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A THEORY OF SECANT PRECONDITIONERS

JOSÉ MARIO MARTINEZ

Abstract. In this paper we analyze the use of structured quasi-Newton for-

mulae as preconditioners of iterative linear methods when the inexact-Newton

approach is employed for solving nonlinear systems of equations. We prove

that superlinear convergence and bounded work per iteration is obtained if the

preconditioners satisfy a Dennis-Moré condition. We develop a theory of Least-

Change Secant Update preconditioners and we present an application concern-

ing a structured BFGS preconditioner.

1. Introduction

Newton's method is the best-known algorithm for solving nonlinear systems

of equations

(1.1) F(x) = 0,

where F: R" -» R" is differentiable (see [11, 32, 33, 39]). We denote J(x) =
F'(x). At each iteration of this method, the linear system

(1.2) J(xk)sk = -F(xk)

is solved, and the new approximation to the solution of ( 1.1 ) is defined by

(1.3) xk+x =xk+sk.

Under suitable assumptions, Newton's method is locally and quadratically

convergent to isolated solutions of (1.1). Because of this property, the Newton

method is the most suitable algorithm for many practical problems.
The linear system (1.2) is usually solved employing LU or QR factoriza-

tions (see [16, 19, etc.]). When « is large and J(x) is sparse, LU techniques

are preferred (see [17, 20, 15, 45, etc.]), However, for many sparsity patterns

that appear frequently in applications (e.g., in the discretization of 3-D bound-

ary value problems) the LU factorization and its variations produce an un-
acceptable amount of fill-in. Therefore, both the computer time and memory

requirements that are necessary to solve (1.2) turn out to be very large. In these

cases it is generally preferred to use an iterative method in order to obtain an

approximation of the solution of ( 1.2). The advantage of iterative linear meth-

ods is that the storage required to implement them is essentially the same as
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that required to store the data of the problem. Moreover, the computer time

consumed by a single iteration of most linear iterative methods is negligible

compared with the computer time used by direct methods. Often, the appli-

cation to (1.2) of a moderate number of steps of a linear iterative method is

sufficient to provide satisfactory progress towards the solution of the nonlinear

system (1.1). For instance, if xk is not close to a solution of (1.1), it is hardly

worthwhile to waste a lot of computer time solving accurately (1.2), since we do

not expect much improvement in the approximation from an accurate solution

of (1.2). See [35] and [34] for a theoretical analysis of the behavior of Newton's

method far away from the solution.

Many authors (see [32, 40] and the references in [6]) analyzed the behav-

ior of methods based on the application to (1.2) of a predetermined number

of iterations of some linear iterative method. Ortega and Rheinboldt call al-

gorithms based on this idea "Generalized Linear Methods". However, only in

1982, Dembo, Eisenstat, and Steihaug [6] gave a satisfactory answer to the ques-

tion of deciding when the number of linear iterations executed at the kib step

of the nonlinear method is sufficient. The algorithms based on their idea are

called "inexact-Newton methods".

The Dembo-Eisenstat-Steihaug criterion consists of defining sk as any incre-
ment that satisfies

(1-4) \J(xk)sk + F(xk)\<6k\F(xk)\,

where 0 < 6k < 6 < 1 and | • | is some norm on W . Under suitable conditions,

Dembo, Eisenstat, and Steihaug proved that the method defined by (1.4) and

(1.3) has local linear convergence in an appropriate norm, and that convergence

is superlinear if lim^,*, 8k = 0.
The theory of Dembo, Eisenstat, and Steihaug is useful to analyze cases where

the equation (1.2) is solved inaccurately for different reasons (see [5]). In this

work we are concerned with the case where the reason for inaccuracy is the use

of an iterative linear method.

In the last 15 years the most widely used iterative methods for solving linear

systems have been the Conjugate Direction methods (see [21, 18, 19, 44, 13]

and references therein). Satisfactory practical behavior of these methods for

solving a general linear system As = b depends, in most cases, on the judicious

choice of a preconditioning procedure. Roughly speaking, a preconditioning

technique consists of finding an equivalent linear system A's = b' such that

the new system is easier to solve than the original one by the iterative linear

method and the transformation of As = b onto A's = b' is computationally

cheap. Thus, the idea of most preconditioning methods is to find "cheap ap-

proximations" to the inverse or to the LU factorization of the matrix (see [19,

§10.3], [1]). Frequently, the preconditioning matrix is an incomplete sparse LU

factorization of A, or is produced by a fixed number of applications of some
convergent stationary linear iterative method.

Let us call Bkx the approximation of J(xk)~x used at each iteration of an

inexact-Newton method for preconditioning the linear system (1.2). We define

the following "inexact-Newton method with explicit preconditioning":

Algorithm 1.1. Given x0 e K" , 50eR"x", Bk e (0, 1), k = 0, 1, 2, ... , the
steps of a typical iteration of this algorithm are the following:
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Step 1. Apply a linear iterative method to the system (1.2), using Bk as

preconditioner. Stop when (1.4) is satisfied.

