
MATHEMATICS OF COMPUTATION
VOLUME 60, NUMBER 202
APRIL 1993, PAGES 591-616

RUNGE-KUTTA METHODS AND
LOCAL UNIFORM GRID REFINEMENT

R. A. TROMPERT AND J. G. VERWER

Abstract. Local uniform grid refinement (LUGR) is an adaptive grid tech-

nique for computing solutions of partial differential equations possessing sharp

spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR

technique refines the space grid locally around these transitions, so as to avoid

discretization on a very fine grid covering the entire physical domain. This paper

examines the LUGR technique for time-dependent problems when combined

with static regridding. Static regridding means that in the course of the time

evolution, the space grid is adapted at discrete times. The present paper consid-

ers the general class of Runge-Kutta methods for the numerical time integration.

Following the method of lines approach, we develop a mathematical framework

for the general Runge-Kutta LUGR method applied to multispace-dimensional

problems. We hereby focus on parabolic problems, but a considerable part of

the examination applies to hyperbolic problems as well. Much attention is paid

to the local error analysis. The central issue here is a "refinement condition"

which is to underly the refinement strategy. By obeying this condition, spatial

interpolation errors are controlled in a manner that the spatial accuracy ob-

tained is comparable to the spatial accuracy on the finest grid if this grid would

be used without any adaptation. A diagonally implicit Runge-Kutta method is

discussed for illustration purposes, both theoretically and numerically.

1. Introduction

Local uniform grid refinement (LUGR) is an adaptive grid technique for

computing solutions of partial differential equations (PDEs) possessing sharp

spatial transitions. Using nested, finer-and-finer, uniform subgrids, the LUGR
technique refines the space grid locally around these transitions to avoid dis-

cretization on a very fine grid covering the entire domain. In this paper we exam-

ine the LUGR technique for time-dependent problems. Thus, typical solutions

aimed at are those possessing sharp moving transitions, such as steep fronts,

emerging layers, moving pulses, etc. For time-dependent problems, LUGR is

combined with static regridding. Static regridding means that in the course of

the time evolution, the space grid is adapted at discrete times.

We consider Runge-Kutta methods for the time integration and, following

the method of lines approach, develop a mathematical framework for the gen-

eral Runge-Kutta LUGR method. We hereby focus on parabolic problems, but
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a considerable part of the discussion applies to hyperbolic problems as well.

The present paper is a continuation of [12] which deals with the implicit Eu-

ler method. Here we discuss how the ideas developed in [12] are extended to
the general Runge-Kutta case. As in [12], much attention is paid to the local

error analysis. The central issue here is the "refinement condition", which is to

underlie the refinement strategy. By obeying this condition, spatial interpola-

tion errors are controlled in a manner such that the spatial accuracy obtained

is comparable to the spatial accuracy on the finest grid if this grid would be
used without any adaptation. Nonnumerical subjects, such as the data structure

and the memory use, are not discussed here. These are the same as in [11].
For related earlier work on LUGR methods, we refer to Berger and Öliger [3],

Gropp [6, 7], Arney and Flaherty [2], and references therein.

Section 2 is devoted to the method formulation. Here we develop the math-

ematical framework that enables us to give a concise description of the Runge-
Kutta LUGR method. In §3 we set up a general error scheme, which is further

elaborated in §§4 and 5. Section 4 briefly addresses the stability issue, while §5
is devoted to the local error analysis. Here we derive the important "refinement
condition". Under a natural assumption on the Runge-Kutta method, we next

prove that the "uniform in h " temporal order of the method is at least equal

to the stage order. Noteworthy is that §§3-5 apply to the whole class of Runge-

Kutta methods. As a result, the outcome of the analysis is of a general nature, so

that for a specific Runge-Kutta method further elaboration is needed. Such an

elaboration is presented in the remainder of the paper for a 3-stage diagonally

implicit Runge-Kutta (DIRK) method. In §6 attention is given to the order re-

duction phenomenon and to the manner in which to implement the "refinement

condition" for this specific method. Section 7 deals with two numerical exam-
ples in two space dimensions. Finally, we conclude the paper with §8 discussing

two important matters of practical interest.

2. The general method formulation

2.1. The Runge-Kutta method. Consider the initial value problem for a stan-

dard ODE system,

(2.1) ^-U(t) = F(t,U(t)),    0<t<T,        U(0) = U°.

The general one-step, s-stage RK scheme for the numerical solution of (2.1) is

denoted by

(2.2) U{i) = U"-x+xJ2a¡jF(tn-\ + Cjx, Uu)),        X<i<s,
7=1

s

(2.3) U" = Un-x+xJ2biF(tn-i+CiX, [/<''>),
!=1

where the stepsize x may vary with n . Superscripts will refer to time, while

superscripts in parentheses are used for approximations at intermediate stages.

As usual, we suppose c, = a, H-htf/s. In the sequel it is convenient to combine

(2.2)-(2.3) into one formula. Denote as+ii = b¡, X <i <s, U{s+X) = U" ; then
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we rewrite (2.2)-(2.3) as

s

(2.4) U® = U"~x + xYjaijF(t„-x + Cjt, U®),        1 < i < s+ 1.

7=1

2.2. The semidiscrete problem. Consider an initial-boundary value problem
in d space dimensions,

(2.5) ut = L(t,u),    0<t<T,        u(x,0) = uo(x),

where L is supposed to be of at most second order and provided with appro-

priate boundary conditions on the boundary dCl of the space domain Q. The

boundary is taken to be locally parallel to the coordinate axes. The function

u(x, t) may be vector-valued and is supposed to exist uniquely and to be as

often differentiable on (Q U <9Q) x [0, T] as the numerical analysis requires.

LUGR methods use local uniform grids whose size and number usually vary

in time. Therefore, LUGR methods generate a sequence of operations on vec-

tors in vector spaces with a variable dimension. This complicates the error

analysis. In [12] we got around this problem by expanding the fine grids in the

mathematical formulation of the method, so that the entire domain is covered.

Also here we use this "grid expansion". Temporal integration then takes place
on one part of the expanded fine grid and interpolation on the other. Note that
this grid expansion does not take place in the actual application but only in the

mathematical formulation of the method. Nevertheless, the results of the error
analysis presented remain valid for the method as applied.

Let / £ N+ . For k = X, ... , I we introduce uniform space grids cok , where
each o)k is supposed to cover the whole of the interior domain Q. The grid
cok has no points on 9Í2. The grid fc>i is called the base grid and, given this
grid, (o2 is obtained from a>x by bisecting all sides of all cells of cox, etc. With
(2.5) we now associate on each cok a real Cauchy problem for an explicit ODE
system in Rdk,

(2.6) jUk(t) = Fk(t,Uk(t)),    0<t<T,        Uk(0) = U£,

defined by a finite difference space discretization of (2.5) and its boundary con-

ditions. Thus, Uk and Fk are vectors representing the values of grid functions

defined on the grid 0)k . Each component of Uk and Fk itself is vector-valued

if u is vector-valued. The boundary conditions have been worked into the

semidiscrete system by eliminating semidiscrete values at d£l. The dimension

dk is determined by the spatial dimension, the grid spacing, and the number of

PDEs. The initial vector U® for (2.6) is supposed to be exact.

