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SECOND-ORDER ABSORBING BOUNDARY CONDITIONS
FOR THE WAVE EQUATION IN A RECTANGULAR DOMAIN

DONGWOO SHEEN

Abstract. We study finite element methods for the wave equation in a rect-

angular domain with a second-order absorbing boundary condition imposed on

the boundary. For this problem there seems to be no known finite element

method, although many finite difference methods have been proposed. A third-

order energy, however, will be introduced which will be utilized to reduce our

original second-order problem to a first-order symmetric dissipative hyperbolic

system. Then, for this first-order system a weak formulation will be given and

continuous-time and discrete-time Galerkin procedures will be investigated. Er-

ror estimates will also be given.

1. Introduction

We shall study the problem

(l.l.i) ¿¿?u = utt-Au = 0 onSixJ,

(1.1 .ii) utt + 2utv + uvv = 0 onY x J,

(1.1.iii) u(x, y, 0) = 0(x, y) onQ,

(l.l.iv) ut(x, y, 0) = y/(x, y) on Si,

where Si = {(x,y)|0 < x < 1,0 < y < 1}, Y = dSi, and J = [0, T] for
T > 0, and v and x denote the unit outward normal and the unit tangential

vectors on Y. The subscripts t,x,y,v, and x of the variables will be used
to indicate the derivatives of the variables with respect to the subscripts. Let

r = yx0 u yxx u r^ u r;,

where

rf={(x,y)er|C = /},       C = x,y,    ¿ = 0,1.
The boundary condition (1.1 .ii) is a form of a second-order absorbing boundary

condition suggested by Higdon [8] and Keys [10] independently. A general form

of the /Vth-order condition is given by

=i
u = 0   on T x J,
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where \6j\ < n/2, j — I, ... , N. In the above boundary condition each factor

perfectly annihilates wave components arriving at Y with incident angle 6j. If

the solution of ( 1.1 ) is smooth enough, an application of equation (1.1 .i) shows

that the boundary condition (1.1 .ii) is equivalent to

(1.2.i) utt - utx - \uyy = 0 onYxx],

(1.2.Ü) un + utx - \uyy = 0 on Tf x J,

(1.2.iii) utt - uty - \uxx = 0 on Yq x J,

(1.2.iv) utt + uty - \uxx = 0 onY\xJ,

which is given by Engquist and Majda [5], and earlier proposed by Claerbout [2].

Indeed, Engquist and Majda [6] and Bamberger, Joly, and Roberts [1] suggested
modified forms of (1.2) to take into account corner instability. However, in

this paper we shall use the boundary condition (1.2) or (l.l.ii) for simplicity.

Although many finite difference schemes have been proposed for the second-

order absorbing boundary condition (see, for example, [3, 4, 5, 6, 8, 9, 10]),

no finite element approach seems to be known. The main difficulty comes

from the order of the boundary condition for which it is not easy to derive a

weak formulation which provides a consistent energy estimate with a suitable

choice of a test function in the weak formulation. Recently, HaDuong and

Joly introduced higher-order energies [7], which will turn out to be useful to

initiate the study of a finite element approach to problem (1.1). HaDuong

and Joly actually used a second-order energy for problem ( 1.1 ) in a half-plane

to show stability of the problem. However, we shall see that if the domain is

rectangular, the corresponding energy should be of third-order. Using this third-

order energy, we are able to reduce problem (1.1) to a first-order symmetric

dissipative hyperbolic system, for which finite element methods can be applied
without difficulty.

The plan of this paper is as follows. We shall introduce a third-order energy

associated with the system (1.1) in the next section. In §3 we shall derive a first-

order symmetric dissipative hyperbolic system from (1.1) using the third-order

energy defined in §2; the first-order hyperbolic system will be analyzed and a

weak formulation will be given. In the following §§4 and 5, continuous-time

and discontinuous-time Galerkin procedures will be studied for the first-order

hyperbolic system. Error estimates will be obtained for these schemes.

2. Higher-order energy

In this section we shall use the original idea of second-order energy introduced

by HaDuong and Joly [7] to define a third-order energy associated with our

problem (1.1). See also [14].
To begin, first observe that we can differentiate the equations (l.l.ii) on

Tq U Yx with respect to the t- and y-variables to get

(2.1 .i) um - 2uttx + utxx = 0, utty - 2utxy + uxxy = 0 on Yx,

(2.1.Ü) Um + 2uttx + u,xx = 0, Utty + 2utxy + uxxy = 0 on Yxx.