Step 2. Define

xk+\ — xk + sk .

Step 3. Using Bk, J(xk+X), F(xk+X), F(xk), sk and perhaps additional in-
formation available, compute a new preconditioner Bk+X .

The key point of Algorithm 1.1 is at Step 3. At this step we compute the

preconditioner for the new linear system. We observe that information at the

previous iteration is available and so there is no reason for not using it. In other

words, the linear systems that must be solved at each iteration of the inexact-

Newton method are not isolated, and hence useful information can be passed

between iterations in order to improve the quality of the preconditioner. An

efficient way to use the previous available information is to use preconditioners

Bk that satisfy the "secant equation" (see [3, 9, 10, 11, 14, 26, etc.])

(1-5) Bk+Xsk=yk,

where

(1.6) yk = F(xk+x)-F(xk).

Nazareth and Nocedal [31] and Nash [29, 30] were the first in using pre-

conditioners based on (1.5) in connection with unconstrained minimization

problems.
If (1.5) is satisfied, global information on the true Jacobians is incorporated

in the new preconditioner, by virtue of the identity

yk= ( /  J(xk + tsk)dt\sk.

This contrasts with the usual approach of preconditioning using only the cur-

rent Jacobian, that, typically, uses only partial information about J (diagonal

preconditioners and incomplete LU preconditioners are typical examples of

this case. See [4]).
A combined approach is to use classical (incomplete) preconditioners associ-

ated with least-change secant updates ([11, 12, 14, 25]).

The most natural "combined preconditioners" are "structured least-change

secant update" matrices in the sense of [14] and [26]. In this case,

(1.7) Bk = C(xk) + Ak,

where C(xk) includes partial information on J(xk), and Ak is updated using

least-change secant update techniques [11, 14]. Of course, for (1.7) to be use-

ful as preconditioner, the inversion of Bk must be inexpensive. This can be

achieved, for example, if C(x,t) = LkUk, where LkUk is an incomplete LU

factorization of J(xk), and Ak is a low-rank matrix.
Practical experience showed that some secant update procedures generate

useful preconditioners for the Newton equation (1.2) (see [29, 30]). The exis-

tence of powerful convergence theories of secant methods for nonlinear systems

suggests that a comprehensive theory of secant preconditioners can also be de-

veloped. Some steps in that direction were made by Martinez [26]. He defined

a general algorithm in which xk+x is any point that satisfies

(1.8) \Xk+i-x^\<\x^-x^\,
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where

Xk   = xk - J(xk)~  F(xk) ,

and x® is obtained using a least-change secant update (LCSU) procedure.

Then, he proved that under the same hypotheses that guarantee the local conver-

gence of the "pure" LCSU method, the local convergence of the process based

on (1.8) may also be proved. When the classical Conjugate Gradient Method is

applied to the problem

(1.9) Uinimize\\B;x[J(xk)s + F(xk)]\\2
s "■

starting with s® = x® - xk , and generating a sequence {sk, sk,...}, it is well

known (see [21]) that

(i.io) \rt+i-sj:\\2<\\si-s»\\2

for all j = 0, 1, 2, ... , where s£ is the exact solution of (1.9). By (1.10), the

property (1.8) holds for | • | = || • ||2 if sk e {s®, sxk, s¡, ...} .
The approach of Martinez [26] has two main drawbacks. First, the condi-

tion (1.8) restricts the choice of the iterative linear method to algorithms where
the "norm-decreasing property" (1.10) holds. Unhappily, this property is not

true for many successful iterative methods such as GMRES ([36, 37]), and it

also fails to hold if the preconditioning procedure of the classical CG algo-

rithm involves a change of variables, as it usually does (see Algorithm 10.3.1 in
[19]). Second, the conditions for local convergence of LCSU methods require

that the first preconditioner Bo must be close to the Jacobian. If we are using

an incomplete LU, or a preconditioner based on a stationary linear iterative

method, this condition can be very restrictive. These difficulties led us to ask
for the possibility of defining LCSU-preconditioned inexact-Newton methods

where superlinear convergence is obtained using a bounded number of steps of

an unspecified linear iterative method at each iteration, and where the assump-

tion of a good initial Bo is not necessary for proving local convergence. In §2

of this paper we prove that we are able to define an algorithm with these char-

acteristics if the preconditioners satisfy the Dennis-Moré condition (see [9]),

and \Bk\, \B^X\ are bounded. In §3 we prove that preconditioners which obey
Martinez's theory with null ideal parameter r* generate algorithms that satisfy

the conditions given in §2. So, structured least-change secant update methods

in the sense of Dennis and Walker can also be used for that purpose (see [27]).

In §4 we apply the theory of §3 to a structured BFGS preconditioner. Some

conclusions are given in §5.