In the sequel we let Sk with dim^) = dk denote the grid function space.

Sk coincides with Rdk and Uk, Fk are elements of Sk. Let uk(t) £ Sk rep-

resent the natural (nodal wise) restriction of u(x, t) to cok. In Sk the fully

continuous problem (2.5) and the semidiscrete problem (2.6) are related by the

local spatial discretization error

(2.7) ak(t) = ^-uk(t)-Fk(t,uk(t)),        0<t<T.

In particular, uk and ak are sufficiently often differentiable with respect to t,

and ak(t) has the order of consistency of the finite difference scheme. Finally,
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we note once more that we consider elements uk(t), Uk(t) £ Sk defined on

space grids cok which cover the entire physical domain Q.

2.3. The multilevel multistage RK method. Starting at the coarse base grid a>x,

this method successively integrates on subgrids of cok for k = 2, ... , I over

the same time interval [tn-x, tn] ■ Characteristic for the method is that subgrids,

henceforth called the integration domains, are nested and that, in a sense, on

each domain a new initial-boundary value problem is solved. Required initial

values are defined by interpolation from the next coarser integration domain or

taken from a possibly existing one from the previous time interval. Boundary

values required at internal boundaries are also interpolated from the next coarser

integration domain. At each level of refinement, the domains are allowed to

be disjunct and thus may consist of two or more subdomains. The nesting is

continued up to a level fine enough to resolve the anticipated fine-scale structure.

This means that, given cox, the integer / must be chosen sufficiently large.

Having completed the integration on the finest, /th level integration domain,

the process is repeated for the next time interval [tn, tn+i] by again starting

from ft>i. We note that all refined subgrids computed at forward time are kept

in storage as they are used for step continuation. Further, for step continuation

always the most accurate solution is used that is available.

The process described above is defined by the formulas

(2.8a)
Uf = Rn U?~x + x¿a.jFx(tn-x + Cjx, U¡j)),

7=1

X <i<s+X,  k=X,

"I* = Dl
(2.8b)

RlkUf-l+TYt*tjFk(tn-\+CJ't, U{kj))

+ (Ik-D"k)[Pk_xkU{k,)_i+bi')],

X <i <s+X,  2<k <l,

where Uk+X^ = Uk £ Sk is the approximation to u„(t„) at the grid cok , Uk] £

Sk is the /th intermediate approximation at œk, Ik: Sk —► Sk is the unit

matrix, D£: Sk -» Sk is a diagonal matrix with entries (DC)a either unity or

zero, R¡k : S¡ -* Sk , k = 1,...,/, is the natural restriction operator from oj¡

to cok with R¡i = I¡, Pk-xk'- Sk-i -* Sk > k = 2,... ,1, is an interpolation

operator from cok_x to oik, and b^ £ Sk contains time-dependent terms

emanating from the physical boundary <9Q.

The nesting property of the integration domains is induced by the grid strat-

egy. This strategy determines at which nodes integration or interpolation is

carried out and defines the diagonal matrices D£ . If at a node integration is to
take place, then the associated diagonal entry (DC)a is defined as (D£),, = 1 .

For all remaining interpolation nodes, (£>£)', = 0- The nesting property itself

cannot be recovered from the above formulation, as this is hidden in the actual

definition of Dk .
The interpolation step on level k > 2 stands on its own and is represented

by

(2.9) (Ik - D"k)U{kl) = (Ik - Dl)[Pk.xkU^_x + bkn],        1 < i < s + 1.
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The grid function bk^ plays an auxiliary role. We need to include it as boundary
conditions have been worked into (2.6) (method of lines). For the analysis pre-

sented, bk plays no role (it contains merely time-dependent terms and does not
depend on u(x, t)). Likewise, the integration step on the integration domain
of level k is represented by

(2.10)
OnkU{ki] = Dnk RikUf-x+xY^aijFk(tn-x+CjX, UJP)

7 = 1

1 < i < s + 1

where, according to (2.8a), D" = Ix. Values at, or beyond, internal boundaries

needed in the function evaluation in (2.10) are defined by (2.9), for each RK

stage. Hence, owing to the internal boundaries, (2.10) cannot be considered
uncoupled from the interpolation (2.9). Also observe that at each grid level

the integration has the fine grid solution D£R!kU"~x as initial function. Note

that if we substitute the implicit Euler formula in (2.10), the scheme of [12] is
obtained.

In (2.8) the approximations Uk^ are defined on the whole of the grids cok

and thus are also elements of Sk . Consequently, for any k > 2 interpolation

is considered to take place on the whole of 0)k, which is costly. In actual

application, the interpolations are therefore restricted to the nested integration

domains. This point will be discussed later in the paper. For the time being, it

is assumed that the numerical solutions are indeed generated as grid functions

in Sk (grid expansion).
In (2.8) the number of grid levels / is fixed a priori, independent of time. In

applications this fixed-level mode of operation may be inefficient. For example,

if a solution steepens up in time, fewer levels are needed in the initial integration

than at later times. Consequently, at early times / must be taken larger than

necessary, which is not efficient. On the other hand, the solution may also

become less steep, which again makes a fixed / inefficient. Obviously, the

method should be capable of working with a variable /. For this variable-

level mode of operation (2.8) requires a modification. Let /„_i, /„ denote the

number of levels from i„_( to t„ and tn to tn+x , respectively. Then, for the

step from t„-x to /„ , (2.8) is modified to

„,,,   uï]=*/»-> urï+t¿ a'JFx«»-»+cJr■u^.
(z.naj j=l

1 < i < s + 1, k = X,

(2.11b)

U{ki}=D"k   Ri^U^+x^a.jF^tn-x+cjx, U¡»)
j=l

+ (Ik-D"k)[Pk_lkU{k')_i+b{ki)],

X <i<s+X, 2<k< /„_],

and, provided /„ > /„_i, for k = /„_i + 1,..., /„ we have

(2.1 lc) UJP = Pk-ikU^l. + bf,        1 < i < s + 1.
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Consequently, if the number of levels should increase for use in the next step,

then so-called full interpolations (2.1 lc) are carried out at the end of the current

step, so that the required initial function, which is to be taken from the highest

grid level that will be used, is always available. If /„ < ln-\, then (2.11c) is

omitted and nothing really changes. Full interpolation is necessary only when

the solution steepens up in time. Because we will let the /„ depend exclusively

on the spatial steepness, and because max„{/„} is finite, full interpolation is

carried out only for a finite number of steps, uniformly in x. Hence full inter-

polation cannot have a strongly diminishing effect on global accuracy. Like the

matrices D£ , the actual choice for /„ is part of the adaptation strategy.
We conclude this section with a minor modification for certain RK methods.

