (3.11). Forall /, j, k, a,and 8,

”/}+am/2,k+ﬂm/2”
is bounded for #; such that ||n;|| <J.

This ratheL technical assumption is a sufficient condition to obtain bounded
elements in M . Note that @jka p may be unbounded, but f* ! is not. This is the
case in the simple one-dimensional example in [5, §5.3]. When comparing with
the assumptions in §2, we note that the bound in Assumption 2.3(ii) includes
also oscillatory modes. The main result in [8] provides necessary conditions
for the assumption to hold in a two-grid iteration. It follows already from
Assumptions 3.1 and 3.2 that || f}|| is of O(1).

Assumption 3.5. The wave numbers are ordered such that the first submatrix in
E,, foreach / is

esedls, ¢ € Dy,
ejem_11s, ¢eDy,
em-1€31;, ¢eDY,
em_1m_11, ¢eDy,

where the D’s are defined in (3.18) and &, is sufficiently small.

The ordering of the wave numbers is chosen as above so that the mode of
slowest variation is located in the first position of E,,. How to do this for
& € Dy is indicated in §3.1, but the desired ordering can also be obtained for
the other corners in Cp by a minor redefinition of Ej; in (3.6).

Partition M in (3.16) for & € Dyg, ||n|| sufficiently smalland 1 </ < L as
follows:

(3.20) M= ("100 "10') . Mu€eC xC, MyeCtm=  cstm’=1)
My My
Assumption 3.6. Aty <6, ||noll < J, for some 6 >0, when £ € C} defined in
(3.18).
The assumption restricts the size of Azy and 79 = Ao on the coarsest grid.

Assumption 3.7. I?, has simple eigenvalues for ||no| < d, and ﬁ, is indepen-
dent of I, H = H(¥).

The first part of the assumption is trivially true for scalar equations. If the
same type of smoothing iteration is chosen at each level, then ﬁ, remains the
same for each /.

Assumption 3.8. Hu has simple eigenvalues uk(ﬁn), k = 1,2,...,
s(m? — 1), under Assumption 3.6 and if J < Jy, then there is an ¢, & > 0,
such that

el <0 <1 —¢g.
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Two auxiliary lemmas, see Appendix B, are needed in the proof of the the-
orem in this section. The proofs of the lemmas are simplified considerably if
Assumptions 3.7 and 3.8 are satisfied. With the help of the theory in [12] and
more detailed properties of S, less restrictive conditions can be derived.

We are now ready to state the theorem giving the propemes of M " The

parameters o are defined in §2. The eigenvector matrices of H and Mu are
denoted by T, and Vj, respectively.

Theorem 3.1. Let Assumptions 3.1-3.8 be satisfied. If 6 is sufficiently small,
then the transformed multigrid iteration matrix for a V-cycle at level | after n
iterations for £ € C§ is

e ((1 — StH)" + O(Ato + [Imoll) _ O(Ato) )
O(Atol|moll) Mg + O(At|Inoll)
where
i i
St=(p+a) ) Ati=(p+9)At} .
j=0 j=0
Alternatively, the upper left corner of M" can be written
Todiag({wy Y- Ty ' + O(Ato + [Imoll) ,
where
Wi = (1 - 6th(H))" = |wi|"exp(—indt Im A (H)) + O(Aty) .
In the lower right corner of M" we have
IMEI < 1%l - 11516, 6 <1.

The proof of the theorem is found in Appendix B. In Theorem 3.1 we have
investigated the behavior of M(£) when & € C}. For the remaining part of
the wave number domain C, we merely make

Assumption 3.9.
IMEI<o<1, EeC\Ci, 0<I<L.

The consequences of the assumptions and the analysis in this section will be
discussed in the next section.

4. EXAMPLES AND DISCUSSION

We discuss the results of the previous section and present two simple numer-
ical illustrations in this section.

Several conclusions can be drawn from Theorem 3.1. Partition the Fourier
coefficients # in the same manner as M in (3.20) for & € Dy,

(4.1) i = (afy, al)T .