2. Preconditioning with the Dennis-Moré condition

When we want to solve a linear system As = b using an iterative linear

method with the preconditioner B~x ?s A~x, it is natural to begin testing j =

B~xb. This trial point is incorporated in a natural way in the description of

preconditioned CG algorithms (see, for example, Algorithm 10.3.1 in [19]).
The algorithm that we present below incorporates explicitly that trial point in

the inexact-Newton context.

From now on, | • | denotes a norm on E" and its subordinate matrix norm.
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Algorithm 2.1. Let 6k G (0, 0) for all k = 0, 1, 2,... , 0 < d < t < 1,
and Hindoo 6k = 0. Assume that Xn € M" is an initial approximation to the

solution of (1.1) and B0 € Rnxn is an initial preconditioner. Given xk e R"

and Bk e R"x" , the steps for obtaining xk+x, Bk+X, k = 0, 1, 2, ... , are the
following:

Step 1. If Bk is nonsingular, compute

(2.1) sg = -Bk-lF{xk).

Else, go to Step 3.
Step 2. If

(2.2) \J(xk)sf + F(xk)\<d\F(xk)\,

define

(2.3) sk = sf

and go to Step 4.
Step 3. Find an increment sk such that

(2.4) \J(xk)sk + F(xk)\<9k\F(xk)\,

using some iterative method.

Step 4. Define

(2.5) xk+x=xk + sk

and compute a new preconditioner Bk+X.

Clearly, Algorithm 2.1 is a particular case of the inexact-Newton method

of Dembo, Eisenstat, and Steihaug. So, it is linearly convergent in the norm

defined by |z|» = \J(xt)z\, under appropriate conditions on F and xo. Let
us state these assumptions precisely.

Assumption 1. Assume that F:ßcI"-»E", fl an open and convex set,
F e Cx(il), x* € Q, 7(x») nonsingular and 7r(x«) = 0. Assume that there

exists L > 0 such that, for all x G Q,

(2.6) |7(x)-/(x,)|<L|x-x»|.

Inequality (2.6) implies that for all x, z e Q,

(2.7) \F(z) - F(x) - J(xt)(z - x)\ < L\z - x\o(x, z),

where

(2.8) o(x, z) = maxijx -x»|, \z -x»|}.

(See [3].)
The following theorem is a trivial consequence of the Theorem 2.3 of Dembo,

Eisenstat, and Steihaug [6].

Theorem 2.1. Suppose that Assumption 1 is satisfied. There exists e > 0 such

that, if \xo - x*| < e, the sequence generated by Algorithm 2.1 converges to x»

and

(2.9) \xk+x - x»\» < t\xk - x»\»,
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for all k = 0, 1,2,..., where

(2.10) |z*| = |/(x,)z|.

Proof. See [6]. Observe that, in fact, the hypothesis (2.6) can be weakened.   D

The next two theorems are the main results of this section. We will assume

that the Bk's satisfy a Dennis-Moré condition (see [9]). Under this hypothesis

we will prove that the convergence of Algorithm 2.1 is superlinear. If \Bk\ and

\B^X\ are bounded, we prove that, eventually, all the iterations satisfy the test

(2.2). This means that the number of iterations used by the linear method at

Step 3 will be bounded, since the increment (2.1) given by the preconditioner

will be accepted for large enough k .

Theorem 2.2. Suppose that F satisfies Assumption 1, the sequence ixk) gener-

ated by Algorithm 2.1 converges to x* and

(211) limpfc-/^fel=0.

Then

(2.12) lim l**+'~**l =o,
k—>oo    \Xk — X* |

Proof. We consider two possibilities:
(i) There exists ko e N such that for all k > kr,, the increment sk is com-

puted by (2.4) in Algorithm 2.1.

(ii) For all ^eN, there exists k > ko such that sk = s^ .
If (i) holds, the algorithm satisfies the conditions of Dembo, Eisenstat, and

Steihaug for superlinear convergence of the inexact-Newton method, so (2.12)

is proved.
Assume then that (ii) is true. Let Kx be the set of indices k such that

sk = sf. Rephrasing the proof of Theorem 2.2 of Dennis and Moré [9], we

obtain that

(2.13) lim l^+'-*;l =o.

To prove that

(2.14) lim l^+'-*;l =0,

we repeat the arguments in the proof of Theorem 3.3 of [6]. The assertion

(2.12) follows from (2.13) and (2.14).   D

Theorem 2.3. Suppose that F satisfies Assumption 1 and that the sequence ixk)

generated by Algorithm 2.1 converges to x*. Assume that the Dennis-Moré con-

dition (2.11) is satisfied and that there exists M > 0 such that

(2.15) \Bk\<M,        \B;X\<M

for all k = 0, 1,2, ... . Then there exists k0 > 0 such that sk = s® for all
k > ko, and the convergence is superlinear.