Above, Dk depends only on the step number n and the level index k, and

not on the stages. There exist RK methods for which all coefficients aXj are

zero, trivially so for all explicit methods, but for example also for the implicit
Lobatto IIIA-methods (s = 2 yields the familiar trapezoidal rule). If this is the

case, then it is more natural to define for all grid levels the 1st stage value as

(2.12) uii)=Rlkuri

to avoid interpolation. This means that at stage one, Dk is to be replaced by

the unit matrix Ik .

3. The general error scheme

To save space, (2.11) is rewritten as

(3.1)
Uf = Dl Ri^kU^+x^aijF^tn-x+CjX, U(k

+ (Ik-D"k)[Pk_xkU{kl)_l+b{')],

Uh

X <i<s+ X,   X <k<l„.

Note that Df = /, and D"k = 0 if k > ln-x ■ Further, if axj = 0 (X < j < s),
then Dk is to be replaced by Ik for i = 1, but only for 1 < k < ln-x • The
rewriting of (2.11) into (3.1) introduces variables not existing in reality, viz.,

the grid functions (/¿' , b\1' and the operators Pox and R¡n_lk for k > ln~x ■

Formally we can use (3.1) owing to the definition of D£ .

The derivation of the error scheme parallels that in [12]. Consider the per-

turbed scheme

Iff = Dl

(3.2)

«Rt.-ikU?-_l +^auFk(tn-x +cjx, U{k
7=1

+ (h-Dl)[Pk_xkÜ(kl)_^bf] + r(k\

1 < i < 5 + 1,   X <k <l„,

with the local perturbations ri'' still arbitrary. Introduce the errors

,c) - m (0(3.3)     enk = U£ - UZ ,    ek" = lfkl) - U{k" ,        X < i < s + 1,   1 < k < /„ ,



RUNGE-KUTTA METHODS AND GRID REFINEMENT

and subtract (3.1) and (3.2) to obtain
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,«') -

(3.4)
Dl U)JJ)

+ (Ik-D"k)Pk_xkej;!_l+¿ki) X <i <s+X,   X <k <ln.

rU)Here, Mk   is the integrated Jacobian matrix resulting from the use of the mean
value theorem:

rU)(3.5a)   Fk(tn_x + cjx, U^') - Fk(tn-x + c}x, l/¿") = M^(U{k]) - if»),U)\ _ \Ai)(T~jU) rUh

t/)>de.(3.5b) M¡P = [ F'(tn-x + Cjx, eÛ{kj) + (1 - 6)U,
Jo

We next introduce the Kronecker product notation. Let Es+l be the unit

matrix of order s + X and denote e = [X, ... , X]T £ W+x. Introduce the
augmented vectors

MT „(1)7- r(s+l)T,T
(3.6) e"k = [ekl" ,..., e^1 )',       r»k = [$» ,..., r^1" V

in the augmented space Sk = R(s+1)d* and the matrix operators

R/._,fc : S/„_, -> Sk ,       R¡n_lk = Es+l <8> R¡n_lk = diag(Rk_lk),

(3.7) Pfc_lk:St_, ^Sk,        Pk-ik = Es+x®Pk_xk = dùê{Pk-ik),

h'-Sk~>Sk,       h= Es+i ®h = diag(4).

Define DJ!: Sk - S*, D"k = diag(/fe , D"k , ... , Dnk) if aij = 0, X<j<s (cf.
(2.12)), and otherwise diag(D£). Finally, we introduce the augmented Jacobian

operators

axsM(ks)     0\( axxM(kx)       ax2M{k2)

(3.8)
M« =

asiM{kx)       as2M(k2)

\as+xxM(kX)   as+x2M(k2)

■ lk-xD"kM"k,

assMk>

as+xsM(ks)   0/

so that (3.4) can now be written in the compact form

(3.9)   Z"k4 = B"kR,„_ik(e ® éT\) + (!*- D¡J)P,_ue^, + r"k , X<k<l„.

In (3.9) we deal with an inner and outer recursion connected, respectively,

with the grid refinement index k and time stepping index n . Introduce

Xnk = (Z"k)-x(lk~D"k)Pk_xk,
(3.10)

r"k = (Z"k)-xD"kRln_lk.

4t = wrl*i>
where k = X ,...,/„ . Note that Z"k = lk , Xnk = Pk_lk , Tnk = 0, <p"k = x\ for

the full interpolation levels k = ln-\ + X, ... , ln . Using (3.10), we rewrite (3.9)

as

(3.11) 4 = X^_, +Yl(e®elz\) + 4>"k,       k = 1,..., /„
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An elementary calculation then leads to the final form

(3.12) ek = Gl(e®el-_\) + ¥"k,        k=X,...,ln,

where Gk and y/k themselves are also defined by recursions:

(3.13)        G? = r?,   Gj-xjG^+ry,     j = 2,...,k,

(3.14) rf = #.     ¥j=~XJ¥f-i+tf,       j = 2,...,k.
Equation (3.12) describes the error propagation for increasing levels within

one complete time step. When it is used as error recursion in time, we put

k = l„, as we use the highest-level approximations U"~x, U", ... for step

continuation. Hence,

(3.15) e£ = GJ(e®«£:í> + <'       « = 1,2,...,

is the final error scheme for the highest-level approximations. Similar as in

the standard application of the RK method (single-level multistage), our main
interest concerns the (5 + l)st component vector. Note that the formulation

(3.15) supposes that U" is taken as output rather than U"   .

4. Remarks on stability

In [12] we have presented a comprehensive analysis of the stability of the

multilevel implicit Euler method. The multilevel multistage RK formulas are

not so amenable to a comprehensive stability analysis. A technical difficulty
arises from the property that at any RK stage, nonphysical boundary values

are defined by interpolating the solution of the corresponding stage from the

next coarser grid. This implies that the internal RK stages play a role in the

stability analysis, even for constant-coefficient linear problems. On the other
hand, we believe this role is minor, and that in applications one encounters

the same step-by-step stability as on a single grid, as long as interpolation takes
place in low-error regions. In this paper no further attention is paid to stability

analysis. Instead, we refer to the preprint [10] for some preliminary remarks

on stability and proceed with the local error analysis, which is to reveal how to

define the adaptation strategy for choosing the spatial integration domains at

the various refinement levels. Obviously, this is one of the main issues in the

analysis, implementation and application of adaptive grid methods.

5. The local errors

5.1. Preliminaries. In the following, || • || denotes the conventional maximum

norm. We use the maximum norm since this norm is most natural for imple-

menting adaptation strategies. Note that || • || stands for the maximum norm in

any space Sk or Sk under consideration, while the same symbol will be used

for operators. We will examine the total local error y/k obtained by associating

the local perturbations x"k with the true PDE solution. Note that the global
errors ek then become global discretization errors, viz.,

(5.1) enk = u"k-\Jnk,        n = 0, X,...,  X < k < l„.

