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LATTICE RULES BY COMPONENT SCALING

J. N. LYNESS AND T. S0REVIK

Abstract. We introduce a theory of rectangular scaling of integer lattices. This

may be used to construct families of lattices. We determine the relation between

the Zaremba index p(A) of various members of the same family. It appears

that if one member of a family has a high index, some of the other family

members of higher order may have extraordinarily high indices.

We have applied a technique based on this theory to lists of good lattices

available to us. This has enabled us to construct lists of excellent previously

unknown lattices of high order in three and four dimensions and of moderate

order in five dimensions.

1. Background

The purpose of this paper is to find s-dimensional integer lattices A that

have relatively high Zaremba indices or figures of merit. This index may be

defined in terms of absolute values of the nonzero components of a lattice point

X = (Xi , X2 , ... , Xs) .

Definition 1. The product coordinate distance function of x is

(1.1) p(x) = xix2---xs,

where

(1.2) x,- = max(|x¡|, 1).

In terms of this, we have the following definition.

Definition 2. The Zaremba index or figure of merit, p(A), of an s-dimensional

integer lattice is

(1.3) p(A)=   min   o(x).
x€A;x^0

Note that all lattice points of an integer lattice have integer components. Thus

pix) and p(A) are positive integers. In §3 we shall generalize this definition to

other point sets.
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The Zaremba index, />(A), is a recognized measure of efficiency of the mul-

tidimensional quadrature rule based on AQ , the lattice reciprocal to A. This

lattice rule employs all N points of AQ lying in [0, l)s, N being the order

of A. Thus, attention has been devoted to searching in ¿%{N), the set of s-

dimensional integer lattices of order 7Y, with a view to finding optimal lattices

of this order, that is, lattices A' for which p{A') coincides with

(1.4) Ps(N)=   max  /»(A).
Ae2S(/V)

It is convenient to introduce a "measure of goodness" of a lattice by means

of which one can compare lattices having different values of N. Our measure

is based on the Zaremba [9] conjecture that suggests that there exists a constant

zs such that

(1.5) Ps(N) > zs {loèNNy_2 ,        s>2.

Following Kedem and Zaremba [2], we assign to every lattice a value defined

by

(1.6) z(A)=*A>y^

This is of course nothing more than a scaled version of pi A). However, this
value is useful when examining a list that contains lattices of different orders

7Y to recognize quickly those lattices which have an outstanding value of p.

This paper is not directly concerned with the conjectures on which such es-

timates are based. We note, however, that there exists a bound on p¡iN) of

order 0(7V/(log TV)*-1) [10] and that both the conjecture and bound are in the

context of number-theoretic rules; that is, they are restricted to lattice rules of
rank 1.

For an account of the general theory, of which this conjecture forms part, we

refer the reader to recent papers by Niederreiter [6, 7], who has extended the

theory to cover lattice rules of general rank. This developing theory is mainly

devoted to existence proofs and asymptotic bounds. The present paper, on the
other hand, is devoted to providing concrete examples of lattices whose recip-

rocal may be used to construct cost-effective lattice rules. These examples seem

to confirm the theory and are in compliance with the truth of the conjecture.

In our searches [3] and [4], each integer lattice A is represented by an s x s

generator matrix B. All elements of A are integer weighted sums of the rows of
B, and A is of order 7Y = | det5|. The lattice AQ on which the corresponding

lattice rule is based has a generator matrix A = iB~l)T.

2. Component scaled lattices

Theorem 3. Given s nonzero and real numbers k\,k2, ... ,ks and a lattice A,

there exists a lattice A' such that

(2.1) p = {pi, p2,..., ps) £ A <s> p' = ikiPi, k2p2,..., ksps) e A'.

The proof is almost trivial, whatever definition of a lattice is invoked.

Definition 4. The lattice A' in the theorem is termed a rectangularly scaled ver-

sion of A, obtained by using an s-dimensional scaling factor ik\,k2, ... ,ks)
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or a scaling matrix K = diag(fci ,k2, ... ,ks).   N¡c = \det(A^)| = | Y[si=l h\ *s
called the order of this scaling.

A special case of rectangular scaling occurs when all components of the scaling

factor are equal. In this case the scaling matrix ml is a multiple of the unit
matrix / ; the subsequent theory can then be applied in the context of the ms-

copy rules discussed in [8].

Rectangular scaling of a lattice has several trivial and obvious properties. In
particular, a set of successive scaling operations is itself a scaling operation,

and the scaling operation is commutative. If B is a generator matrix for A,
then BK is one for A'. When A and A' are scaled versions of one another,

so are their reciprocal lattices, A1- and A-1' ; the scaling matrices involved are

inverses of one another.

It appears that, when one confines oneself to the set of integer lattices, one
may construct distinct families of lattices, in which each member is a rectangu-

larly scaled version of every other member. Each family is specified by a unique
family root lattice A.

Definition 5. A family root lattice is one whose generator matrix, B, has col-

umns each of whose greatest common divisor is 1.

Other members of the family are precisely those whose generator matrices
are B' = B diag(&i ,k2, ... ,ks) with k¡ integer. To determine to which family

some integer lattice A' belongs, one takes its generator matrix B' and calculates

the greatest common divisors, h\,h2, ... ,hs of its columns. Then the matrix

B = B' diag(/í¡~', h2l, ■■■ , h~l) is a generator matrix of the family root lattice

that generates the family to which A' belongs.

We are interested in the relation between piA) and p(A').

We consider first the scaling of only one coordinate using a scaling factor

iki, 1, ... , 1 ) with k\ > 1. As mentioned before, corresponding to every

point x = (xi, x2, ... , x¡) of A is a point x' = (x\, x'2, ... , x's). Applying

Definition 1, we find

(    ')=   i   klP^      When;Cl   7e0'

p(x)~ \ pix)       when x, = 0.

It follows from this and Definition 2 that

(2.2) piA)<p[A')<klpiA).

The possibility of successive scaling in each coordinate in turn, and the commu-

tative property of the scaling operation, allows us to state the following theorem.

Theorem 6. Let A' be a rectangularly scaled version of A obtained by using a

scaling factor k = (fci, k2, ... , ks) with each k¡>l. Then

(2.3) N' = kxk2---ksN

and

(2.4) piA)<piA')<klk2---kspiA).

We note that, under the hypotheses of this theorem, piA')/N' cannot exceed
PÍA)¡N. However, since
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we see that if, in fact, piA')/N' = p(A)/N, then the z-value of A' is greater
than the z-value of A ; in this case, if A is a "good" lattice, then A' is better.

Because of this, the present authors decided to carry out scaling of lattices

already known to be good lattices, to see whether we could discover some better
lattices or "good" lattices of higher order.