Proof. The superlinear convergence of (xk) was proved in Theorem 2.2. By

(2.6) and the nonsingularity of 7(x»), there exist ko eN, a, ß > 0 such that,
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for all k>ko,

(2.16) \F(xk+x)\ < ß\xk+x -x*\

and

(2.17) \F(xk)\>a\xk-x.\.

(See, for example, [12, Lemma 4.1.15].) So, by (2.12), (2.16), and (2.17),

(2.18) lim ^# < lim ß^k+x " **} = 0.
fc-»oo   \F(xk)\        k-Kx,   a\xk-x*\

By the superlinear convergence of (xk) we have, for large enough k ,

2
(2.19) Is*| < \xk+x -xA + \xk-x,\ <2\xk-x,\ < -\F(xk)\.

a

Then, by (2.19) and (2.11),

(2.20) lim '[**-7(^' < lim 2M^%M = 0.
fc-»oo \F(xk)\ fc—oo a\sk\

Moreover, by (2.20), (2.15), (2.17), and (2.18),

lim \lBk-J(x*)](xk-x.)\

(2.21)

k^oo \F(xk)\

< lim \[Bk-J(x*)]sk\ + Hm \[Bk-Jjx.)]jxk+l-x.)\

- k-+oc       \F(xk)\ fc- \F(xk)\

< lim (\Bk\ + |/(x.)l)££,"   "'      '    v   ""     |F(X,)|

< Um (M + |/(xt)|)|f(x,+,)| = 0
- fc-»oo a |^(XA;)|

So, by (2.21), (2.7), (2.15), (2.17), and (2.12),

lim |[**~' ~ •/(^)"'][/r(^+') - F(^)]l
k^oo \F(xk)\

. ,.   |[^-'-/(x,)-']y(xt)(x,+1)-x,)|

I   lim ][Bk~l ~ y^*)~1J^(^+i) - *"(**) - J(x*)(xk+X - x,)]j

fc-oo !*"(**) I

. ,.     |A¿-,[/(JC.)-fijt](Jf/t+i-JC/t)|
^   lim —-i~F7-si-

*-oo pF(**)l

[Af + \J(xt)-x\]L\xk+x -xk\\xk-x.\

(2.22)

+
I*WI

< Hm j^P*--^*»)]^! + [A/ + l^(^)"'|]¿l^+i-x*| = 0
- *:-oo \F(xk)\ a
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Therefore, by (2.15), (2.18), (2.21), and (2.22),

lim IIV-^**)"1]^**)!
k^oc \F(xk)\

(2.23) < lim \[^l-^xt)-x][F(xk+x)-F(xk)]\

- kloc \F(xk)\

+ An[M+|/W-'ll^=0.

Hence, by the continuity of /(x)_1 in a neighborhood of x»,

(2.24) ta!t*nM=0.
fc-oo \F(xk)\

So, by (2.1), (2.24) and the continuity of J(x),

lim \Jjxk)s° + Fjxk)\ =   lim \J(xk)(-B-xF(xk)) + F(xk)\

(2 25)      k^°° l^(X*:)l k-*oc \F(xk)\

. ..    l^foOlliV-^**)-']^**)!    n
<   lim -<^-Er-r,- = 0.

k^oo \Fixk)\

By (2.25), there exists ^eN such that for all k > ko,

So, the test (2.2) is satisfied for all k > ko.   Therefore, for all k > ko,

sk = s® . This completes the proof.   D

3. Structured Least-Change Secant preconditioners

In §2 we showed that if \Bk\ and \Bk~l\ are bounded and Bk satisfies the
Dennis-Moré condition (2.11), Algorithm 2.1 is locally and superlinearly con-
vergent and, eventually, all the iterations are given by

(3.1) xk+x =xk-B~xFixk).

This means that, using the preconditioner Bk, the computer work of an

inexact-Newton iteration is bounded and superlinear convergence is maintained.

Moreover, the results above were obtained without the requirement that the

initial Bq must be close to the Jacobian.

In this section we will see that preconditioners that satisfy the required prop-

erties may be obtained using Martinez's approach. A consequence is that the

least-change secant update methods studied by Dennis and Walker may also be

used for that purpose (see [27]).

Let X be a finite-dimensional linear space, F : Q -> W, Q an open and
convex set. For all x, z e Q let ( , )xz be a scalar product over X, associated

with the norm || • \\xz . Let flcflxl be an open set and tp: D -> R"x" a

continuous function. For all x, z 6 Í2, let K(x, z) c X be an affine subspace.

The following algorithm describes an inexact-Newton method preconditioned

by a structured Least-Change Secant procedure.
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Algorithm 3.1. Let xo € Í2 be a given initial approximation, E0 € X, 6k e
(0,0) for all k = 0, 1, 2, ... , 0 < 6 < t < 1 and lim^^r?* = 0. The steps
for obtaining xk+x, Ek+X , k = 0, 1, 2, ... , are

Step 1. If ixk, Ek) e D and Bk is nonsingular, where

(3.2) Bk = tpixk , Ek),

define

(3.3) s° = -B-kxFixk).