For clarity, we will henceforth consistently call y/k the total local error, whereas

rk will be consistently called a residual, so as to distinguish it from y/k . Note
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that \pk can be interpreted as the fcth-level global error after one time step

starting from the true PDE solution (put e"~x = 0 in (3.12)).

We have tacitly used the natural assumption that any augmented RK operator

Zk that occurs is invertible (under appropriate conditions on x and œk). We
thus may introduce the following bound:

(5.2) \\(Zl)-xv\\<C\\y\\,    WeS*,

where C > X denotes a constant independent of x and ojk, while x itself

satisfies t < to with to possibly depending on oj[ni . The constant C and

stepsize bound To are assumed to take on appropriate values (C close to 1
and To not unduly restrictive). As in [12], the aim of the error analysis is to

derive a refinement condition that distributes space discretization and interpo-

lation errors in such a way that the local spatial accuracy obtained on a>in _, is

comparable to the local spatial accuracy if this grid would be used without any

adaptation. Assuming a stable time-stepping process, this will then also be true

for the global spatial accuracy.

5.2. The local error yrfc . Replace, in the perturbed scheme (3.2), all Up-

values by the corresponding PDE solution values u(k . Then, in the space Sk ,

the resulting residual rk can be expressed as

(5-3) Tnk = Dnk(ß»k+x<T£) + (lk-D"k)y»k,

where

(5.4a) ßnk=[ß{kl)T,...,ß{ks)T,ß{ks+l)T]T,

(5.4b) < = (A®Ik)[a[i)T, ... , a<f, 4S+,)Y,

(5.4c) v»k = [yr,...,y?T,yr)T]T-

The component ßk] is the PDE residual defined for the zth RK stage:

(5.5) ß{kl) = uk(t„-x +c¡x) - uk(t„-x) - xY^aij-j-uk(tn-x +Cjx).

7=1

The component ak   is the PDE residual defined by the semidiscretization:

(5.6) a{k} = -j-uk(t„-x + CiX) - Fk(tn-x + c¡x, uk(t„^x +c,x)).

Following common use, ak and likewise ak and their components, will also

be called local space discretization error. The matrix A represents the (s + X ) x

(s + X) Butcher matrix of RK coefficients a¡j whose (s + l)st column is zero.

Hence, the zth component ok of ak is given by ok = Yl)=x a'iak • Finally,

the component yk   is the residual defined by the interpolation,

(5.7) y[k] = uk(t„-\ +c,x)-Pk_xkUk-x(tn-i + c¡x) - bk(t„-x + c¡x),

and y[^ and yk will also be called interpolation error. Observe that any com-

ponent vector

(5-8) /f = D»k(ß[i] + x4i]) + (Ik - D*k)yM
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of r£ is now determined completely by the true PDE solution u = u(x, t).

Thus, rkl) can be expanded in a Taylor series, assuming sufficient differentia-

bility.
We are now ready to determine the local error y/k  defined by recursion

(3.14). Assuming

k+i

(5.9) IIX2 = I*>        k=X,...,ln,
i=k

and using (3.10) and (5.3), we get

(5.10) v»k = £ fnx" ) (^r^jißj + wf) + (i; - P])r]l
7=1   \i=k        J

A natural splitting into a spatial and a temporal local error is

(5.11) ¥nk = ¥nk,s + ¥nk,t>

where

(5.12)        rr.,= E(n^Vz")"llTD'a" + (I-/"'D')^1,
7=1   \i=k       )

(5.13)      rk,t = £ (fix?) wrl»jßj-
7=1   \i=k       I

The local space error y/k contains only contributions from the spatial ap-

proximation, viz., local space discretization errors o\" and spatial interpolation

errors y" . The local time error \pk t contains only contributions ß" from the

time integration. Hence, in view of the splitting (5.11), for the spatial local er-
ror analysis we may restrict ourselves to ipg and for the temporal local error

analysis to Wk ¡-

5.3.   The local space error y/g   .  We rewrite yrß    as

W^s = (Z"k)-x(lk--D"k)Pk_xk

+ (Z»k)-x[xD"k<!»k+(lk-D»k)y»k]

= (Z»k)-x[xD»k<y»k+(Ik-Dl)p»k],

where

(5.15) p1 = 0   and   p\ = ynk +¥k-ik¥k-i,s>        k = 2,...,l„.

In (5.14), the local space discretization error D£ct£ , defined at the level k

integration domain, is separated from the local spatial error part (lk - D£)p£

outside this domain. Note that pk contains the level k interpolation error yk

and the prolongated local space error Pk-\ky/k_l s. At the full interpolation

levels, (5.14) simplifies to

(5.16) ¥k,s = Vnk+Pk-ik¥"k-x,s>        k = /„_, + !,...,/„.
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The separation of errors in (5.14) enables us to formulate the important

refinement condition

(5.17) IKZJJ-'ff,.., -BIJPIJ <c\\(Zl_yxxl>l_alJ\,

where c > 0 denotes a threshold factor to be specified later. Substitution into

(5.14) yields

(5.18) II^L.JIKl+^IKZt.r^Dt.at.ll.
Hence, apart from the factor ( 1 + c), the local space error at the finest level is

bounded by the local space discretization error on its integration domain. By
imposing (5.17), we have virtually removed the error contribution from inter-

polation committed on all levels k < l„-x. Inequality (5.18) is in agreement

with our goal of developing an adaptation strategy that generates integration

domains in such a way that the spatial accuracy obtained on the finest level is

comparable to that obtained without adaptation.

The refinement condition (5.17) implies constraints on the matrices Dk for

2 < k < ln-\. These constraints follow from the following derivation. Let, for

brevity, I = ln-x . By a simple calculation [12], we can rewrite p" as

(5.19) pï=xï + r,_xiYll II v){z®-l(k-iW,
k=2  \;=/-l       /

where

(5.20) XI = y"kPk_xk(Znk-x)-l^"k-x<-i >        k = 2,...,l,

contains the interpolation error at level k and the prolongated spatial discretiza-
tion error of level k - X to k (for k = I - X convention (5.9) applies). This

A-function will be used for determining the matrices D£. Let C¡ > X be a

constant such that

(5.21) ||Pfc-u||<C/.

For linear interpolation, C¡ = X, while for higher-order Lagrangian interpola-

tion, C[ > X. Now,

/-*:-!(5.22) H X?   < Cx < (Cd)
i=/-l

and using (5.19), we get

(5.23) IKZjr'il, - D?)p?\\ < C max ||(I, - D»k)X»k\\
2<k<l

with the grid-independent constant

(5.24) C = C(l + C,(l - 2)CCx) = C + (I - 2)(CC,)^2.