In its simplest terms, the idea developed in this paper is to take a set of

lattices that are known to be good, scale them in various ways, and inspect the

scaled lattices (which are generally of higher order) to see whether any of them

are good. In some cases, if we are lucky, we may find that the value of z(A')

is close to or even exceeds the upper limit of those already known. In this

very fortunate case the new lattice is relatively as good or even better than the

original lattice and has a higher order.
The underlying philosophy of this approach is that a calculation of this sort,

while nontrivial, is orders of magnitude shorter than, for example, a direct

search to find ps(N'). If in a minor proportion of the calculations, say one in a

thousand, we find a good lattice, the whole calculation can be termed a success.

The organization of this search requires some care. One can find lattices
with arbitrarily high indices />(A) by making N sufficiently large. To see this,

simply consider the scaled versions of the unit lattice Ao. The lattice A' = kAo

(which can be obtained from Ao using k = ik, k, ... , k)) has />(A) = k and
7V(A) = ks.

In providing guidelines for the scope of the search, the following theorem is

helpful.

Theorem 7. Under the hypothesis of the previous theorem,

(2.6) piA')<NiN'/N)l/s.

Proof. All integer lattices of order N contain the sublattice /VA0 (where Ao
is the unit lattice). Thus, A' contains each of the points (fci TV, 0, 0, ... , 0),

iO,k2N,0, ... ,0), ... , (0,0, ... , ksN), and it follows that

(2.7) piA')<Nki,        i=\,2,...,s.

Since all k¡ are positive integers, we may take the geometric mean of the s

equations in (2.7) and, using (2.3), obtain (2.6).   G

In order to make the search finite, we choose a lower bound z specified in

(5.1) below and limit the search to lattices A' for which z(A') > z. From the

theorem we see that

(2.8) z(A') < iN/N')'-•/*log*-2 N',

and so it is bounded by a quantity that approaches zero with large N'. Thus,

since N' is restricted to integer multiples of N, the number of family members

to be treated is finite. In fact, elementary manipulation yields the following

lemma.

Lemma 8. We have z(A') < z when

(2.9) N'/logs~l N' >Nß

and

(2.10) z log TV' > 1.
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This is a direct consequence of (2.8) and is readily established by eliminating

7Y between inequalities (2.8) and (2.9). In practice, (2.10) is satisfied trivially,

and so we may restrict our search to values of N' violating (2.9).

3. Scaling an individual lattice

In §§4-6 we shall describe and analyze results obtained by scaling lists of

lattices, all of which are reasonably good lattices. In this section we present

a more detailed theory about rectangular scaling. The thrust of this section

is to provide information by means of which /?(A') for a family of lattices

may be readily calculated. Readers interested principally in the results of our

numerical experiments may omit this section in a first reading. Without loss in

generality we shall assume as before that the lattice A is a family root lattice

(see Definition 5) and that A' is a scaled version obtained using a scaling factor

k, all of whose components are positive integers.

The behavior of piA') as a function of k is given by the function in (3.1)

below.

Theorem 9. Under the hypotheses of the preceding theorems, there exist 2s - 1

positive integers A, A\, ... , A2t,...s , which depend only on A, such that

cxu   l(A')      x m\n(a   A¡    Ä2   Ai An     Au A&(3-1)     -^ = T7minM> T-» T-» 7-»"->
N'       N        V      fci ' k2' fc3 ' '      kik2' fc,fc3 ' ' " " ' k2k3 ' '

Note that these denominators comprise all distinct products of up to 5-1

distinct components of k. There is no term in ik\k2 ■ ■ ■ ks)~l.

Note also that (3.1), while implicitly containing many inequalities, actually

defines a function of k. The rest of this section is devoted to establishing

Theorem 9 and to showing how to calculate a set of constants A¡ jt.„ from a

generator matrix B of A. It will appear that each coefficient A¡jt_ can be

conveniently defined in terms of functions of the form piS), where S is a

specified set of points belonging to A0 and

(3.2) p{S)=   mm   p(x),
xeS;x/0

where p{x) as defined in § 1 is the absolute value of the product of the nonzero

components of x. This notation is a natural generalization of that introduced

in Definition 2.
We now partition the elements of A into 2s distinct sets. We distinguish

these using an s-component binary index u = (ui, u2, ... , us), that is, one in

which each component is either 1 or 0.

Definition 10. Let A be an s-dimensional integer lattice and t an s-component

binary index. Then

(3.3) T(t) = {x|x e A and x, = 0 when t¡ = 0 and x; ^ 0 when U ¿ 0}.

Note that T® is not a lattice and r<o,o,...,0) is the single point (0, 0, ... , 0).
These 2s distinct sets form a partition of A ; that is,

(3.4) A=   U   r«.
",=0,1
Ki<s

This partition has been constructed with the following property in view.
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Lemma 11. When (xi, x2, ... , xs) e r(u),

(3.5) Pik\xx, k2x2, ... , ksxs) = k{u)pix{ ,x2, ... ,xs),

where

(3.6) fcW = *?'*£* ••• A*

¿s the product of those components k¡ of k for which u,■■ = 1.

Theorem 12. C/naer the hypotheses of Theorem 6,

(3.7) piA')=  mm(kVp(TV)),
Uj=0,1
Ki<j

Uj¿0

wAere i/zese quantities are defined in (3.6), (3.2), a«ö? (3.3).

Proof. The theorem follows because

PÍA') = minpikiXi, k2x2, ... , ksxs)
x€A
x^O

(3-°) = min min pík\Xi, k2x2, ... , ksxs).
«,=o, i xen»)
1<I<5

u/0

The first equality above follows from the definition of p and of the scaled

lattice. The second follows from the partition (3.4) above. When we apply

successively Lemma 11 and (3.2), we find that the expression on the right in
(3.8) reduces to the right-hand side of (3.7).   □

Theorem 9 may be obtained from this theorem by simply dividing by N' —

k\k2---ksN and recognizing that, when u ^ 0, the set fW is not empty and

/?(r(u)) is a positive integer.

One readily identifies

(3.9) Au>... = piT^),

where u is the binary index that has zeros in positions corresponding to i, j,... ,
the subscripts of A, and units elsewhere.

Since the point set r(n) contains the point (uiN, u2N, ... , usN), it follows

that when u ^ 0,

(3.10) 1 < p(Tto) < yY"i+"2+-+«s f

and (3.7) supports the 2s - 1 inequalities

(3 11) /J(A')<^i^)"1^2Ar)"2---(fciiV)"1,

( '    ) u^O, w; = 0, 1,  i- 1,2, ... ,s.

There is a somewhat unexpected reformulation of Theorem 12. We recall that

the points of r^ of Definition 10 do not form a lattice. We may, however,
form a lattice A(u) from the points of r(n) by adding all points of the form

x±y, where x, y e r(u), and iterating. This turns out to be a («i + u2 -1-\-us)-

dimensional projection of A, defined by the following



LATTICE RULES BY COMPONENT SCALING 805

Definition 13. Let A be an s-dimensional lattice and t an s-component binary

index. Then

(3.12) A(t) = {x|x e A and x, = 0 when i, = 0}.