Else, go to Step 3.
If

(3.4) \Jixk)sf + Fixk)\<6\Fixk)\,

define

(3.5) sk = s%

and go to Step 4.
Step 3. Find an increment sk such that

(3.6) \Jixk)sk+Fixk)\<6k\Fixk)\,

using some iterative method.

Step 4. Define

(3.7) xk+x=xk+sk.

Step 5. Compute

(3.8) Ek+x=PkiEk),

where Pk is the orthogonal projector on Vixk,xk+X) with respect to || • lU^+i •

Clearly, the local linear convergence Theorem 2.1 holds for Algorithm 3.1,
if F satisfies Assumption 1. Superlinear convergence will be a consequence of

the following assumptions.

Assumption 2. Let || • || be a fixed norm on X associated with the scalar product

( , ), let E» 6 X and let Ci > 0 be a constant. We assume that for all
x, z € £2, there exists E = 7s (x, z) 6 F(x, z) such that

(3.9) \\E - E4 < cxoix, z),

where cr(x, z) is defined by (2.8).

Assumption 3. There exists c2 > 0 such that, for all x, z e Q, E e X,

(3.10) \\E\\xz<[l+c2oix,z)]\\E\\

and

(3.11) \\E\\<[I+c2oix,z)]\\E\\xz.

Remark. In Martinez's paper [26] it is assumed that (x*, Et) belongs to the

domain of <p and that |7 - fix*, £,*)_17(x,)| < r» < 1. These assumptions

will not be necessary to prove the main results of the present work.
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Lemma 3.1. Let F satisfy Assumption 1, and let V, E,, \\-\\xz, and ||-|| satisfy

Assumptions 2 and 3. Suppose that the sequence ixk) generated by Algorithm

3.1 converges to x* and satisfies

(3.12) |xfc+i -x»|, < t\xk-xt\t

for all k>ko- Then, \\Ek\\ is bounded.

Proof. By (3.10), we have that

(3.13) \\Ek+x-Et\\ <[1 + c2o(xk, xk+x)]\\Ek+x - E,\\k

for all k = 0, 1,2,..., where || • \\k = ||. \\XkXk+i .

Now, by (3.12) and the equivalence of norms on R", there exists c* > 0

such that

(3.14) o(xk,xk+x) <c,|xfc-x*|

for all k > ko . Thus, by (3.13) and (3.14),

(3.15) ||£fc+1-^||<(l+c'2|xfe-x,|,)||^+1-^|U

for all k>ko, where c'2 = c2c,.

Let Ek be the orthogonal projection of Et on V(xk, xk+x), related to the

norm || • ||. By (3.15),

(3.16) \\Ek+x -E.\\ < (1 + c'2\xk - x,U)[\\Ek+i - Ek\\k + \\Ek - E.\\k]

for all k > ko . But Ek+X is the projection of Ek on V(xk , xk+x), and Ek 6

V{Xk,xk+x). So,

(3.17) \\Ek+x -Ek\\k < \\Ek-Ek\\k < \\Ek-E4k + \\Ek-E4k.

Hence, by (3.10), (3.14), (3.16), and (3.17),

(3 18) "^+1 ~ Et]l -{l+ C'2lXk ~ X*\*MEk * E4k + 2^k ~ E*h]

< (1 + c'2\xk - x.L)2[\\Ek -E4 + 2\\Ek - E.\\]

for k > ko .
Now, by Assumption 2,  \\Ek - Et\\ < cxa(xk , xk+x). Therefore, by (3.18)

and (3.14),

(3 19)        ^Ek+l _£*" ^ (l + c2\Xk - x,\*)2[\\Ek - E4 + 2cMxk, xk+i)]

< (1 +c'2\xk - xt\t)2[\\Ek -£',||-l-2cic»|xfc -x*|,].

Thus, setting dx = |x^ - x*|*, we obtain that there exist C3, c¡, > 0 such that

(3.20) \\Fk+x -Et\\ < (1 +Ci\xk -xt\*)\\Ek - E»\\ + c4\xk -x»|»

for all k >ko. So, by (3.12),

(3.21) \\Ek+l-E,\\<(l+c3tk-kodl)\\Ek-E4 + c4tk-kodi

for all k > ko. So, by Lemma 3.3 of [9], \\Ek - Et\\ is bounded, and hence

\\Ek\\ is bounded.   D

Lemma 3.2. Assume the hypotheses of Lemma 3.1. There exists cs > 0 such

that

(3.22) \\Ek+j -E.\\< \\Ek - 7J.II + c5\xk - x,|.

for all k> ko, j =1,2,3, ... .
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Proof. By Lemma 3.1, there exists d2 > 0 such that