Hence, if for each k = 2,...,/, the matrices D" are selected such that

(5.25) ||(Ifc-D2)^||<4||(Zf)-1TDfa/'||,       / = /„_,,

then the refinement condition (5.17) is satisfied. In the following, (5.25) thus

replaces (5.17).
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This condition says that outside any integration domain the sum of the inter-

polation and prolongated spatial discretization error from the previous coarser

level shall be bounded by the spatial discretization error of the highest level,

multiplied by c/C. This imposes a severe restriction on the size of the inter-
polation and discretization errors of the lower levels. On the other hand, this

restriction is natural, because, when going to a higher level within the current

time step, we never return to a grid point where the solution has been interpo-

lated (nesting property). Note that in (5.25) the temporal stepsize x occurs. In

particular, if x —► 0, then the interpolation errors will prevail and Dk -+ lk .

Recall that we interpolate at each time step, so that interpolation errors can

accumulate linearly with the number of time steps. Our refinement condition

prevents this.
The refinement condition (5.25) is not applicable to the full interpolation

levels since at these levels D£ = 0. For simplicity, we now consider only one

full interpolation level and note that this is sufficient for practical purposes.

Using (5.16), if /„ — l„-x + X, we thus find, instead of (5.18),

(5.26) IK^II^II^II + CKI+^tIKZ^^-'D^^JI.

Recall that full interpolation occurs only in a finite number of steps, uniformly

in t . Hence, when adding all local errors for a convergence proof, assuming sta-

bility, this fact should be taken into account so as to avoid an overly pessimistic

summation like

(5-27) ¿||y/J|>^rnin||y«||.
7 = 1

With a more subtle summation, based on the finite number of full interpolations,

the T_1-term is avoided.
In conclusion, by imposing the refinement condition (5.25), the local space

error bounds (5.18), (5.26) are valid. In an implementation these bounds can

be used to monitor the spatial accuracy, while (5.25) is then used for selecting

the actual integration domains. Such an implementation is method-dependent

and therefore best described for a selected method. An illustration for a DIRK
method is presented below. Finally, the error bound (5.18) suggests that we

choose the threshold factor c not too large. However, if we take c very small,

then the effect will be that the greater part of the diagonal entries of Dk are put

to unity to satisfy the refinement condition, which implies that the integration

domains will become quite large.

5.4. The local time error y/k t. Since the same x is used at all levels, and ßk

does not depend on the mesh width, we have ßk = Ri„_lkß"_ , so that (5.13)

yields

(5.28) ¥"k,t = £ (O*?) (Zj)-l»jKi„-^Lr
7=1   \i=A:       /

By comparison with the recursion (3.13) for the amplification operators Gk ,

one can see that

(5.29) ¥lt = Gnkßl_y,        \<k </„_,.
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This formula shows the dependence of the local time error on the temporal

residual of the finest integration level. Alternatively, we may write, similarly as

for the local space error (5.14),

(5.30) **•'= ^"'P^*'»-*^- + A - DÎ)P*-i*r*"-i.J.
k = 1, ... , /n_i.

This representation gives more insight than (5.29). At each integration level we

recover the local time error contribution committed on the integration domain,

viz. (Zkv)~x\jyikRinxkßf _ ], and the prolongation of the previous local time error

of the next coarser level, viz. ( Znk)-X[(lk - V"k)Pk-xk¥k-x,t] ■

Let p denote the stage order of the RK method [5, 8, 9]. Using (5.2), we

have

(5.31) \\¥£J < Cmax{||DJRil_lfc^_1||, IKIfc-DgJPfc-urí-i.íll}.

Because both ßf and y/" t are 0(x?+x), by definition of stage order, we thus

trivially recover the usual stage-order result at all grid levels, that is,

(5.32) xplt = 0(xP+x),        X<k<ln-x,

where, apart from the norm bounds C for (Z£)_1 and C¡ for P7_i7, the order

constant involved depends exclusively on bounds for temporal derivatives of

u(x> 0 (cf. (5-5)). To recover the conventional ODE order, p say, of the RK

method, the (s + l)st output component of y/k t must be expanded. We then

would also arrive at an order relation y/k t = 0(xp+x), but here the constant

involved may depend on the negative powers of the mesh width, similarly as

in existing "Method of Lines" convergence theories (see [8, 9] and the preprint
[10] on the order reduction phenomenon). Finally, no integration takes place

at a full interpolation level, so that

(5.33) ¥k,t = *k-ik¥k-i,t,       ¡n-i + i<k<ln,

and we thus have the same temporal order as for y/k t, 1 < k < /„_i.

6. Error analysis for a 3-stage DIRK method

By way of illustration, in this section we elaborate the local error analysis for

a 3-stage DIRK method, which later on will be used for presenting numerical

examples.

6.1. The DIRK method. The DIRK method is found in [4] and defined by
the Butcher array

0

(6.1) 20

1

0 0 0 0 = (3 + v/3)/6

6 0 0 bx =3/2-0- 1/(40)

bx b2 6 b2 = -1/2+ 1/(40)

bx b2 0
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It is strongly ^-stable, has classical order p = 3, stage order p = 2, and uses

only two effective stages (first row of coefficients is zero). Note that stage one
and two define the trapezoidal rule and that stage three and four, the output

stage, are identical.

6.2. Elaboration of the local time error. Assume, for simplicity, that the

semidiscrete problem is of constant-coefficient linear type,

(6.2) ^Uk(t) = MkUk(t) + fk(t).

Note that the linear case reveals the essentials of the local error analysis. Also for

simplicity, we put /„_i = 2. Conclusions for the higher-level case immediately

follow. Thus, our task is to examine

(6.3)    rff< = (zn{rxR2xßn2,      ¥i,t = (zsrWA" + (i2 - D^Purf,,].

From (5.5), (6.1) we deduce ß(2l) =0, ß(2A) = ß{23) and

ßm= _2|!T3^M2(ín_i) + 0(T4)5

(6'4) 0(3)        / 1        0       Ö2       203\    4¿4      , .       _.  5,
^3)=(24-6-y+—JTVM2(í«-l)+0(T)-

For any vk £ Sk having v^ = 0, the components wkl) of w^ = (Zk)~xvk

satisfy wkx) = 0,

wk2) = (Ik-dxD"kMk)-xv£\

WW = (Ik - 0xDnkMk)-2b2xD»Mkvk2) + (Ik - 9xDnkMk)-xv{k3),

and wk ' = wk '. We note in passing that the bound (5.2) may be derived from

(6.6) \\(Ik-exD"kMk)-xvk\\<(X-dxp)-x\\vk\\,        X-dxp>0,

with the logarithmic norm p = Poo[^kMk] independent of (the mesh width of)

Mk . This bound applies in all cases where implicit Euler integrates in a stable

way [5, 12].

Now first put k = X.   In view of the foregoing we then find  y/\ \ = 0,

^¡Vvfl.and

VxZ = - — (h - exMx)-xx3R2l-^u2(tn-x) + 0(x4),

(6-7) W3 ¿3

¥?}, = - Ô2-3-(/i - exMx)-2MxR2x^j-iu2(tn-x) + 0(T4).