The low wave number part is

= (61, 8)eC,
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and the remaining wave number components are collected in i;. Suppose that
the conditions in the theorem are satisfied. Then by (3.17) and the theorem,
after the nth iteration on the finest grid L,

(4.2) il = (I — St H)" iy + O(Ato + ||moll),
(4.3) af = (ML) + O(Atolimoll) -
The intermediate and high wave numbers in #) are damped by a factor 6 in
each iteration of the multigrid procedure.

The low wave number part in (4.2) behaves as if we had applied the
smoothing operator S to the low wave numbers only, but with “time-step”
(r + @)A1 25;0 a; instead of Af; (see Assumption 3.3 and Theorem 2.1).

At the other end of the spectrum, ¢ € D), U D% U D}, , the wave numbers with
slow spatial variation behave as #f, in (4.2), whereas the remaining Fourier
components are damped as in (4.3). If Assumption 3.9 is fulfilled, then the
description of the evolution of the Fourier components for all wave numbers is
complete in Cp, and therefore also in C; .

We summarize in a theorem the preceding discussion with a comparison
between the smoothing iteration and the multigrid iteration.

The Fourier coefficients associated with slowly varying modes, ¢ € C;, after
n iterations on grid L with only the smoothing operator S are denoted by

(4.4) w3(&) = Up(ndty, &), E€Ct.
The corresponding coefficients for the multigrid iterations is (¢) .

Theorem 4.1. Let the sufficient conditions in Theorem 3.1 and Assumption 3.9
be fulfilled. Assume that the Fourier symbol S of the smoothing operator satisfies

IS@I<6<1, e\,
and that ||8°(&)|| is bounded for & € Cr. Then for £ € C;,

ity (&) = Ur(ndty, &) + O(ALo + || moll) »
where Uy and no are defined in (4.4) and Theorem 3.1, respectively. For & €
C\C;t,
lag &)l < e 12°E)l,
i (E)l < cL(€)6™ + O™,

where c; depends on @l°, and v is defined in Assumption 3.3.

Proof. Consider the oscillatory modes, and suppose that ¢ € C;\C; , that there

isa ¢’ in C§ and

(1,K) € Lym = Ly X Iy, I,={0,1,...,m-1},
E=¢E+2m/ho(1, k)T

Then by Theorem 3.1, when &' € Dy,

(4.5)

liga @I = lap@IF < D (@)’
(jvk)elmm\(ovo)
=& E)I1? < 6> (€I + OAtollmoll) -
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The same bound is valid in D, U D9, U DY, . Since [|a%(¢)|| is bounded for
&€ Cyp,thereisa cr(&) such that

(4.6) limc (Il < ¢(8)8" + O(Ato|imoll) -
In C} thereis a ¢ such that

lInoll < holl&.ll < éAry” .
When &' in (4.5) fulfills &' € Cy\Cj , then by Assumption 3.9,
oG = g ENIP < D %@ < 6|7 &)
(> k)Elmm
With only smoothing iterations, we have

23] = IS (©)a’(©)]| < 8*17°)]!.

The results in the theorem for £ € C;\C} are proved.
If { € C;, then &' € Cjf, and it follows from Assumption 3.3 that

w3(&) = (S0)5i%(€) = (I — At HY" (&) + O(At, + Incll) = Uv(nAty, &).
By Theorem 3.1 we obtain
Wy (&) = (I — St HY"i%(€) + O(Ato + ||moll)
= Up(ndtr, &) + O(ALy + ||moll). D

If we choose Runge-Kutta time-stepping, then

(4.7) H = Q,

and the slow Fourier modes are integrated at least first-order accurately in time,
cf. Theorem 2.1, but the time step taken per multigrid iteration is so much larger
than it is with only Runge-Kutta iteration. An interpretation of the theorem
in this case is that time (or pseudotime) proceeds faster with the multigrid
method. This effect is always achieved with multigrid iterations satisfying the
assumptions.