(3.23) \\Ek-E,\\<d2

for all k = 0, 1, 2.Thus, by (3.20) and (3.23),

\\Ek+x -Et\\ < (1 + ci\xk - x*\t)\\Ek - Et\\ + c4\xk - x,\*

(3.24) < \\Ek -E.W + (c3 d2 + c4)\xk - x,|,

= \\Ek - Et\\ + c6\xk - x*\,

for all k > ko , where c6 = c^d2 + c4. So, by (3.12) and (3.24),

7-1

\\Ek+j-E4 < \\Ek - Et\\ + J2ce\xk+i - x,\*
1=0

7-1

n7Sx < \\Fk -E,\\ + ^c6tl\xk- x»|»

^""J /=o
7-1

= \\Ek -E*\\ + c6\xk -x,\,^2tl
1=0

< \\Ek-E4 + cs\xk-x*\<

for all k > ko, j = 0, 1,2, ... , where c5 = c6/( 1 - t).   G

Lemma 3.3. Assume the hypotheses of Lemma 3.1. There exists c-¡ > 0 such

that for all k > ko, j = 1,2,3,...,

(3.26) \\Ek+j - E,\\2 < \\Ek - E42 + c7\xk - x.|,.

Proof. Trivial, using (3.22) and the boundedness of His* - E»\\.   D

Theorem 3.1. Assume the hypotheses of Lemma 3.1. Then

(3.27) lim \\Ek+x- Ek\\ = 0.
k—'oo

Proof. This proof reproduces the arguments of the proof of Theorem 3.3 of

[26], using (3.26) for proving the formula (3.32) of Martinez's paper.   D

Theorem 3.2. Assume the hypotheses of Lemma 3.1. Suppose that there exists a

closed set G c R" x X such that (xk, Ek) e G c D for all k = 0, 1, 2, ... .
Then

(3.28) lim \tp(xk+x, Ek+X) - <p(xk, Ek)\ = 0.
k—<-oo

Proof. Since ||jfi*|| is uniformly bounded and (xk) is convergent, there exists a

compact set G' such that (xk,Ek)eG' for all k = 0, 1,2,.... So, GnG' c
D is compact and tp is uniformly continuous in G n G'. Therefore, (3.28)

follows from (3.27) and from lim^^ \xk+x - xk\ = 0.   D

Theorem 3.3. Let F satisfy Assumption 1 and let V, £"», ||-|Uz» and INI satisfy

Assumptions 2 and 3. Suppose that the sequence (xk) generated by Algorithm

3.1 converges to x* and satisfies (3.12). Assume that there exists a closed set
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G c R" x X such that (xk,Ek) e G c D for all k ■-= 0, 1,2,..., Bk  is
nonsingular for ail k = 0, 1, 2, ... and \B,X\ is bounded. Suppose that

(3.29) lim \lB^-/M^\ = o.
*-°° \Sk\

Then there exists kx e N such that sk = s® for ail k > kx, and convergence

is superlinear.

Proof. We prove that the hypotheses of Theorem 2.3 are satisfied.

By (3.29) and (3.28),

lim 'F** Vf •"*' < lim \Bk+x -Bk\+ lim ̂ x ' J^ = 0.
k—>oo \Sk\ k—>oo k—>oo ¡5^.|

So, the Dennis-Moré condition (2.11) holds here. Now, by Lemma 3.2, there

exists M > 0 such that \\Ek\\ < M for all k = 0, 1, 2, ... . Then, for all
k = 0, 1,2,...,

EkeC2 = {E£G\ \\E\\ < M).

Now, since (x*) is convergent, the set {xo, xx, x2, ...} is contained in a

compact set Cx. Since Cx x C2 is compact and tp is continuous, tp(x, E) is

bounded for (x, E) e (Cx x C2)nG. Therefore, \Bk\ is bounded. Since |5^'|

is bounded by hypothesis, the desired result follows from Theorem 2.3.   D

Theorem 3.4. Assume the hypotheses of Theorem 3.3 except that instead of (3.29)

we assume that

(3.30) Bk+Xsk=yk = F(xk+x)-F(xk)

for all k = 0,1,2, ... .   Then there exists ^eN such that sk = s? for all
k > kx, and convergence is superlinear.

Proof. By (2.7) the secant equation (3.30) implies (3.29). So, the desired result

follows from Theorem 3.3.   D

4. Augmented BFGS preconditioners

In this section we consider nonlinear systems F(x) = 0 where the Jacobian

matrix J(x) is symmetric and positive definite. Typical examples of this type

of system come from minimization problems. Since J(xk) is symmetric and

positive definite, incomplete Cholesky factorizations are natural preconditioners

of the system (1.2). However, since we need to solve a sequence of systems of

type (1.2), it is natural to modify the incomplete Cholesky preconditioner by

some least-change secant formula. In this section we analyze the modification

of a generic preconditioner by a BFGS-type formula. Other modifications may

also be considered, such as PSB modifications or DFP structured modifications

(see [12, 14,7,41]).
Assume, as always, that F e CX(Q), where Q is an open and convex set.