Similarly, on Y^ U Yyx , by differentiating with respect to the t- and x-variables,

(2. 1 jii)        Uta - 2Utty + Utyy = 0 , UHX - 2U,xy + Uxyy =0      on Tj ,

(2.1 .iv)    u,tt + 2utty + utyy = 0,        uUx + 2utxy + uxyy = 0   on Y\.
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Throughout this work, (•, •) denotes the L2-inner product over L2(Si) and

(•, -)r the L2-inner product over the trace functions in Hx(Si) on Y. The

corresponding norms will be denoted by || • || and | • |r, respectively. Also, for a

nonnegative integer k, Hk(Si) and \\-\\k will be used to designate the standard

Sobolev space and its norm.

In order to derive an energy identity, we recall that in the half-plane case
HaDuong and Joly essentially added the L2-inner product of the i-derivatives

of S?u and ut to the L2-inner product of the x-derivatives of S?u and ut.
The x-direction in this case was the normal direction to the artificial boundary

of the half-plane. Therefore, in the rectangular domain case we consider the

following L2-inner product:

(l.L) U -        ^_ Ql ,       JL        _^
Wdtdy-*14     dxdy"^U/ \dtdyUt     dIdjU>} )

for u satisfying (1.1). By the divergence theorem and the conditions (2.1) on
the boundary Y, one can get

0 = ¿¡2^Ut" ' ""') + (Vu" ' Vm") + (Uttx ' ""*) + ^VUtx ' VUtx>

(2.3) +  (Utty ,   Utty)  +  (V% ,   VUty)  +  (UtXy ,   UtXy)  +  (VUxy ,   VUxy)}

+ 2{(unx, u,tx)rx\jrx{ + (utxy, utXy)r*ur*

+ (Utty , Utty)ryoUry + (Utxy , Mixeur*}-

Definition 2.1. A third-order energy EQ(u; t) at time t for the system (1.1) is

a positive quadratic functional in the third-order derivatives of u given by

Eq(u ; t) = - {(Uta, Um) + (Vua, Vu„) + (uttx, uttx)

(2"4) +(VUtx ,  VU,X) + (Utty ,  Utty) + (VUtty ,  VUty)

+ (UtXy ,  UtXy) + (VUXy ,  VUxy)}.

From (2.3) it follows that, for 0<s <t,

(2.5) Eçi(u;t)-Eçi(u;s) = - I  ET(u;r)dr,

where

(2.6) Er(u ; t) = 2{(utw , uttv)v + (utvx, uWx)T}.

With the aid of (1.1.i), we can replace terms in (2.4) and (2.6) which contain

more than two i-derivatives as follows:

Ea(u ; t) = ^{2(u,xx, utxx) + 2(utxx, utyy) + 2(utyy, utyy) + 3(ulxy, utxy)

(2.7) + 2(UXXX ,   Uxxx)  +  3(Uxxy ,   Uxxy)  +  3(Uxyy ,   Uxyy)

+ ¿(Uyyy ,   Uyyy)  + 4(UXXX ,   Uxyy)  + *(Uxxy ,   Uyyy)} ,

o o\        Et(u ; t) = 2{(uvvv , uvvv)y + 2(uvvv , uvzz)y

\l-°) , i \   , / \ i
+ \Uvxx , UVTT)\- + \Utvx , U,VT)r}.

We thus have
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Theorem 2.1. Let u satisfy the equations (1.1 .i) and (l.l.ii) with sufficient reg-

ularity. Then the energy identity (2.5) holds for all 0 < s < t, and the energy
Eq(u; t) dissipates in time:

(2.9) Eçl(u;t)<EÇl(u;s), 0<s<t.

The boundary energy Er(u; t) corresponds to the absorption of energy through
the boundary Y.

3. First-order system

In this section the energy Ec¡(u ; t) of the form (2.7) will be used to give a

first-order system related to problem (1.1) and then the first-order system will

be analyzed.