Using the boundedness of the operators (Ix - 6xM\)~x, (Ix - 6xMx)~2xM\,
fork=X we can recover the stage-order result (5.32) with p = 2. Also the

classical order p = 3 follows from y/f\ when interpreted as the local ODE

error. However, then the order constant depends on MxR2l(d3/dt3)u2(tn-x) =

Mx(d3/dt3)ux(tn-x). Hence, p = 3 is meaningful only when Mx(d3/dt3)ux(tn-x)

= 0( X ), uniformly in the mesh width, which is the case if the third derivative

is zero at dQ. Otherwise, the constant blows up for decreasing mesh width,
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making p = 3 not meaningful (order reduction, see [10] for a concrete exam-

ple).
Next we put the level index k = 2. Since also ln-x = 2, it suffices to examine

the local error of the output stage, which is calculated from (6.3) as

¥$t = ¥?!t = (h - exD"2M2)-2b2xDn2M2[D"2ß{22) + (I2 - D^)Pl2ip^t]

+ (h - 6xDn2M2)-x[Dn2ß^ + (I2 - D»2)Pl2y,¡Vt]

= (I2 - 6xDn2M2)-2b2xDn2M2[D"2ß{2) + (I2 - ty)Pn¥¡2?t]

+ (I2 - 9xDn2M2)-x(I2 - D"2)Px2iPx{3!t + °(t4)-

From the boundedness of the operators, and the results for k = X, stage order

p = 2 directly follows. Inspection of the various terms also reveals the classical

order p = 3. In connection with the occurrence of internal boundaries at grid

interfaces, it is of interest to again examine the possibility of order reduction.

Distinguishing local error components outside and inside the integration do-

main, we can write

(6.9a) (I2 - !%)¥% = (h - Dn2)PxM^,,

re r^        D"^24\ = (h - exDn2M2)-2b2xDn2M2[Dn2ß(2) + (I2 - D"2)Pi2>p[2]]
(6.9b)

+ [(/2 - dxD"2M2)-x - I2](I2 - Dn2)Px2yxwt + 0(x%

Apart from the interpolation, the outside local error (6.9a) is completely de-

termined by level-1 properties, so that a reduction at level 1 will also be felt

at level-2 components outside the integration domain. The reduction will also

be felt inside the level-2 integration domain, since (6.9b) depends on inter-
nal boundary values computed at level 1. An interesting question is whether

the internal boundaries will cause order reduction in case the physical one

does not. To examine this question, we henceforth suppose that no reduc-
tion will take place at öQ and thus assume the additional boundary condition

Mk(d}j'dt3)uk(t„-x) = 0(X), uniformly in the mesh width. Then y/[4\ = 0(x4),

so that (6.8) yields

¥#} = (I2 - dxD"2M2)-2b2xD"2M2[D"2ß{2) + (I2 - Dn2)Px2y/™t] + 0(x4)

203
(6.10) = -b2-^-(I2-6xD"2M2)-2x4D"2M2

*  D"2^u2(tn-x) + (I2-D"2)Px2-^Ux(t„-x)   +0(x4).

Substitution of the interpolation error (5.7),

(6.11) y2(tn-i) = u2(t„-x) - Px2Ux(t„-x) - b2(t„-x),

yields

(6.12) ¥W = bi^yih - 9xDn2M2)~2x4D"2M2(I2 - Dn2)^y2(tn-x) + 0(x4).

We note in passing that the additionally imposed boundary condition implies

"homogeneity in boundary conditions", causing the 3rd derivative of b2(t) to
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vanish. From (6.12) we now deduce that if

(6.13)
¿3

y = D"2M2(I2-Dn2)^y2(tn_x) = 0(1)

uniformly in the mesh width, then y/^4\ = 0(x4) uniformly in the mesh width.

Hence, assuming that at the physical boundary no order reduction takes place,

an important conclusion is that the internal boundaries do not cause order re-

duction if the interpolation condition (6.13) holds. Fortunately, in applications

this condition is easily satisfied. Sufficient is that

(6.14) \\M2
d3    ,
W,y2(tn- 0(1)

which says that the accuracy order of the interpolation should be greater than or

equal to the spatial order of the differential operator (not to be confused with the

order of consistency of the difference operator). For example, for second-order

in space problems it suffices to use simple linear interpolation.

6.3. Elaboration of the refinement condition. Given a specific integration

method, the general refinement condition (5.25) needs to be simplified for prac-

tical use. Two main simplifications can be distinguished:

(i) The first has to do with the augmented form. Working with (5.25) requires

computing in S^ , which is expensive. Consequently, (5.25) is better replaced by

an appropriate approximating condition in Sk , preferably connected with the

output stage. It is always possible to carry this out, since the refinement condi-

tion is concerned with spatial errors. Apart from various multiplying bounded

operators, these errors are similar over the stages.

" 'k'  occurring inConsider (5.20), (5.25).   First we replace the Jacobian M,(,)

Zk by an approximation Mk constant over the stages. Mk is taken to be the
(approximate) Jacobian, computed at the beginning of the time step. Mk is

available as it is also used in the iterative Newton process for solving the implicit

relations. Second, the augmented spatial error tx£ is approximated as

(6.15) bxa[x

\bxa[

+

+

+

0
0of

+
+

\

da?

Oaf)

(26a^

a

k
(3)
k
(3)

lk

Note that we here truncate 0(T)-terms and that ak3' = a"k = ak(t„).  Next,J3>

by using (6.5), the nontrivial components of the spatial error function wk

(Zk)~xDk(Tk are approximated by

(2)

(6.16)

w 2d(Ik-exD"kMk)-xD"ka"k,

k   *(Ik-exD»kMk)-x

• (2b2d(Ik - OxDnkMk)-xxDnkMk + Ik)D"ka"k.

At each of the stages we recover a proportionality with the local space discretiza-

tion error Dkak . This justifies to select one particular stage. We choose the

approximation

(6.17) ,(4)wk*>*(x-2b2)(ik-exD"kMky xD"kank '
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which avoids two forward-backward substitutions and is based on

(6.18) [2020(7* - 9xD"kMk)-xxD"kMk + Ik]D"ka"k « (1 - 2b2)D"ka"k.

In first approximation, (6.18) is exact if D^ak is taken to be an eigenvector

belonging to the maximal eigenvalue. On the other hand, the operator in (6.18)

is bounded, which justifies this step.

We can now replace the constituents of the regridding condition by their

counterparts in 5* :

11(4-£>MI
(6'19) < T^ylKl - 2b2)x(Zn-lD?aj\\,        k = 2, ...,/ = /„_,,

(6.20) 4 = y"k + (X- 2b2)xPk_xk(Znk_l)-xD"k_xal_x,

(6.21) Znk =Ik- 6xD"kMk.