It follows quite simply that partition (3.4) of A induces a similar partition

of AW, namely,

(3.13) A«=    (J   r«,
0<«,<i,
Ki<s

from which it follows that

(3.14) /?(A«>)=   min   p(T^).
0<K,<f¡
Ki<s
u¿0

Lemma 14. For a given s-dimensional lattice A and s-dimensional binary index

t,

( \

(3.15) min   k^piT^) = min
0<«;<f;
1</<Í

k®p(A®),   min   k^píT^)
0<ií,<í,
i<i<i

\ u^O /

where A(t) and F$ are defined in terms of A in Definitions 13 and 10, and p

is defined in (3.2).

The reader will recognize that the two sides of equation (3.15) differ only in

that a single term has been changed.

Proof. To establish the lemma, we take the right-hand side of (3.15) and replace

the cofactor of k® by the expression given in (3.14). This procedure leaves us

with an expression involving two somewhat similar sets of terms. By inspection
we see that, except for the principal term in which u = t, there are a pair of

terms corresponding to each u, one of which has a factor kw and the other
fc(u). In all cases A;(u) < /c(t), and the first term can be discarded. Doing

this leaves the expression on the left-hand side of (3.15) and so establishes the
lemma.   D

Theorem 15. There holds

piA')=  mmik^piS^)),
"¿=0, i
l<f'<S
u^O

where S stands for Y or A and may be chosen variously in each of 2s-I terms.

Proof. One may successively apply the lemma to the right-hand side of (3.7).
Each application alters one r to S. The lemma must be applied in a proper
order. Any ordering in which all terms having YlU — d are treated before any
having £t, > d with d =1,2, ... , s is suitable.   D

Theorem 15 sets the stage for the calculation of /?(A') in the situation in

which A is defined by a generator matrix B in utlf (Hermite normal form)
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and in which software is available to calculate />(A) for up to s-dimensional

lattices from its B matrix. The problem is to identify a generator matrix of
AW.

Let B be in utlf and the binary index vector t = (0, 0, ... , 0, 1, 1, ... , 1 )
be a string of s - a zeros followed by a string of a ones with, of course,
a = Y^\=\ U ■ 1° this case it is almost self-evident that a generator matrix of

A^ is obtained by replacing the first s - a rows of B by zeros. Thus, p(A(,))

may be obtained by applying the software to the tr-dimensional lattice whose

generator is the a x a lower right-hand minor of B .
When t = it\, t2,..., ts) is not of that form, we exploit the circumstance

that p is invariant under permutations of the coordinate system. Thus, let P

be an sxs permutation matrix, set t = Pt, B = BP, and let A be the lattice

whose generator matrix is B. Then piA®) = /?(A ). Thus, one finds the
permutation P which takes t into t' of form (0, 0, 0, 1, ... , 1 ), applies it

to the columns of B to obtain B, and then puts B in utlf. This problem is

now reduced to the one described in the preceding paragraph.
In our numerical calculations, in pilot schemes we calculated each piA')

individually using our own software. However, applying the results of the pre-
vious two paragraphs led to a much faster code. For each root lattice A we

calculated 2s - 1 constants required in (3.1). This involved calculating only

one s-dimensional figure of merit A = p(A), the other constants A¡jtm being

lower-dimensional figures of merit. Then we relied on (3.1) to calculate z(A')
for all lattices A' in which we were interested. These included at most those

with N' violating (2.9).

4. The highlight lists

Applying the technique of §3, we have found apparently endless lists of lat-
tices, hundreds of which are excellent or interesting by previously acceptable

standards. In order not to overwhelm the reader, we are presenting our results

in two parts. In this section we present two "highlight" lists. These include
three- and four-dimensional lattices with exceptionally high z-values and also

lattices with moderate z-values but exceptionally high values of N.
In §5 we shall give in more detail some of the actual results and explain

precisely how they were obtained; then in §6 we shall comment on some aspects

of these results.
To provide criteria for our lists, we have defined an s-dimensional benchmark

lattice as follows:

Definition 16. The s-dimensional lattice As of order 2i+1 whose generator

matrix in utlf is

(4.1) 5(A)

(2   0   •••    0   2\
0   2   •••    0   2

0   0   •■•    2   2
V0   0   •••    0   4/

is termed the s-dimensional benchmark lattice.
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Clearly, píA¡¡) = 4 and

(4.2) *.,«., _t(É±£SÎ)M.

The authors have introduced this benchmark simply because it is convenient in

the context of discussing our lists of lattice rules. No intrinsic mathematical

property is implied or conjectured.

The highlight lists include:
1. all s-dimensional lattices A known to us having z(A) > zs, and
2. all s-dimensional lattices A known to us satisfying both

• z(A) > ^zs and

• z(A) > z(A) for all A known to us whose order, N, exceeds N, the

order of A.

Tables 1-8, Al, and A2 contain lists of lattices. Each line corresponds to a

single lattice A. The sis + l)/2 entries which follow N and p are elements
of an upper triangular matrix B . This is the upper triangular lattice form or
Hermite normal form of any generator matrix of A (see the remarks at the end
of §1). Then comes the rank of the corresponding lattice rule. In this column
an entry 0 indicates rank 1 simple (see [3]), and an entry 1 indicates rank 1

not simple. An s-dimensional copy rule can be recognized as one having rank

s. (See [8] for full discussions of rank and of copy rules.)

In Tables 1 and 2, we identify the list from which this lattice was taken.
These lists are specified in §5; the abbreviations are B = Blue, G = Green,
SG = Scaled Green, and SB = Scaled Blue.

The authors must emphasize that these are lists of lattices that happen to be

known to us at this time. In §6 we shall discuss the question of how many other

lattices there may be that belong on such a list but have not been encountered

yet. Only for N < Ñ (= 4000 for s = 3 and 600 for s = 4) are these lists
complete.

It is of interest to note the extremely disparatevalues of ;V involved. From

complete lists of optimal lattices of order up to N, we obtain excellent lattices

of order up to say 5N, a few of these being better than any found previously.

After this, the list degrades in quality only slowly, containing lattices of good

(but not top) quality up to order 50N.
The tail of the list is unlikely to include any optimal lattices at all. However,

for these extraordinarily high orders, an example of a lattice of moderate quality
is of some interest.

Undoubtedly, the most outstanding lattices on these lists are

(i) a three-dimensional lattice having N = 9760,  p = 864, and z =

0.81319, and
(ii) a four-dimensional lattice having N = 8992,  p = 212, and z =

1.95413.