The idea is motivated by representing j¡Eci(u ; t) in the form

(3.1) j¡Ea(u ; ¿) = (Aut, u),

for a suitable positive-definite matrix A and a variable u. For this, write

(J.¿) U = (U¡xx , U¡Xy , Utyy , Uxxx ) UXXy > UXyy > Uyyy)    \

then such a matrix satisfying (3.1) is easily found:

A =

2   0    1
0 3   0
1 0   2

0

0

2 0 2 0
0 3 0 2
2 0 3 0
0 2 0 2

In order to construct a first-order system, we use the wave equation (l.l.i) to

get the following relations for Aut :

§-t(2utxx+utyy) = -^r;(2UtXX  +  Utyy)   =   —(2UxxX  + 2Uxyy)  +   ¡^ ( "**>-  + Uyyy) ,

ß-t(3u'xy) = -Q^lu**y + uyyy> + d~Z{-Uxxx + 2u^ »

r\ r\ r\

jrz(UtxX + 2Utyy)  =   -¡¡—(Uxxx + Uxyy) +  JT-(2UXXy + 2Uyyy) ,

O Si Si

(3.3) q}(2u*xx + 2m*w) = d~x^Ulxx + Ulyy) + ôy ("iJe^ '

-QpUxxy + 2«w) = ~(2utXy) + Q-(Utxx + 2k/w,) ,

qj(2uxxx + 3«w) = Q^(2utxx + M/wO + g-(2utxy) ,

Q-t(2uXXy + 2uyyy) = g^(Ulxy) + Q^(UtXX + 2%y).

These relations (3.3) can be written in matrix form as

(3.4) /l«, = Bux + Cuy       on Si x J,
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where

B =

0

0   1
2   0
0    1

2 0 2 0
0 2 0 1
10   10

0

c =

0

0 1    0
1 0   2
0   2   0

0 10 1
10 2 0
0   2   0   2

0

Similarly, the boundary conditions (2.1) can be expressed in matrix form as

(3.5)

where

Mfu = 0,    Y'jxJ

Mxo

M> =

0

Ç = x,y,    i = 0, 1

Mf =
0
2

1     2
0    0

0
2

2
0

0
M\

0
2

2
0

0 2
0

0
2

2
0

1-20-20
0     0     2     0     1

2   0-20-2
0    10     2     0

From the initial condition (1.1.hi) and (l.l.iv),

(3.6) "|i=o = <t>o   onQ,

where

$0 = (Vxx, Vxy , yiyy , <Pxxx , <Pxxy , <Pxyy , fyyyY-

If the solution u satisfying (3.4), (3.5), and (3.6) is known, then the solution

u of problem (1.1) can be found by solving an initial value problem as follows.

First step: find uxx and uyy by solving

(3.7)

Jluxx(x,y,t) = utxx(x,y,t),    uxx(x, y, 0) = <pxx(x, y),

J-Uyy(X,y,   t)   =   U,yy(X ,  y ,   t) ., uyy(x, y, 0) = y>yy(x, y).

Second step: find ut by solving

(3.8) j-uAx,y,t) = uxx(x,y,t) + uyy(x,y,t), ut(x,y, 0) = y/(x,y).

Third step: find u by solving

(3.9) j-u(x,y, t) = u,(x,y, t), u(x,y, 0) = <p(x,y).

In the following we shall show that the solution of (3.4), (3.5), and (3.6)
is unique, which will imply that the problem (1.1) is equivalent to problems

(3.4-3.9) if the data are sufficiently regular.
Introduce a variable v(x, y, t) e R7 and write

v = (vi,v2,v3, v4,v5, v6, vn)T.

We are now interested in the hyperbolic system

(3.10.Í)       Av, = Bvx + Cvy   on Six J,

(3.10.Ü)      Mfv = 0 onYxJ,       Ç = x,y, i-0,1,

(3.10-iii)     v\t=0 = Oo on Si.
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We shall show that the system (3.10.Í) and (3.10.Ü) forms a dissipative sys-

tem. For this, we define an energy Eq(v_; t) associated with the system (3.10.Í)

and (3.10.Ü) for each time t :

(3.11) Ea(v;t) = ±(Av(-,-,t),v(-,-,t)).

Then we have, for every v satisfying (3.10.Í) and (3.10.Ü),

J-tj(AZ>ti = jf {(vTBv)x + (vTCv)y}dSi

= -/      vTBvyxdY+- I       vTCvuydY
2 Jv\ut\ 2 Jy^uy\

= -2¡      {(v4 + v6)2 + v2}dY-2 i      {(v5 + v7)2 + v2}dY,
Jr*ur* irjur»

where vx and vy designate the x- and y-components of v.  Therefore, by

defining a boundary absorption energy Er(v; t) by

(3.12) Er(v; t) = 2 f      {(v4 + v6)2 + v2} dY + 2 [      {(v5 +v7)2 + v2}dY,
■'rjurf Jr>0ur\

we get

(3.13) £¡Ec¡(v;t) + Er(v;t) = 0.