Let us consider two simple examples. The smoothing operator is Runge-
Kutta time-stepping (or repeated Richardson iteration with a fixed number of
steps) and the problem to be solved is scalar, s = 1. In the first example, the
differential operator P is of first order,

du | du

ax!  ox%’

It is approximated by a first-order accurate difference expression such that
Qoo = i(&1 + &) + O(hy)

for small £;, j=1, 2. According to Theorem 3.1, (4.2) and (4.7), we obtain
on the finest grid L

(4.8) 0, = exp(—i(& + &)ndty)ady + O(hy) .

Pu =

For numerical stability, Az, is of O(h.). One part of uj,, corresponding to
low wave numbers is

iifoeses = exp(i(&i(x), — ndty) +&(x2, — ndtL)))iy + O(hL),
£ € Dy.

(4.9)
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The result is similar in the other three corners of C;. The conclusion from
(4.9) is that the smooth part of uy, is propagated a distance ndz; in both
spatial directions in » multigrid iterations. If only smoothing iterations are
employed at level L, then the corresponding distance is nAt; , cf. Theorem 4.1.
The improvement with multigrid iteration with the same number of smoothing
iterations on level L is
i
(4.10) (nétL(P+Q))/nAtL=Zaj,
j=0
in agreement with Theorem 2.1. In [5] this factor is interpreted as an increase
of the group speed of a plane wave.
In the second example the differential operator is of second order,

0%u 8%u
Pu=- ((ax')2 * (ax2>2) '

Choose the numerical approximation to be at least first-order accurate,

Qoo = & + &% + O(hy)
for small £;, j =1, 2. Analogously to (4.8), we derive

iy = exp(— (&7 + &3)nd1L )iy + O(hy) .

Stability requirements force Az; to be of O(h?). Here, we have only damping
of the Fourier coefficient. Suppose that

At = Bhi,
where f is a constant. Then
aj = Atj/Aty = (hj/hL)* = 22570
and
L L 4
Sty = gajAtL = Atogaj/ao = Aty (1 -0.25).
Therefore, the damping of the mode is governed by
exp(—(&F +&3)4nBhi/3),

essentially achieved by the coarse grid. The improvement of multigrid iterations
over only Runge-Kutta time-stepping is also as in the first case given by Theorem
4.1, but the convergence is becoming progressively slower as ||&]| — 0.
__Asan illustration of the theoretical results in this paper, the eigenvalues of
M in Theorem 3.1 are plotted for a one-dimensional example in Figure 4.1
(next page) and three two-dimensional examples in Figure 4.2 (see p. 491). In
Figure 4.1 the model equation to be solved is

(4.11) Uy =f.

The equation is discretized by a cell-centered finite volume scheme with ad-
ditional 4th-order artificial viscosity, see [10]. The smoothing iteration is a
five-stage Runge-Kutta method and At¢; = h;. The number of presmoothing
steps is 1, and there are no postsmoothing iterations.
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FiGURE 4.1. The eigenvalues Aj(n) of the Fourier transform

of the multigrid matrix M are displayed for the model equa-
tion u, = f and a five-stage Runge-Kutta scheme on 1, 2,
and 3 grids. On the left, || is plotted, and on the right,
Im log;/{At, shows the speed-up factor for |4;| close to 1

The symbol of the restriction operator is
F = cos(¢h/2),
and p="+. s
In the left column, |A;(M)|, j=1,2,...,m= 2L is plotted as a function
of n =&hy, where £ € Cy. Thus,

n €10, 2rn/m].
In the right column of Figure 4.1 the factor

Imlog;(M)/(AtL,
C={é’ ¢ €0, n/ho],
2n/hy— &, E€(n/hy, 2m/ho],
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<