The results of scaling the short list [1] of five-dimensional rank-1 simple
lattices were relatively unexciting. Possible reasons for this are mentioned in

§5. We found no lattices whose z-values exceeded 1$, and only 25 whose z-

values exceeded 5Z5. We have listed in Table 8 all the lattices known to us

whose z-values exceed 5Z5.
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Table 1. A highlight list of three-dimensional lattices

N fell      &12 &13      ¿22 ¿23 k¡3 rank

16
1672
2352
3069
4704

4880
4900
8922
9760
9800

17844
19416
20008
45576
48264
67410
67527
68238
90984

109050
130860
153819
160064
179760
227460

4

160
216
270
390
432
400
700
864
800

1356
1404
1440
2968
2864
3822
3762
3678
4680
5310
5808
6678
6688
7424

8880

2
2

2

1

2

1

1

1

2
2
1
1

2
2
2
2
3
2
2

2
2
3

4

3
3

0

0

0
1

0

0

0
0
0

0
0

0
0
0
0
0

0
0
0
0
0
0

0
0
0

2
90

111
464

228
638
452
823
638
452

2656
1431
1314
1658
1820
2469
1971
3441
5368
7940
9528
2487
2628
3292
6710

2

2

2

3

3
2

2

2
2

2
2

2
2
2

3
3

3
3
3
3
3
3
4
4

4

2

130
171
168
148

1002
748

1362
1002
748

4062
3540
2048
4192
1184
1548
3072
5328
3680
3080
3696
6288
4096
2064
4600

4

418
588

1023
784

2440
2450

4461
2440
2450
8922
9708
5002

11394
8044

11235
7503

11373
15164
18175
21810
17091
10004
14980
18955

3
3
2

2
2

2
2

1
3
3
2

2

3
3
2
2
3
2
2
1
2

3
3
2
1

0.69315
0.71022
0.71293
0.70637
0.70109
0.75183
0.69363
0.71367
0.81319
0.75022
0.74392
0.71399
0.71279
0.69857
0.63995
0.63040
0.61952
0.59994
0.58734
0.56482
0.52292
0.51852
0.50070
0.49970
0.48155

Table 2. A highlight list of four-dimensional lattices

¡V b,t        l>22        ¿23 ÍM 4.4

32
928

992

1008

1008

1354

1748

2097

2112
2215

2248

2320
2477

2570
2686
2730
2836

3298
4496

8992

9908

20232

52768

267138

474912

32

32

32

32
40

48

54

55
60
60

64

63

65

66

68

72

84

106

212
180

318
672

2268

3024

0

O

0

0

0

0

0
0

0

0

0

0

0

0

o
o
o
o
o
o
o
0

0

0

0

2

34

20

16

16

492

286
435

100
257

106

34

128
787

852

170

418

535

106
106
256

159

1070
1605
2140

0
O

2

2

U

O

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

46

8
8

550

360
936

162

448

178

56

701

1138
1142

452
1010

701

178

178

1402
267

1402

2103
3748

2

52

54

12

30

658
472

1035

830
558

442

82

915

1246

1218

1328

1290
937

442

442

1830
663

1874

2811

2804

116

124

42

42

1354

1748

2097

2112

2215

1124

290
2477

2570

2686

2730

2836

3298

1124
1124
4954

1686

6596

9894

13192

1.50142

1.61001

1.53568

1.51832

1.51832

1.53607

1.53074

1.50633

1.52617

1.60730

1.58980

1.65661

1.55328

1.55921

1.53190

1.55928

1.60464

1.67153

1.66790

1.95413

1.53803

1.54517

1.50574

1.32561

1.08787

5. Lists of scaled lattices

In the preceding section we presented two short lists that included the best

lattices we have found so far. These were extracted from results that we outline
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in detail in this section. This is in order that subsequent workers can relate their

investigation to ours for purposes that may include confirming or extending our
work.

All our work involves taking a list of lattices and treating each member of the

list in the way described in §3. We now describe the seven different lists that
were used as input. The three blue lists (containing only rank-1 simple lattices)

have been available in the literature for several years. The two red lists have

appeared in the literature only very recently. The two green lists have not been

published. Each list is in a format corresponding to that used in Table 1.
1. Three dimensions:

• Green list. N G [16, 4000]; contains 6557 entries. These are all the
lattices in this range for which p(A) = piiN). This list is unpublished.

• Red list. N G [16, 3916] ; contains 68 entries. This is a subset of the
green list above, containing entries for N if and only if ^3(7Y) > pjiM)
for all M < N. This list is published in [3],

• Blue list. N G [21, 6066]; contains 101 entries. This is a concate-
nation of lists published by Maisonneuve [5] and Kedem and Zaremba

[2]. It contains only rank-1 simple lattices, assembled from this subclass,
using the standard red list convention described above.

2. Four dimensions:

• Green list. As above; N G [20, 600] ; contains 16127 entries, but is not
complete. It contains most lattices for which /j(A) = ptiN). If there
exist more than ten lattices A for a single value of yV, some may be

missing, but at least ten are included. This list is unpublished.

• Red list. As above; N G [32, 562] ; contains 23 entries. This list is
published in [4].

• Blue list. As above; N g [52, 3298] ; contains 47 entries. This is a
concatenation of lists published by Maisonneuve [5] and Bourdeau and
Pitre [1].

3. Five dimensions:

• Blue list. yV G [112, 772] ; contains nine entries. This list is published
in [1]. Seven of these are repeated in the first part of Table 8.

Each of these seven lists were processed in the same way. This process pro-

duced three more lists from each input list. These are specified below in the
case that the input list is the three-dimensional green list.

1. We form first a three-dimensional raw scaled green list. For this, we

require z, a cutoff value specified in (5.1) below. This list contains each lattice

with z(A) > z obtained by scaling every member of the green list. This huge

list includes duplicate entries, and for some values of N, entries with different
^-values.

2. From this, by cutting out all duplicate entries and any entries for which
there is another lattice of the same order with a higher value of p, we produce

a green scaled green list. We have retained this list in our files.

3. Next we use the standard procedure to produce a red scaled green list.

This, as usual, retains jmly lattices on the green scaled green list for which

PÍA) > píA) for all A on that list having N < N. This list is given in
Table 5.
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Table 3. Length and scope of lists involved