By integrating in time over [s, t], we obtain

(3.14) Eçl(v;t)-Eçi(v;s) = -J Er(v;r)dr.

Since Er(y_; r) > 0, the energy dissipativity

(3.15) Eçi(v;t)<Eçi(v;s),        0<s<t,

follows; therefore, the solution of (3.10) is unique.

We have thus proven

Theorem 3.1. Suppose that v satisfies (3.lO.i) and (3.10.Ü).   Then the energy

identity (3.14) holds. Moreover, the solution o/(3.10) is unique.

By the uniqueness of Problem (3.10), if the solution of (1.1) exists and sat-

isfies a certain regularity, this solution can be obtained by solving the problems

(3.4-3.9).
For a formulation of a weak form of problem (3.10), consider the space

Wx(Si) = {we [Hx(Si)]71 Mfw = 0, I<,C = x,y,i = 0,l}.

Then the weak formulation of the problem is to find a differentiable map v:J->

Wx(Si) satisfying

(3.16.Í) (Avl-Bvx-Cvy,w) = 0,       W_eWx(Si),

(3.16.Ü) (v(0), w) = (<D0, w), weWx(Si).
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It can be shown by a similar transformation as in [14] that the boundary

condition (3.10.Ü) leads to a well-posed condition so that the symmetric hyper-
bolic problem (3.10) is strongly well posed. This also provides the existence of
a solution to (3.16).

4. The continuous-time Galerkin procedure

We shall study the continuous-time Galerkin procedure for the resulting first-

order system derived in the last section. For this, a more convenient first-order
system will be derived.

By the change of variable z = Ax/2v, problem (3.10) can be equivalently

given as

(4.1.i) zt = â°z      onSixJ,

(4.1.Ü) ^z = 0       onYxJ,

(4.1.iii) z|/=0 = Oi    onQ,

where I = [0,T] for T > 0 and

&Z = Bxzx + Cxzy ,

3§z = M\a-xI2z   onr[,    C = x,y,    / = 0,1,

^=AX^0,

with Bx = A-XI2BA~XI2, G = A-XI2CA-XI2. We observe that for all w satis-
fying (4.1.Ü)

(4.2) (Bxwx + Cxwy ,w)<0.

Furthermore, notice that (4.1.i) is a symmetric hyperbolic system such that

(4.1) is well posed. The boundary Y = dSi is uniformly characteristic. Indeed,

rank (Bxvx(x, y) + Cxv2(x, y)) = 4 < 7,        (x, y) e Y.

For the theory of well-posedness in the uniformly characteristic case, see [12,
13]. Such problems arise also in many physical phenomena, for instance,

Maxwell's equations.

A modification of the subspace Wx(Si) of [Hx(Si)]1 is given by

Zx(Si) = {w€[Hx (Si)]1 \MfA-x'2w = 0 on rf, Ç = x,y, i' = 0, 1}.

Then a weak formulation of (4.1) is to find a differentiable map z : J —> Zx(Si)

such that

(4.3.1) (it-^z, w) = 0, weZx(Si),

(4.3.Ü) U(0),w) = (^x,w),      weZx(Si).

The following proposition is an easy consequence of dissipativity.

Proposition 4.1. Suppose that z(t) G Zx(Si) satisfies (4.3). Then

(4.4) IliWII < ll*il|.
In order to discretize (4.3), let ^ be a quasi-regular partition of Si into

triangles or rectangles with diameter bounded by h . Let k > 1 be an integer,
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and let 0 < h < 1. Choose a standard finite element subspace Zf, of Zx

associated with ZTh such that

(4.5) inf[||t¿-/||+A||t;-^||i]< Const Ar||w||r,        l<r<k,

for all v G Hk(Si)C\Zx(Si). Throughout the paper, Const will be used to denote

generic constants.
By the continuous-time Galerkin approximation to the solution z of problem

(4.3) we mean the differentiable map U: J —► Zf, satisfying

(4.6.Í) (i¡U-&U,w)=0,       wGZh,

(4.6.Ü) (£/(0) - O,, w) = 0,       weZh.