Let C: Q —* R"x" be a continuous function. Assume that linear systems whose

matrix is C(x) are easy to solve. Assume that C(x) = J2f(x)J¿?(x)T, where

2C(x) is lower triangular and has a simple structure. The product ^(x)^(x)T

may be considered an approximation of the Cholesky factorization of J(x). A
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particular case is when C(x) is the matrix that defines some stationary linear

iterative method, such as Jacobi or SOR (see [28, 22, etc.]). For example, the

preconditioner C(x) induced by the Jacobi method is the diagonal of J(x).

Below we define the main algorithm of this section.

Algorithm 4.1. Let Xo e Í2 be a given initial approximation to the solution

of (1.1) such that C(x0) is nonsingular, E0 e R"x", 0 < d < t < 1, 6k e

(0,0) for all k = 0, 1,2,... and limero 6k = 0. Given xk, Ek such
that xk e Q. and C(xk) is nonsingular, the steps for obtaining xk+x, Ek+X,
k = 0, 1,2, ... , are:

Step 1. Define

(4.1) jö = -[C(xk)~x+Ek]F(xk).

Step 2. If

(4.2) \J(xk)sQ + F(xk)\<d\F(xk)\,

define

sk = s°

and go to Step 4.
Step 3. Find an increment sk such that

(4.3) \J(xk)sk + F(xk)\<ek\F(xk)\.

Step 4. Define

(4.4) xk+x=xk+sk.

Step 5. Define

(4.5) yk = F(xk+x)-F(xk),

(4.6) s*k=sk-C(xk+xyxyk.

If skyk < 0, set Ek+X = Ek , else compute

,An\      e- j,   , (4 - Ekyk)sk + sk(s¡ - Ekyk)J     (si - Ekyk)Tyksksl

skyk (skyk)2

Remarks. At Step 3, the increment sk is calculated in an unspecified manner.

However, the natural way to compute it is to use a sufficient number of steps

of the Conjugate Gradient method, preconditioned by C(xk)~x + Ek . In fact,

following Algorithm 10.3.1 of [19], we observe that if = (C(xk)~x +Ek)F(xk)
must be necessarily computed at the first step of the preconditioned CG al-

gorithm if M = [C(xk)~x + Ek]~x . Therefore, the work done at Step 1 of

Algorithm 4.1 is incorporated naturally in the preconditioned CG procedure.

The structured BFGS formula (4.7) is derived by requiring Ek+X to be the

closest symmetric matrix to Ek that satisfies the secant equation

(C(xk+X)~x +Ek+X)yk =sk,

in the weighted Frobenius norm defined by (4.13) below. For details, see, for

example, [12, 14, 26].   D

Using the results of §§2 and 3, we prove the following convergence results for

Algorithm 4.1.
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Theorem 4.1. Suppose that Assumption 1 is satisfied. There exists e > 0 such

that, if |xrj - x*| < e, the sequence generated by Algorithm 4.1 converges to x».

Moreover,

(4.8) \xk+x - x.|. < t\xk - x,|,

for all k = 0, 1,2,..., w/zere |z|„ = \J(x*)z\.

Proof. This result is an application of Theorem 3.3 of [6].   D

Lemma 4.1. Let F satisfy Assumption 1 and let 7(x») be symmetric and positive

definite. Suppose that the sequence generated by Algorithm 4.1 converges to x»

and that xk ^ x» for all k = 0, 1,2, ... . There exists ^eN such that
skyk > 0 for all k >ko. So, for all k >ko, the matrix Ek+X is computed using

(4.7).
Proof. Define

i a m o COXJ(Xt)CO(4.9) k = mm -?—— > 0.
tü€R"        CO1 to
co#0

Since sk t¿ 0 for all k = 0, 1, 2, ... , we have, by (2.7), that

*kyk =sJk[F(xk+x)-F(xk)}

sjsk slsk

_ sl[F(xk+x) - F(xk) - J(x*)sk] | sJJ(x,)sk

Spk SkSk

> _L\sk\2o(xk,xk+x) + sJJMsj,    x _

SkSk sksk

So, for large enough k, we have sTyk > 0, as we wanted to prove.   □

Theorem 4.2. Let F satisfy Assumption 1, and let C(x») be nonsingular. Sup-

pose that the sequence generated by Algorithm 4.1 converges to x* and satisfies

(4.8). There exist ko e N and A > 0 such that, if

(4.10) \Ekl-E.\<A

for some kx > ko, where

(4.11) E, = J(x*)~x - C(x,)-',

then convergence is superlinear and sk = jf for all k large enough.