Kind of list
Dim.      Type

Input lists

Length |  Nmj„ Nm

Green scaled

Length |  Nm.„

lists

N„
Red scaled lists

Length | Table

3-d
Blue
Green

Red

101

6557
68

21
16

16

6066

4000
3916

177

4910

42

4044
4002

4032

153819

227460

31328

29
80
17

4
5

Al

4-d
Blue
Green

Red

46

16127

23

52

20

32

3298
600

562

162

4750

51

624

602
640

474912

365625

80928

47
55

25

6
7

A2
5-d Blue 112 772 117 112 15768 17

Table 4. Red scaled blue list in three dimensions

N fr«   &13  t» *23 633 rank
4108
4142
4358
4704
4880
5862
6066
7430
7664

7698
7734
8922
9760

14112
15328
15396
17436

17844

22788
26766

31008
32940
34872
45576

69282
69744
78080

102546
153819

270
312
336
390
432

450
460

544

552
576
588

700

864
908
958

1032
1040

1356
1484

1646

1680
2016

2080
2968

3042
3120
3584
4452
6678

2
3

2

2

3
2
4

2

3

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

556
966

1398
228
638

538
600

1039
1194
603
600
823
638
454
728

603
2094
1299
2656
1658
2656

2190
957

1299
1658
1206
1732
1276
2487
2487

1

1
1

3
2

1

1

2

2

2
1
2

2
2

2

2
2

2

2

2

3
2

3

2

2

3
3
4

3
3

1408
1422
1998

148
1002
1902
1581
1425
1600

1701
2019

1362
1002
746

1778

1701
1299
2094

4062
4192
4062

3664
1503

2094
4192

3402
2792
2004
6288
6288

4108

4142
4358

784
2440
5862
6066

3715

3832
3849
7734

4461
2440
3528
3832
3849
8718
8718

8922
11394
8922
7752

3660

8718
11394

7698
11624
4880

17091
17091

0
0
0

2
2

0

0

1

2

1

0

1
3

3

3
2
1

2

2
2

2
3

3

2

3
3

2

3
2

3

0.546880
0.627380
0.646080
0.701090
0.751830
0.666040
0.660540

0.652600
0.644210
0.669580
0.680710
0.713670

0.813190
0.614780
0.602340
0.646300
0.582530
0.582530
0.743920
0.653430
0.626940
0.560330
0.636650

0.623870
0.698570
0.489390
0.498910
0.517100
0.500920
0.518520

The cutoff values we used were

(5.1) i* 0.46, z=2-z4~ 1.00, = |z5~2.50,

in 3, 4, and 5 dimensions, respectively. Table 3 gives some information on

the length and the scope of the lists in this section.
We note that, when the input is a green or a red list of lattices_with N G

[AW, Ä7], there is no need to retain scaled lattices having N < N because

these lattices, or better ones having the same N', are available by definition on

the input list. This is not the case when the input is a blue list. The input blue
list comprises excellent lattices, all of which are rank-1 simple. One may well
find an interestingjattice of higher rank having N' > N but N' < N. Tables 4

and 6 (in which ~N = 6066 and 3298, respectively) contain a handful of such

lattices. These are generally of technical interest only. By including them we

specify precisely the effect of scaling a blue list.
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Table 5. Red scaled green list in three dimensions

N »11      Ol2 °13      022 O33 rank

4002

4008
4044

4050

4185
4358
4528
4580
4588
4704
4880
5862
6066
6198

6322
6682
6976
7116
7184
7544

7698
7734
8391
8628
8836
9297
9760

12944
13524
14068
14260
14820
15420
16914
16926
18372
18882
19194
19416

280
288

308
312

324

336
344
348
360
390
432
450
460
468

480
504
506
510
560
572
576
588
598
630
660
702
864
936
940
948
980

1032

1080
1120
1152
1160
1224
1260
1404

1

2
0

0

0

3

0

2
0
0
0

0
0
0
0

958
219
400
178

108
0 1398
0  218

348
808
228
638
538
600

1203
864
800

1808
0 1644
0 1606

586
336
603
600

0 1635
0  792

942
864
638
954

0 2488
0 1880
0 996
0 1702
0 2002

0 2973
0 1712
0 1713
0 669
0 1839
0 1431

1 1258
2 294

1 1054

9  410
3 168
1 1998
2 316
1 2002

588
148

1002
1 1902
1 1581

1470
234

1 2998
1 2624
1 3034

2120
1544
582

1701
1 2019
1 3849
1 3363

2126
234

1002
2360
984
800

2440
2650

3050
1755

644
2049
1449

1161

3540

2

3
2

2

2

1

4

2

2

2
3
2
2

2

2
2
2

2
2

3
2
3
2

2

4002
1002
4044
450
465

4358
1132

4580
2294

784
2440
5862
6066
3099
3099
6322
6682
6976
7116
1796
1886
3849
7734
8391
8628
4418
3099
2440
6472
6762
7034
7130
7410
7710

8457
5642
4593
3147
9597
9708

0
2
0
1
3
0
3
0
2
2
2
0
0
1

1

0
0
0
0
2
3
1

0
0
0
2
2
3
2
2

2
2
2
2
1

1

2
2
1

2

0.580330
0.596120
0.632530
0.639910
0.645620
0.646080
0.639530
0.640490
0.661560
0.701090
0.751830
0.666040
0.660540
0.659340
0.659340
0.664480
0.664290
0.641950
0.635720
0.692170
0.676980
0.669580
0.680710
0.643890
0.661750
0.678720
0.689950
0.813190
0.684670
0.661160
0.643660
0.657360
0.668760
0.675410
0.644690
0.662680
0.619940
0.638250
0.647420
0.713990
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Table 5 ícontinued)

N ni »12 ^13 622 ¿>23 ¿33 rank

20008
21810
22980
24132
25888
27048
29080
32176

32940
33075
34758
35868
36198
38388
39348
42064
44940

45492
48264
54525
57582
60656
60858
65430

67410
76776
87240
90495
90984

109050
120660
130S60
144792
151640
160064
174480
179760
191940

227460

1440
1470

1512

1584
1618
1764

1936
1992
2016
2034
2052
2136
2148
2232
2418
2448
2548

2664
2864
2904
3006
3120
3180
3186
3822
4008

4248
4440
4680
5310
5370
5808
5976
6130
6688
7104
7424
7440

8880

2
1

1

2
1

2

1
2

3
3
2
2

2

2
2
2

2
2

2
2

1
2
2
2

2
2
2
2
3
2
2
3
2
3
2
4

2
3
3

3

0

0
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

1314
4764

4266

888
1908
984

6352
1184

957
678

1101
1167
1365
1161
2220
2164
1548
2112

2760
1820
7940
1839
3680
3732
4044

2469
2452
6352
1480
5368
7940
2275
9528
2730
6710
2628
9528
3292
3065
6710

2

2

2

2
2

2

2

2

3

3
3
2
3
2

2
2

2
2

2

3
3
3
2
3

3

3
3
3

3
3
3
4

3

4

4
4

4
4
4

4

2048
1848
771

1365
4720
2488
2464

1820
1503

1122
2688
4131

888
1839
2931
4876

2469
3249
4026
1184

3080
1161
5368
1476

1788
1548
1548
2464
2275
3680
3080
1480
3696
1776
4600
4096
3696
2064
1935
4600

5002
10905
11490
6033

12944

6762
14540

8044
3660
3675
5793
8967
6033
9597
9837

10516
11235
11235
11373
8044

18175
9597

15164
10143
10905
11235
12796
14540
10055
15164
18175

10055
21810
12066
18955
10004
21810
14980
15995

18955

3
1
1

2
2
3
2

3
3
3
2
2
2
2
2
3
2

2
2
2
1

2
3
2
2

2
2
2
2
2
1

1
2

2
2
3
3
2
1

1

0.712790
0.673340
0.660750
0.662380
0.635100
0.665570
0.684240

0.642560
0.636650
0.639970
0.617300
0.624550
0.622880
0.613730
0.650170
0.619620
0.607410
0.607410

0.628070
0.639950
0.580880
0.572200
0.566480
0.575630
0.539950
0.630400
0.587220
0.553950
0.559960
0.587340
0.564820
0.520740
0.522920
0.490450
0.482240
0.500700
0.491420
0.499700
0.471540