Let Nh be the dimension of Zf,. If U_j, j = 1, ... , N¡,, forms a basis for

Zf,, then U_ can be put in the form

£/(0 = 5>,(')£7>
7=1

where the atj(t) are differentiable functions of t. By choosing w_ = ¡J_j, j =

1,..., Nf,, in (4.6), an ordinary differential system for the otj(t) is obtained.

The initial approximation t/(0) can be found, since the matrix (U¡, U_j)fhj=x

is invertible (positive-definite). Also, ||Ç/(0)|| is bounded by ||4>i || ; indeed,

from (4.6.Ü) it follows that

\\LL(0)\\2 = (U(0),U(0)) = (*i, U(0)) < Pill ||ii(0)||.

The stability of the procedure (4.6) follows from Proposition 4.1, by replacing

z by U in (4.4). An error estimate similar to that of Layton [11] can be derived

as follows.

Theorem 4.2. Let z and U_ be the solutions of (4.1) and (4.6), respectively.
Assume that z_(t) G Hr+x(Si) and z_t(t) G Hr+x(Si), t G J, for some r, 0 <

r < k — 1. TTzen ¿/zere is a constant C > 0 independent of h, G>i, íz«í/ í //za/

||iW-£WII < Const[Ar+1{||0,||r+1 + ||z(0||r+i + ||*||Li(o,i;ÄW(a)) }

+ Ar||z||¿l(0)í;//r(n))].

Proo/. Let n be the L2(Q)-orthogonal projection from Zi onto ZA . Choose

«¿(0 = nz(/) and set n(t) = z(t) - w(t), Ç(r) = U_(t) - w(t). By (4.5),

>(4.8)

From (4.3.i) and (4.6.i), we have

< Const hr~J

j

9      ,  ^
dl^

0,1.

(^, a) - (^»i, s) = (a* - ̂ a, s)
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for y_eZh. By Proposition 4.1, (4.5), (4.8), and the triangle inequality,

IIÇWII < IK(0)|| + / \\ri(s)-^n(s)\\ds
Jo

<IK(0)||+ ¡\\\n(s)\\+ComX\\n\\x}ds
Jo

<IU(0)-t/(0)||

+ Const A'+1||z(0)|U, + it{hr+l\\zl(s)\\r+x+hr\\z(s)\\r+l}ds
Jo

<U(0)-u(0)\\

+ Const /r-+1||z(0)||r+1+/z'+1 f \%(s)\\r+\ds + hr f \\z(s)\\r+xds .
Jo Jo

Hence, again by (4.5),

(4.9)

\\z(t)-mt)\\<\m)\\+K(t)\\
<U(0)-LL(0)\\

+ Const[/z'+1{||z(0l|r+1 + ||z(0)||r+1 + \\zt\\V{o,t;H^m}

+ ^rH2.llL'((U;tfr+1(ii))]"

According to (4.6.Ü), for any x_^Zh,

IU(0) - H(0)f = (z(0) - 1/(0), z(0) -x)< ||l(0) - t/(0)||    ||z(0) - x\\,

which implies

||z(0)-C/(0)||<||z(0)-/||.

Thanks to (4.5), taking the infimum of the last inequality over ^effj, yields

(4.10) ||z(0) - £/(0)|| < Const/zr+1||z(0)||r+1.

The estimate (4.7) then follows by the combination of (4.9) and (4.10). This
completes the proof.   D

5. The discrete-time Galerkin procedure

In this section we shall define the discrete-time Galerkin procedure and derive
stability and suboptimal error estimates. Also, the existence of the solution will

be proved. The scheme is stable independent of the choice of time step. This

differs from the case of semibounded operators treated in [11, 15].

Let us introduce the following notations:

,         o" -I- o"+\                                 pn+l — a"

g"+\ = g    +g_ d,gn =-—g 2        ,        "tg A{

where g"(-) = g(-, nAt) for a given time step Ai. Set L = T/At. The discrete-

time Galerkin approximation is then defined as a sequence (í/")o<«<l c Zf,
satisfying

(5.1.Í)   (d,Un,w)-(âBUn+^,w) = 0,        weZh,     \<n<L-\,

(5.1.Ü) (U°-^\,w) = 0,        weZh.
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If Uj• » 7: = 1> ■ ■ ■ , Nh, forms a basis for Wh as before, (Un)o<„<L can be

expressed in the form U" = Y,xh <xn¡lLj f°r some a" .