FIGURE 4.2. Isolines of the maximum of |1;(n)| for each #
of the Fourier transform of the multigrid matrix M are dis-
played for the two-dimensional equation (4.12) and a three-
stage Runge-Kutta scheme on 2 grids. The maximum is 1 in
the corners, and less than 1 in the interior of the #-domain

is displayed as a function of 7, . It follows from Theorem 3.1 that this is the
speed-up factor y = 3.7y a; of the slowly varying Fourier mode with 4, ~ I
for small ¢ and { close to 27m/hy. The results are in accordance with the

theory in Theorem 3.1. There is one eigenvalue A; in each of the three cases,
L=0,1,2, for which |A4;| =~ 1 when

¢€l0,&Iul2n/hy - ¢, 2n/ho],

with, e.g., & < 1/2hg, and when ¢ is in the neighborhood of 0 or 27/hgy, we
have

y=20+ 1.
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For the other eigenvalues,
[Aj(M)| <6 <1, j=2,...,m.
The two-dimensional model example is
a ou
ox!

The equation is discretized by the same method as (4.11). The smoothing
procedure is a five-stage Runge-Kutta scheme, the multigrid strategy is the same
as above and there are two grids, L = 1.

Isolines of

ou
(4.12) thot =,

jzﬁg§,4I1,(M(é))l
are plotted in Figure 4.2. The distance between two lines is 0.02. In Figure
4.2(a) and Figure 4.2(b), the coefficients in (4.12) are a=b =1 and a =1,
b = 0.5, respectively. When £ € C; (the squares in the corners of the wave
number domain), the maximum of |4;| is close to 1 and exactly 1 at the corners.
In the interior of C; we have

Wl<o<1, j=1,2.

The coefficients in (4.12) and Figure 4.2(c) are a = 1 and b = 0. We still
have good damping properties in the interior, and max|4,| is close to 1 in the
corners. There are no “grid alignment” effects with no damping at all in large
parts of the wave number domain. This is sometimes a problem with upwind
discretizations of (4.12) [16]. The reason why the centered difference scheme is
successful is that the artificial viscosity is isotropic and independent of a and
b in (4.12). Similar results are obtained with a three-stage Runge-Kutta scheme
in [6].

On the other hand, if we scale the artificial viscosity term in the x!-direction
by a and in the x2-direction by b, then we have an obvious “grid alignment”
problem as in Figure 4.2(d). The multigrid method does not reduce the ampli-
tude of the modes with, e.g., 7 small and 7, =~ n/2, simply because there is
no artificial viscosity in the x2-direction.

In [14] we use Parseval’s relation for the Fourier representation in §3.1 and
Theorem 3.1 to derive the properties of #” in the multigrid iterations.
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Appendix A
A lemma referred to in the proof of Theorem 2.1 and an auxiliary lemma are proved in this

appendix. The first lemma is concerned with the smoothing iterations. Here, u denotes a
smooth function,u € S, and g with indices denotes a bounded function, g€ B .

LEMMA A.1. Let the Assumptions 2.1 and 2.2 be fulfilled. Then for 0<I<L,
Sju=(1-1A Qlu+h At g, r2 1.

Proof. The proof is by induction. It follows from Assumptions 2.1i and 2.2i that
Su=(I-AyPu+hAyg. (A1)

Our induction hypothesis is
Su=(0-rAyQlu+hAy g, r21 (A2)

Then by Assumption 2.1i, 2.2i, (A.1) and (A.2),

Siu=§,(1-rAyPlu+h AyS, g

A3
=(I-AyP)I-rAtyPlu+h Aylg+ S, g). (A3)

Since S; is bounded, the last term in (A.3) can be written h; At; g". The term Al,z P is
bounded. By Assumption 2.1i and (2.7),
S™Mu= (1= (r+ DAY Qu + hy Aty g, .
Since (A.2) is valid for r =1, see (A.1), the induction argument is complete.0
The following lemma is the main result of this appendix.
LEMMA A 2. Let the Assumptions 2.1-2.4 be fulfilled. Then for 0<I<L,

|
Mu=(-c Ay Qu+hAyg, ¢=(p+gZ oyfoy, (A.4)
M, is a bounded operator. (A.S)

© 1993 American Mathematical Society
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