Proof. Define X = R"x" . For x, z € Q we define

(4.12) H(x,z)= [ J(x + t(z-x))dt.
Jo

Possibly restricting Q, we can assume, since J(x*) is positive definite, that

H(x, z) is positive definite for all x, z e Q. Define

(4.13) P||„ = ||L(*,z)T£L(jt,z)||j,,

where L(x, z)L(x, z)T is the Cholesky factorization of H(x, z), and

(4.14) \\E\\ = \\LJEL4f,
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where L*LT is the Cholesky factorization of J(x*). Assumption 3 can be seen

to hold, using the arguments in the proof of Theorem 4.3 of [26].

Define

(4.15) V(x, z) = Sn{E e X I E[F(z)-F(x)] = z-x-C(z)~x[F(z)-F(x)]},

where 5 is the subspace of symmetric matrices of R"x" . By Lemma 4.1 we
can assume, without loss of generality, that s^yk > 0 for all k > 0. Thus,
repeating the arguments of [26, pp. 150-151], we see that

(4.16) Ek+x=Pk(Ek)

for all k = 0, 1, 2, ... , where Pk is the projection operator on V(xk , xk+x )

with respect to || • \\XkXk+i.

Finally, define

(4.17) E(x,z) = /   J(x + t(z-x))dt
Jo

-i-i

-C(z)~x.

Obviously, E(x, z) e V(x, z), and (3.9) follows from (2.6) and Banach's

lemma ([19, p. 59]). Therefore, Assumptions 2 and 3 hold for Algorithm 4.1.
Define

(4.18) tp(x, E) = (C(x)~x + E)~x

and

(4.19) D = {(x,E)eQ.xX\ C(x) and C(x)~x + E are nonsingular}.

Clearly, (x„, E») e D in this case.
Define c$ as in Lemma 3.2. By (3.21), we have

(4.20) \\Ek+j -E4< \\Ek -E4 + c5\xk - x.|.

for all k>0, ;' = 0, 1,2,... .
Let Si, Ax > 0 be such that

(4.21) Gm{ix,E)€ClxX\\x-x.\,<e3,  \\E - Et\\ < Ax} c D.

Let ko € N, A > 0 be such that

(4.22) A + c5|x^ -xt|, < Ai

and

(4.23) |x^ -x*|* <e3.

By (4.8), (4.10) and (4.20)-(4.23), (xk, Ek) belongs to the compact set G for
all k>kx. Clearly, |C(x)~' + E\ is bounded for (x, E) £ G, and the desired
result follows from Theorem 3.2.   D

Remark. Observe that the restriction (4.10) on some "initial" Ek does not have

the same meaning as the constraint \\Eo-E* || < S in the hypothesis of Theorem
3.2 of [26]. The latter was a very severe restriction that guarantees that all the

Ek's belong to a small neighborhood of E* where all the parameters generate
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contractive mappings.   In the case of (4.10) we only want to guarantee that

deterioration is not sufficient to produce unbounded \Bk\ or \Bkl\.

5. Conclusions

The computer time which corresponds to the resolution of a large-scale linear

system of equations using a direct method is not negligible. Sometimes, the

associated cost largely dominates the cost of computing the function and the

derivatives.
For this reason, traditional quasi-Newton methods like the sparse Broyden

method ([2, 38]) tend to be rarely used because they need the same linear algebra

work as Newton's method. However, in some quasi-Newton methods the com-

puter time used to solve Bks = —F(x) is substantially less than the computer

time needed to solve (1.2). These methods are still very useful. Essentially,

these algorithms are low-rank modification methods (see [12]) and methods

based on direct updating of factorizations ([8, 23, 24, 25, 42, 43, 20]). These
"cheap linear algebra" quasi-Newton methods can be used as preconditioners

when CG-type algorithms are applied to (1.2). Of course, it is not possible to

claim that all these algorithms generate good preconditioners in practice for the

inexact-Newton method. However, we proved in this paper that the updating

schemes that fall under the Martinez theory ([26]) have very nice theoretical

properties as inexact-Newton preconditioners. With this contribution, we sup-

port the point of view that quasi-Newton and inexact-Newton methods are not

competitors, but complement each other for solving large-scale nonlinear sys-

tems.
The idea of using secant modifications of classical preconditioners, like the

one introduced in §4, is promising because it tends to make the best possible use

of available information at each iteration of the inexact-Newton method. The

theory introduced in this paper encourages us to initiate a comprehensive set of
experiments with the aim to discover the best updating schemes and to evaluate

particular cases of this approach in practical large-scale problems. Computer

implementations of Algorithm 2.1 will probably need suitable safeguards in or-

der to keep \Bk\ and |^'| bounded, since we cannot predict how far xo is

from x,. A large initial error can, in theory, produce singular (or nearly singu-

lar) preconditioners. Moreover, owing to poor initial estimates, a large number

of iterations could be necessary to satisfy (2.2). Only computer experimentation

can tell us if these are serious drawbacks.
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