The above scheme is called the Crank-Nicolson-Galerkin scheme, and it is

unconditionally stable. Indeed, from (5.1.Í) we have that, if (U")o<n<L is the
solution of (5.1), then

(5.2) \Un\\<\\Uc

for n > 1. As an immediate consequence of (5.2), the existence and uniqueness

of the solution of the scheme (5.1) is established:

Theorem 5.1. There exists a unique solution (U")o<n<L of the scheme (5.1),

regardless of the choice of At > 0.

Proof. We know that a<j can be found by the argument immediately following

the definition of the scheme (4.6). The uniqueness of the a"+x for n > 0

follows at once from (5.2). Since the algebraic equations are linear, uniqueness

implies the existence of the a"+x.   O

Note that our problem has a solution independent of the choice of the time
stepsize Ai, while this is not generally true for the semibounded case [11 , 15].

For the convergence of the scheme (5.1), we have the following theorem.

Theorem 5.2. The solution (U_n)o<n<L of the procedure (5.1) satisfies the fol-

lowing error estimate if the solution u of (4.3) is sufficiently smooth :

max   z"
0<»<L

(5.3)        < Const

U"\

hr+X\\<t>o\\r+l+hr\\z A||L=o(o,r-,//''+l(ii))

+hr+\ dz

dt

d3z

dû L2(0, T; L2{íl))

+ (At)2
Z.2(0,r;W+l(iî))

Proof. Let n, w, r\_, Ç be defined as in the proof of Theorem 4.2. Subtraction

of the equation

dt
(d,zn , w) - (^z"+J, w) = (d,zn

from (5.1) gives

(d,C , w) - (^Ç"+î, w) = (dtrf - ¿V+i, w) - (dtzn

Applying (5.2) for U" = Ç" , one obtains

dt
zn+? , w

L-\

nn<iií°ii+Aí£
(5.4)

n=0

L-\

dtrf - ^rf+l2 - dtzn + ^-zn+i

<||Ç0||+Ai^{ll^"ll + N"+illi +
n=0  ^

d,zn - ^-zn+ï
dt~
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But, by the Holder inequality,

605

\\dtt\
A/ Jnt

i      An+\)At Qn

~ft(s)ds
'nAt al

<
Ä7/

(n+l)Af

nAt

djg

dt
(s) ds (A*)*

(At)\

(n+\)AtAn-*

JnAt

dj

dt
(s) ds

which implies, by (4.8),

A/^||rff2"||<>/L(Ai)l
(5.5) n=0

< Const rUr+l
dt

[T\\d2
Jo   \\dt

'IIÔ2

Tt

dz

(s)
ni

ds Tï
dr\

dt L2(0,T;L2(iï))

L2(0,T;L'+,(CI))

Next,

(5.6)

L-l

AíEk"+Í     <^¿Z\\rí,h<AtY/Consthr\\zn\\r+x
n=0 n=0 n=0

= Const Th ll^llz-^co,r;//'+'(ii))-

Now, by the Peano kernel theorem,

(5.7) dtzn - |-z"+î
df

j       An+l)At

2At .,

An+\)At

\ zltt(t){(n + l)At-t}{t-nAt}dt.
JnAt

By using (5.5), (5.6), and (5.7), ||("|| can be estimated further as follows:

||C"|I<IIC0|| +Const Tih r+l dz

ot \L2{0,T;Lr+l(Q))

+ Thr\\z_\\Loo(0,T;H'-<-i(n)) + T2(At)   \\z_ttt\\L2{o<T;L2{il))

Therefore, again by (4.8),

\\zn-un\\ < un + ii?i

< Const hr+l\\zn\\r+x + ||c/° - nz°|| + rUr+1
dz

dt \Lr+'(0,T;L2{ii))

+ Thr\\z\\LOo(o,T;H'+i(Ci)) + T*(At) |Um||L2{0,r;L2(n))

Since

IIt/° - nz°|| < \\u° - z°n + ||z° - nz°n < \\u° - z°|| + hr+x\\z°\\r+x,

using the estimate (4.10), we arrive at (5.3).   D

6. Conclusions

A finite element approach has been established in order to treat second-order

absorbing boundary conditions for wave propagations in a rectangular domain.
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This is based on the concept of a third-order energy, which generalizes that of

the second-order energy of HaDuong and Joly. Once a good energy is obtained

for a given problem, a decent first-order system can be obtained, for which

standard Galerkin methods are applicable.
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