Observe that 11(7* - Dnk)Xnk\\ = 11(1* - D£)vl£|| + O(t) . The choice / - 1 for the

constant C is exact in case of linear interpolation, provided C < X (see (5.24),

(5.2)). We will use C = I -X also in other situations and note that, apart from

the constant 1 - 2b2, condition (6.19) is completely identical to the regridding

condition found for the implicit Euler method in [12].

(ii) The second simplification has to do with the nesting property and re-

stricted interpolation. Once at level k - X the integration is completed, (6.19)

is used to select the integration domain for level k. This selection process is

carried out by the so-called flagging procedure, which scans XeveX-k points and
flags those points for which (6.19) is violated to be placed within the new do-

main. Our mathematical framework prescribes that the scan be carried out on

the whole of cok , as the interpolation error yk is defined on the whole of cok .

This, of course, is time-consuming. We therefore apply restricted interpola-

tion, meaning that the interpolation is restricted to level- k points lying within

the (k - l)st integration domain. Subsequently, the scan is also restricted to

the (k - l)st integration domain. In this way the nesting of the integration

domains is enforced. In [12] it is shown that restricted interpolation leads to

(nearly) the same integration domains as found with full interpolation; hence

full interpolation is truly redundant. Finally, the flagging procedure contains

some safety measures (buffering) which enhances the reliability of the restricted

interpolation. This procedure also implements numerical estimators for y£,

(Zk_l)~xDk_lak_l , and \\(Z")~xD"a"\\. To save space, we again refer to [12].

7. Numerical examples

We will illustrate the effect of the simplified refinement condition (6.19) of

the DIRK method (6.1). Recall that, in theory, this condition guarantees local

space errors at most equal to the maximum of the local space error on the finest

grid when used without adaptation, up to a certain grid-independent constant

(arising, e.g., from transferring the refinement condition to Sk and estimating

C by / - 1). Hence, assuming stability, our theory dictates that the usual
convergence behavior of the discretization method applied without adaptation

will be maintained.
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Two examples are presented, both 2D. The first serves to illustrate the above

claim on convergence. This problem is solved using the "fixed-level mode of

operation". The second serves to illustrate the performance of the method when

applied in the "variable-level mode of operation". This mode is advocated if

the solution shape strongly changes in time, e.g., when steep layers emerge at

later times and at earlier times large gradients are absent. In such situations it

is important that new levels are created in time in order to preserve accuracy.

On the other hand, new levels should not be created too early for efficiency.

7.1.   Example problem I.  The equation is linear and parabolic and given by

(Adjerid and Flaherty [1])

(7.1)        ut = uxx + Uyy-ux-uy +f(x,y,t),       0<x,y<X,t>0.

The initial and Dirichlet boundary conditions and forcing / are adjusted to

(7.2) u(x,y,t) = X- tanh(25(x - t) + 5(v - 1)).

This solution is a skew wave propagating through the domain from left to right.

The wave starts near the left boundary and approaches the right boundary at

approximately t = 0.8. We integrate over the time interval [0, 0.6]. This

problem is suitable to subject the LUGR method to a convergence test.

The spatial discretization is based on second-order symmetric differences.

Simple linear interpolation is used and the constant c, introduced in the refine-

ment condition, is put equal to one. Four computations were performed using,

respectively, 1,2,3, and 4 levels. The mesh width in both x- and y-direction

of the base grid is 0.05. During a computation the stepsize x is fixed. However,
when adding a level, we simultaneously halve x. Because the stage order of the

DIRK method is 2, like the order of the spatial discretization, per computation

a gain factor of approximately 4 should then be found for the total global er-
rors. To compare the accuracy with the accuracy obtained on a single uniform

grid, we have also solved the problem in the standard way using the same values

for t and the mesh width of the finest level. The values of x and the mesh

width in space are always such that the space error dominates. For illustration
purposes this is necessary, since otherwise no valid conclusion can be drawn on

the performance of the spatial refinement condition.

Table 7.1 Example problem I. Maxima of global errors com-

puted at the finest available level. Comparison with the accuracy

obtained on a single uniform grid

no. of
levels

single

grid 0.3 0.6

0.1 1 20x20 0.17319 0.17401

0.05 40x40 0.02728
0.02789

0.02815
0.02810

0.025 80x80 0.00624
0.00680

0.00716
0.00684

0.0125 160 x 160 0.00177
0.00168

0.00174
0.00169
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The results of the computations are contained in Table 7.1. We see that the

LUGR solutions converge according to the theory and, also, that these solutions

are as accurate as the standard, uniform grid solutions. In view of the simpli-
fications of §6.3, this correspondence in accuracy is striking. We should note,
though, that in the actual flagging procedure some safety measures have been

incorporated, like buffering. Buffering of course helps in keeping the LUGR

accuracy close to the standard accuracy. Figure 7.1 shows the grids of the 2-,

3-, and 4-level computations at two different times. Note that the grids align
with the wave front and become larger for smaller x, in accordance with (6.19).

Figure 7.1. Example problem I. Grids of the 2-, 3-, and 4-level
computations at / = 0.3 and t = 0.6



610 R. A. TROMPERT AND J. G. VERWER

7.2.   Example problem II. The equation is again linear and parabolic,

(7.3) ut = uxx + uyy + f(x, y, t),        0 < x, y < X,  t > 0.

The initial and Dirichlet boundary conditions and forcing / are adjusted to

(7.4) u(x,y,t) = X- tanh(100[(x - 0.5)2 + (y - 0.5)2 - t + 0.025]).

This solution rapidly varies its shape and serves to illustrate the "variable-level

mode of operation". At t = 0 the solution is almost zero over the entire domain.

As time elapses, it steepens up at [0.5, 0.5], developing a circular wave front.

This front starts to propagate towards the boundaries when «(0.5, 0.5, t) « 2

and during the propagation the front becomes steeper. When the front has
passed a point (x, y), the solution u(x, y, t) approximates the value 2. We

solve the problem over the time interval [0, 0.1], which is sufficiently large to

see all phenomena happen.

The refinement condition (6.19) tells us where to integrate on a finer level.

When using the "fixed-level mode of operation" this suffices. When using the

"variable-level mode of operation", we also need a criterion to decide when to

change the number of levels. A natural thing to do is to associate this criterion

with the spatial local error value. In the present experiment we employ the

numerical spatial local error expression as used in (6.19). Within each base

time step we monitor the number of grid levels with the criterion

(7.5) (1 +c)(l - 2b2)x\\(Znk)-xDnkank\\ < tTOL,

where TOL represents a tolerance value. Starting with k = X, this inequality

is checked after each level integration. If it is violated, then k is increased by

1. Otherwise it is decided that enough levels have been introduced and ln-x is

assigned the current value for k. Hence, the idea is to select /„_i in such a

way that the local error expression in (7.5) is kept close to tTOL.
We will encounter a few full interpolations. The full interpolation error is

neglected in (7.5). We justify this heuristic decision with the observation that

full interpolation can take place only in a small number of steps (see also §5).