0.481550
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Table 6. Red scaled blue list in four dimensions

N Hi        6l2        &13 ^14        ^22 l>23 6?4        &33 &34 *44 rank

624

708

718

732

932

1124

1234

1354

1748

1990

2052

2097
2112

2248

2686

2730
2836

4496

5672
6744

8448
8508

8992
16116

20232
26384

32232
42976

43821

45522

48348

52768

89046

108783

118728

145044

178092

257856
267138

474912

16

18

22
24

26
30

36

40

48

50
51
54

55
60
66

68
72

106

108

120
126
144

212
218

318
336

432
436

468

477

480

672

756

972
1008

1080
1512

1728
2268
3024

0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0
0
0

0
0
0

0

0

0

0
0
0

0
0

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0
0

0

0
0
0

0

0

0

0

0

0

0
0

0

0
0
0
0

0
0

0
0

0

0
0

0

0

0
0
0

0
0

0
0

0

0
0

0

0

0
0

0
0
0

0
0

0
0

0

12
9

27

158

248

116

106

170
492
286
256
184

435
100

106

852

170
418

106

194

159

830
627

106
1278

159
614

1070
1278
1704

156

159

1035
375
614

1605
79

327
79

1605
1605
1176
1605

79

744

79

2140

2
2
2

2

2
2

2

3
3

2

2

2

3

3

3

2

2
2
3

3

3

4

3

3

0
0

0

0
0

0
0

0

0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0

0

0
0
0
0
0

0
0

0
0

0

21
15

60
210
294

288
178

306
550
360
584

282

936
162

178

1142

452
1010

178
718

267

100

1935
178

1713

267
1402
1402
1713
2284

228
267

1281
1257
1402

2103

2103

558
2103
2103
2811
1380

2103
2103

436

2103
3748

2
2

2

1

1

I

1

1
1

1
1

1

1
1
2

1

1

1

2

2
2

2
2

2

2

3
2

2
2
2

3
3

3

3
2

3

3

3

3

3
3
3
3

3

4

3

4

27

36
78

234

324

314
442

404

658
472
684

598

1035
830
442

1218
1328
1290

442

994
663

162
1515
442

1827

663
1874
1874
1827
2436

495

663
882

585
1874

2811
2811

1386
2811
2811
2103
1708
2811
2811

1848
2811
2804

78
78

177

718
732

932
1124

1234
1354

1748
1990
2052
2097
2112

1124
2686

2730
2836
1124

2836
1686

2112
4254

1124
4029

1686
6596
6596
4029
5372

1623

1686
4029
4029
6596

9894

9894

4029
9894
9894

5372

9894

5372
9894

13192

3
3

2

0

0

0

0

0

0

0
0

0

0
0

2

0

0

0
3

2

2

3

1

4
2

2
3
3
3

4

4

4

2

2

4

3

3

4

2
2
2

3
3

3

3
3

2

1.06215
1.06215
1.09489

1.32521
1.42637

1.30416
1.31706

1.47811
1.53607

1.53074
1.44969

1.44561

1.50633
1.52617
1.58980
1.53190

1.55928
1.60464

1.66790
1.42248
1.38308

1.21931
1.38584

1.95413
1.26949

1.54517
1.31989

1.31989
1.44428
1.15467

1.21996

1.20550
1.15504
1.15504

1.50574

1.10276
1.10276
1.20172

1.15914

1.15914
1.15914
1.05174
1.24098
1.24098

1.04043
1.32561

1.08787

6. Comments about lists

6.1. Evaluation of scaled lists. An immediate question that comes to mind is

to what extent any list obtained here compares with the corresponding complete

list. The authors believe that, at best, one retains about 70% of a complete list,
and that this percentage diminishes to zero as the order N significantly exceeds

the order N of the input list. The rest of this subsection is devoted to this
question.

We carried out some numerical experiments in an environment in which the
answer, in the form of a complete red list, is available. We applied our scaling

technique to only part of our three-dimensional green list, the first part having

N < N = 250. This produced first a long repetitive raw scaled green list and

after massaging, as described in §5, a green scaled green list containing 450
lattices sharing 326 distinct values of N lying in [251, 13376]. Since we have
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Table 7. Red scaled green list in four dimensions