However, to remain on the safe side, we now use 4th-order Lagrangian interpo-

lation instead of 2nd-order linear. It is obvious that full interpolation must not

diminish the quality of the approximations, since otherwise the estimation of

the discretization and interpolation errors used by the refinement condition is

jeopardized. The full interpolation should also not interfere with the estimation

of the number of levels needed in the step to follow. Therefore, the additional

errors stemming from full interpolation have to be restricted in some manner.

In the present experiment, 4th-order interpolation has turned out to work sat-

isfactorily.
The actual experiment with problem (7.3)-(7.4) concerns one run over the

time interval [0, 0.1]. The constant c of the refinement condition is again put

equal to 1. The stepsize x = 0.001 is kept constant. The value of 0.001 is

sufficiently small to guarantee that spatial effects dominate. The mesh width in

both x- and y-direction of the base grid is 0.05 and the tolerance parameter

TOL = 50. Results are collected in Tables 7.2-7.3 and Figure 7.2. For a subset
of time points, including those where a new grid level is added, Table 7.2 shows

the course of the number of grid levels and the maximum of the global error

measured at the finest available grid. Note that while the circular wave front
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Table 7.2 Example problem II. Maxima of global errors com-

puted at the finest grid at various time points, including those
where a new grid is introduced

t
no. of
levels

global
error

0.01

0.017
1

0.01074

0.03171
0.018

0.02

0.03

0.039

0.01222

0.01117

0.01612

0.02523
0.04

0.05

0.06

0.07

0.072

0.01392

0.01493

0.01668

0.02168

0.02136
0.073

0.08

0.09

0.1

0.01289

0.01191

0.00722

0.00713

develops, the algorithm keeps the error at a fairly constant level, which is in

line with the idea behind the error monitor (7.5).

The pictures contained in Figure 7.2 (see pp. 613-615) illustrate that the grids

accurately reflect the circular wave front form (symmetry), showing that the

refinement condition, which tells us where to refine, works as anticipated. On

the other hand, the number of levels needed is not always computed optimally.

This happens, e.g., at t = 0.04 and t = 0.073 time points, where a new grid
level is used for the first time. The grid pictures show that at these time points

the new fine grid almost completely overlaps the existing one, indicating that
the new fine grid is introduced too late (the solution steepens up). Fortunately,

Table 7.2 shows that this small deficiency does not diminish the accuracy for

evolving time. Also note that at later points of time this phenomenon disappears

(see t = 0.05 and t = 0.1). This is of course what should happen in view of

the ever increasing solution gradients.

The precise origin of this small deficiency is not clear. The error introduced

by the full interpolation can play a role here (this error is not monitored by

(7.5)). More likely is, however, that it emanates from the lack of asymptotics

at the coarser grids. This lack of asymptotics is inherent to any monitoring

process that starts on coarse grids and therefore very difficult to overcome. To

provide insight into the asymptotics for the estimator of (7.5), we have added

Table 7.3. This table shows the exact, analytical values for (7.5) with their

estimated numerical values at time points just before and after the introduction

of a new grid level. First, we see that at corresponding levels before and after

the listed time points the numerical estimations are in fairly good agreement
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with one another, even on the coarse base grid. This supports the conclusion

that the full interpolation is sufficiently accurate as to not interfere with the

selection of number of levels. Second, there is excellent agreement between

the exact and numerical values on the fine grids. However, particularly at later
times, the coarse grid values are not in good agreement with one another. This

means that we are outside the asymptotic regime, and this is likely to cause some

disturbances in the selection of the right number of levels. We wish to emphasize

once more that in spite of this lack of asymptotics, the overall behavior of the

algorithm is very satisfactory.

Table 7.3 Example problem II. Exact values and numerical es-
timates of the spatial local error expression (7.5). Note that the

stepsize t = 0.001 is included in these values

t

0.017

0.018

0.039

0.04

0.072

0.073

level

1

2

1

2

3

1

2

3

1

2

3

4

approx.     exact

0.04616

0.05156

0.01246

0.12511

0.04678

0.13972

0.05084

0.01495

0.31630

0.18625

0.04685

0.34144

0.18078

0.05088

0.01683

0.05307

0.05793

0.01468

0.28075

0.05579

0.33177

0.06329

0.01467

1.48171

0.30880

0.05130

1.39739

0.29537

0.05367

0.01382

Let us conclude with a remark on the choice of TOL, in connection with the

discrepancy between the value TOL = 50 and the global accuracy shown in

Table 7.2. A discrepancy like this is unavoidable, owing to damping of global

errors. Note that we have a parabolic problem and that the DIRK method

mimics the damping property of the parabolic operator (strong ^-stability).

Part of the discrepancy may also originate from cancellation between temporal

and spatial terms. This damping of global errors, and possible cancellation, has

not been taken into account in our error analysis, which focuses on local errors,
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4-H-

f =0.018

f=0.03

Figure 7.2. Example problem II. The course of the local uni-

form grids and the computed solution of (7.3)

in particular on local error bounds. For precise estimation purposes our analysis

is simply too general. On the other hand, the present example once more shows

that local error bounds like (7.5) can be much too conservative (the simplified

form is not essential for the present discussion). Consequently, for application,

local error expressions like (7.5) are better interpreted as error monitors. In

connection with grid selection purposes, our practical experience is that with
this interpretation the (simplified) spatial local error expression is reliable and

works very satisfactorily.
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Z=0.04

/=0.05

Figure 7.2. (continued)



RUNGE-KUTTA METHODS AND GRID REFINEMENT 615

Figure 7.2. (continued)

8. Efficiency of time-stepping

An important subject for future research is that of efficiency of the time-

stepping scheme itself when combined with the LUGR technique. Two impor-

tant issues not addressed in this work concern the use of variable time steps and

the solution of the arising systems of linear and nonlinear algebraic equations, in

case of an implicit scheme. Straightforward use of variable time step algorithms,

as successfully applied in single-grid method of lines computations, gives rise

to problems since approximations obtained with an LUGR method are always

difficult to numerically differentiate in time. The reason for this is that some of
the components are obtained from a numerical integration, some from interpo-

lation or injection. The resulting "nonsmoothness" is then felt when computing

higher temporal derivatives. More precisely, the higher temporal derivatives are

estimated in a rough way, resulting in disturbances in the stepsize selection (see

also [11]). In our experience, smoothing or filtering procedures provide only a
partial remedy here.



616 R. A. TROMPERT AND J. G. VERWER

Concerning the second issue, by the nature of the LUGR approach approx-

imations are computed in varying dimensions, even within one base time step.

For DIRK or alternative implicit methods this obviously implies that the numer-

ical algebra effort required in solving systems of algebraic equations becomes

highly important. In the numerical experiments reported here, we have paid
no attention to the efficiency of the numerical algebra computations and simply

used an available sparse matrix technique (same as in [12]). This technique,

however, is known to result in a considerable overhead when used in the solu-

tion of time-dependent problems. It is most likely that sophisticated iterative

solution procedures will be much more effective.
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