N *13 hi i>23 »33 *34 "44 rank

676

688

900
928

1281
1344

1556

1692

1952

2200

2248

2320
3132
4080

4496
6192
6736
7312
7888
8992

14112
18816

19632
20232
26622

31590
37017
39933
47385

65808

70992

81360
87744

94656

108480

112320
116992
126208
144640
149760
219375

228500
285625
365625

22

24
25

32
34
36

40
42
48

50

60
64
72
80

106
108
120
128
144

212
216
224

252
318
324
360
432
486

540
576

648

720
768
792

864

960

1024
1056

1152
1280
1500

1600
2000
2500

2

2

2

2
1
2

2

2
2
2

2
2

2

2
2
2

3

3
3

3

3
3

3

3
3

3

3

3

3
4

4

4

4

3
4

5

5

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0
0

o
0
0
0

0

0

0
0

0

0
o
o
o
o
o
o
0

0
0

0

0

o
o
0

0
0
0

0

0

0
0

0

0

0

0

0

0

4

0

0

0

0
0

0
0

2

0

0

0

0

0

0
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0

0
0

0

0
0

0

0

0

0
0

0
0

0

0

50
54

106

9
34

54

45

84
96

24
24
28

106
34

51

40

40
106
196
62

218
172

106
174
174

616
159
258

327

327
258

327
680
436
344

628
632
436

344

392
392
436

436
344

392
436

545

545

545
545

1

1

1

1
2

1

2

1

1

2

2

2

1

2

3

2
2

2
2

2
2
2

2
2

2
2

2
3

3

3
3
3

3

3
3

3

3
4

4

4

4

4

4

4

4
4

S

5

S
5

O

O
O

6

O

O

O

O
O

o
o
2

O
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

158
128
144

25
44

129
99

218
412

42
40
94

178
56

66
62
62

178
234
206
340
314
178
284
284
684
267
471
483
510
471
483
828
680
628
764

916
680
628

472
632

644
680
628
472
644

805
850

850
80S

2

2
2

30
2

3
2

2

2

2

2

10

2
2

3

2

2

2
3
2

2
2
2

3

4
3
3
3

3

3
3

3
4
4

4

4
4

4

4

4
4

4

4

4

4

4

5
5

5

5

34

12

22

O

52

98
162

244

134

56
92

20

442
82

78

154

134

442
168
294
414
382
442

510

510
180
663
573
543
621

S73

543
436
828
764

344
392
828
764

1056
916
724

828
764

1056
724
905

1035
1035
90S

338

338
344

30
116

427

336
778

846

244

244
110

1124

290

174
510
510

1124
516
842

914
986

1124
1176

1176
1636
1686
1479

1755
1371
1479

1755
1828
1828
1972

1972
2260
1828

1972

2260
2260

2340

1828
1972

2260
2340

2925
2285

2285
2925

2
2

2

2

4

1

2

2
2

4

4

3

2
4

3

4

4

3
3
4

4

4

4

3
4

3
2

3

3
4

4

4

2
2

2

2

2

3
3

3
3

3
4

4

4
4

3

3

4

4

1.38186

1.38186
1.48920

1.28535
1.61001

1.35893
1.38989

1.38871
1.37169

1.41160
1.41160

1.34617

1.58980
1.65661

1.48950
1.35530
1JU530
1.66790
1.32960
1.38435
1.38576
1.46987
1.95413
139735
1.15326
1.25424
1.54517
1.26360

1.22327
1.29135
1.36616

1.32089

1.07736
1.07736
1.13893

1.13893
1.13133
1.13395
1.09849

1.07067
1.07067
1.15586

1.19200
1.15434

1.12446
1.21376

1.03422
1.06614

1.10505
1.12191

available a complete green list for N G [1, 4000], we were able to observe the

quality of this particular green scaled green list.

Table 9 gives a breakdown of the distribution of lattices in this list and their
quality. Here, PlÍN) is the lower bound on p-¡ÍN) based only on the lattices

in this list. Examination of this table shows that for values of N near to N,

we seem to be obtaining lattices for about half the values of N. Of these,

80% are optimal, the rest being generally_of reasonably high quality. On the

other hand, for values of N exceeding 8N in a range containing 2000 values

of N, we have found lattices for only 30 of these values, and only four of

these are optimal. Fourteen of these 450 lattices may also be found on the

three-dimensional red list which has 45 entries for N G [251, 4000].
A second numerical experiment concerns a scaled three-dimensional red list.
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Table 8. Five-dimensional lattices having z(A) > 3.0. Rank-

1 simple lattices in this list having Ne [112, 772] have been
taken from [1]. The others are scaled versions of these or of the

benchmark lattice

i>22        ^23        hi hi l>33        fe3< 635 6«s fc&5

96

128

144

160

192

275

308

438

448

512

657

772

924
1158
1536
1544

2048

2560

2664

3088

4632
7008

2

3

4

12

3

5

18

31

18

38

12

22

22

57

15

57

57

22

22

33
154

93

231
33

78

12
44

55

442
78

117
16

2
3

4

22

3

5

4

6

33

71

62

50

54

54

48

75

42

137

221

48

48

72

170

105

255

18

264

22

24

30

480

378

567

70

2

3

4

48

3

5

4

6

72

91

70

96

22
12

12
144
175
223

240

12
52

18

230

153

345

72

378
48

96
120

614

10

15

144

2

3
4

52

3
5

4

6

78

136

102
168
28
28

52
252
269

240

307

52

12

78

256

27
384

78

10

52

104
130

114
264

396
186

4

6

8
128

96

10

8

12

192

275
308
438

112

112

128
657
666

128
128

192
772

462

1158

192
772

128

256
320

1332
772

1158
438

4.495S3

3.96210

3.56961

3.56961

3.40971

3.26808
3.02758

3.02758
3.02758

3.22179
3.66511

4.10962

3.04710

3.04710

3.T9336
3.32502
3.71336

3.71336
3.71336

3.05476
3.05476

3.05476

3.80758
3.10161

3.03166
3.08556

3.0761O
3.46294

3.46294
3.02077

3.31566
3.36013

3.11591
3.17025

Table 9.   The three-dimensional green scaled green list with

?Y = 250

Interval

Scaled     Distinct

Lattices    TV-values

iV-values for which

Pl(N)/P3JN)
=1    e(l,0.9)    <0.9

AT 6 [251,500]
N € [501,1000]

N e [1001,2000]
N e [2001,4000]
N > 4000

209
120
75
31

15

1112
100
69
30
15

94

56
19
4
?

15

32
27

2
?

3
12
23

24
?

Total 450 326 173 76 62

We compare a plot of ^3 (A/) based on a scaled red list with a similar plot based

on the complete red list. We consider five such plots. For the complete red list
we define a piecewise constant function

(6.1) PÍN) max   píA).

M<N

The discontinuities of piN) occur at values of N appearing on the red list. At
such values, piN — 1) < piN). One can define the analogous function for a red
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Table 10. Information about red scaled green lists

% of N satisfying

p\iN) = piN)
h(N) = PÍN)
p3ÍN) = piN)
p4jN) = pjN)

jNuNt]    jN2,N3]    jN3,N<]    jN4,N.
51.6 62.4 46.6 0.62.4

75.0
46.6

63.4
95.2

0.0
38.15

74.4

85.65

scaled list based on an input green list for N G [1, N¡], where N¡ = 125 • 2'.
We have constructed four functions p¡ÍN), i = 1, 2, 3, 4. In general,

PiíN) < PÍN), but for some values of N this is an equality. We list in Table

10 the percentage of values of N in an interval (A), A^+i], j = 1,2,3,4,

for which PiíN) = p-¡ÍN).
Naturally, when j < i, this is 100%, and when j » i, this reduces to zero.

Examination of the complete red lists in three and four dimensions which

appeared in [3] and [4], respectively, shows that a proportion that varies un-

steadily between 15% and 40% are root lattices, the majority of lattices on these
lists being scaled lattices. If this state of affairs were to prevail for higher values

of N, then any red scaled list would omit between 15% and 40% of the optimal

lattices since it cannot by definition include root lattices.
Finally, we state one further reason why we believe these lists to be incom-

plete. This one is based on the actual lists, rather than on extrapolation. We

have presented separately in Tables 5 and 4 a red scaled green list and the corre-

sponding red scaled blue list. The first contains 80 entries and appears to be an

excellent list in many ways, having as far as one can see the same characteristics

as the actual red list for N < 4000. However, there are some known rules miss-
ing. We know this because they appear on the clearly inferior and shorter red

scaled blue list. These two lists contain six entries in common. There are eight
entries on the red scaled blue list that merit inclusion on the red scaled green
list, but are not there. If included, they would in total displace eight entries

already there.
One sees that a few missing entries do not alter the overall nature of the

list very much. The missing entries are simply replaced by entries representing
marginally inferior lattices; the effect on the list as a whole is local. Also, it is
not particularly the entries with the highest z-values that seem to be missing.

6.2. Suitable input for a scaled list. We have listed the three-dimensional red

scaled red list (Table Al) and the red scaled green list (Table 5). Only two
elements N = 4185 and N = 4704 occur on both. Thereafter, the red scaled

red list deteriorates significantly when compared with the red scaled green list.
However, the input red list contains all the really good elements of the input

green list. The heuristic conclusion in this case is that, for scaling purposes,
one does not want to start with optimal lattices having optimal N values. It

appears that one will discover more if one inputs a list of good but not excellent

lattices.
All our results appear to support to some extent this conclusion. We have

found the red scaled blue list to be intermediate. The blue list being restricted
to rank-1 simple lattices is not as good as the red list but seems to provide better
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scaled lattices. Any conclusion based on our four-dimensional lists must take

into account that the blue list includes much higher values of N than the green

list.
Theoretical support for this state of affairs can be found in §3. There it is

noted that, starting with a family root lattice, the effect of scaling is in general

to improve the z-value at first, but then there is a steady decay in z-value. It

is consistent with this situation that, for optimal values of N, the best lattices

are not root lattices but are already scaled versions—but not very highly scaled.

As mentioned above, the majority of the lattices on our red list are like this,
and scaling them is unlikely to provide better ones.

6.3. Comments on red lists. It has been traditional to report results of the

type treated here using red lists (i.e., lists of optimal lattices). One reason is

that it is feasible to publish such a list. A red list contains in one page an ex-
cellent selection from a green list of fifty pages. Another reason is linked to

the numerical quadrature application in which the cost is taken to be propor-

tional to N, the number of function values, and the quality of the result to p.
However, the present authors believe that, for the values of N now reached in

three or four dimensions, the red list has become an anachronism. For many
purposes a highlight list is adequate. For deeper investigation, the green list

is probably needed. And, in applications, questions such as embedding of one

rule in another and convenience in locating points using the relevant machine

architecture may be much more significant than a small margin in the plot of

N versus p.

While the red list contains an excellent selection, occasionally good lattices

are excluded because they are "in the shadow of marginally better lattices. An

example of this occurs in three dimensions with N = 9760 and N = 9800. The

first has p = 864 and the second p = 800, so the second does not occur on a

red list. In fact, we know only three lattices with z(A) > 0.75 ; these are the two

mentioned above and one with N = 4880. Thus, our red list has omitted what

might be considered the third best lattice available. In investigations relating to

the distribution of good lattices, one may prefer to know about all good lattices,
even if in applications some are not going to be used.

6.4. The tail of the list. We mentioned towards the end of §2 that it is trivial to
find infinite sequences of lattices having monotonie increasing piA') and N'.

Thus, an incomplete red list can be extended indefinitely. The lists we have

presented have the additional requirement that z(A) should exceed a specified

amount z. The reader should note that this by itself need not render a list

finite. In fact, numerical and theoretical evidence suggests the opposite. Our

list deteriorates and so is finite simply because it can contain only a subset of

lattices, namely, those which are scaled versions of root lattices having N < N.

Inequalities (2.8) and (2.9) apply to the scaled versions of each of this finite
collection of root lattices, and so to the concatenation from which our lists

are formed. It is important to realize that this deterioration is a property of
our selection process and has nothing to do with the asymptotic behavior of a
complete red list of optimal lattices.

7. Concluding remarks

The basic contribution of this paper is the introduction of a very simple
theory of rectangular scaling of lattices and a description of the behavior of
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PÍA) under such scaling. This theory, described in §§2 and 3, remains to be
fully exploited. In the rest of this paper we have used it only to provide lists of

good lattices from existing lists. Applications of a more detailed and innovative

nature may exist.
The rest of this paper is concerned with carrying out this scaling process on

lists of lattices. By any measure, this has been very successful, producing a

cornucopia of new good lattices. Indeed, so many and varied are the outputs
of this process that organization and selection of results for publication has

become a problem in itself. This aspect of the work is described and discussed

in §§5 and 6.
We have uncovered many high-order lattice rules in dimensions 3, 4, and, to

some extent, 5. The best are listed in Tables 1, 2, and 8, respectively. These

turn out as might be expected in view of the current advanced theory (see, for

example, Niederreiter [7]). It is our hope that these concrete examples will

provide a spur to the recognition and practical application of lattice rules in

actual scientific projects involving multidimensional quadrature.

Appendix. Red scaled red lists

The two lists in this appendix are included to illustrate the discussion in §6.2.
At first glance both lists appear reasonable. However, in fact, these lists as a

whole are significantly inferior to those given in Tables 4 and 5, and 6 and 7,

respectively, though they do contain some very good lattices.

Table Al. Red scaled red list in three dimension

N Oll      &12 °13      &22 ¿33 rank

4185

4704
5874
7056
7248
7696
8811
8820
9408

11748
13212
13376
15664
17622
23352
23496

31328

324
390
414

444

448
480

540
555
588
621
648
672
808
909

1080
1212
1440

3
2
1

3
2
2

1

3
3
1
2

4

2
2

2
2

2

0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0

0

108
228

1044

148
260
466

621
185
228

1392
1137
180
404
621

1304
1392

828

3
3
2

3
3
2

3
3
4

3
2

4
2
3
2
3
4

168
148
303
228
376
834
378
285
148
404

1428

260
1392
378

2140
404

504

465
784

2937
784

1208
1924
2937
980
784

3916
3303
836

3916
2937
5838
3916
3916

3
2
1

2
2
3
2

2

2
1

2
3
3
2
3
2

3

0.645620
0.701090
0.611650
0.557620
0.549400
0.558120
0.556720
0.571660
0.571830
0.495370
0.465390
0.477330
0.498250
0.504320
0.465190
0.519160
0.475840
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Table A2. Red scaled red list in four dimensions

N 014  &22  ¿23   ¿24  ¿33   ¿34 rank

640

864

1124

1944

2164

2248

4328

4496
6744
8656
8992
19476

20232
35968
38952
40464
43821
45522
77904
80928

16
24

30

36

40

60

72

106
120
144

212
216

318
356
360
424
468
477
624
636

2
1

2
1

1

3
3
1

1

1
1

1

1

2

2
2

2
2

2

2

2

3
3
3
3

0
0
0
0

0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0
0

0
0

0

0

2

0
0

0

0

0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0

0

0
0

6

42
15
42

106
15
15

152
106

104
104
106
159
104

106
156
156
159
212
208
212
156
159
208
212

4

2

2
2

1

3
3
1

1

2
2
2
2
2

2

2
2
2
2
3
3
3

3
3
3

0
0
0
0

0

3
0
0
0

0
0

0
0
0

0
0
0
0
0
0
0

0

0

0
0

8
69
33
69

178
12
21

330
178

152
242
178
267
152

178
228
495
267
356
304
356
228
267
304
356

16
54
21

12

1 442
6
3
2

2

2
2
2
2

2

2

3
3
3
4

3
3
3
3
4

4

30
33

104
442

330
400
442
663
330
442
495
228
663
884
660
884
495
663
660
884

20
144
72

144

1124

36
72

1082

1124

1082
1082
1124
1686
1082
1124
1623
1623
1686
2248
2164
2248
1623
1686
2164
2248

4

2

2
2

0
4

4

2

2

3
3

3
2
4

4

2
2
2
4

2
2
4

4

2

2

1.04376
1.26997
1.26997
1.26997

1.31706
1.06190
1.06190
1.09017
1.58980

1.16625
1.16625
1.66790
1.38308
1.36734

1.95413
1.08193
1.08193
1.54517
1.08922
1.03259
1.17917
1.21996
1.20550
1.01613
1.00373
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