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A BREAKDOWN-FREE VARIATION

OF THE NONSYMMETRIC LANCZOS ALGORITHMS

QIANG YE

Abstract. The nonsymmetric Lanczos tridiagonalization algorithm is essen-

tially the Gram-Schmidt biorthogonalization method for generating biorthogo-

nal bases of a pair of Krylov subspaces. It suffers from breakdown and insta-

bility when a pivot at some step is zero or nearly zero, which is often the result

of mismatch of the two Krylov subspaces. In this paper, we propose to modify

one of the two Krylov subspaces by introducing a "new-start" vector when a

pivot is small. This new-start vector generates another Krylov subspace, which

we add to the old one in an appropriate way so that the Gram-Schmidt method

for the modified subspaces yields a recurrence similar to the Lanczos algorithm.

Our method enforces the pivots to be above a certain threshold and can handle

both exact breakdown and near-breakdown. In particular, we recover look-

ahead Lanczos algorithms and Arnoldi's algorithm as two special cases. We

also discuss theoretical and practical issues concerning the new-start procedure

and present a convergence analysis as well as some numerical examples.

1. Introduction

Eigenvalue problems arise in various applications of science and engineering.

Numerical discretization of physical problems frequently leads to computations

of some eigenvalues of large sparse matrices, both symmetric and nonsymmet-

ric. Over decades, numerous computational methods have been developed, and

attention, in particular, has been paid to large sparse problems in recent years.
For a list of applications and literature, we refer to [21] for the symmetric prob-

lem and [18] for the nonsymmetric problem. For large symmetric matrices, the

symmetric Lanczos algorithm has proved to be an effective method for comput-

ing a few eigenvalues. As is well known, some substantial difficulties emerge in

the nonsymmetric case, and a long-standing problem is to search for an efficient

way to overcome these difficulties, which is the problem we are concerned with

in this paper.

The symmetric Lanczos algorithm [ 19] is based on constructing an orthonor-

mal basis for a Krylov subspace by the Gram-Schmidt method. Using a three-

term recurrence, it is very economical in both computation time and storage

space and, at the same time, offers fast convergence to eigenvalues (cf. [15, 21]).

For nonsymmetric matrices, the Gram-Schmidt (biorthogonalization) method
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can be used to construct biorthogonal bases of two Krylov subspaces and Lanc-

zos [19] developed an algorithm, now called the nonsymmetric Lanczos al-

gorithm, for constructing these bases via a two-sided three-term recurrence.

Though having some attractive features of the symmetric case, the nonsymmet-

ric Lanczos algorithm is liable to breakdown and near-breakdown (i.e., appear-

ance of a zero or nearly zero pivot in a division) and is potentially unstable.

This is one of several problems arising in the generalization to the nonsym-

metric case. Another problem concerns the analysis of convergence, which has

recently been done in [30].

Several modifications of the Lanczos algorithm have been introduced to deal

with the difficulty of breakdown. In [23, 27], a look-ahead Lanczos algorithm

(LAL) was developed from a modified LDL* decomposition of a moment

matrix. It uses a block pivot, if necessary, and constructs slightly changed

biorthogonal bases of the same Krylov subspaces. On the other hand, the rela-

tion between the Lanczos tridiagonalization algorithms and formal orthogonal

polynomials has been studied (see [12], for example) and a nongeneric Lanc-

zos algorithm was developed in [10, 11]. Based on the recurrence formula

satisfied by formal orthogonal polynomials, the nongeneric Lanczos algorithm

produces block biorthogonal bases of the two Krylov subspaces. Considera-

tion of near-breakdown and an efficient implementation were given in [8, 11].

Unfortunately, both of these two methods may encounter so-called incurable

breakdown (see [11, 22, 27]) and may not resolve within certain steps, a curable

breakdown. Although theoretically an incurable breakdown yields some eigen-

values, its numerical detection is not easy, and the eigenvalues obtained may

not be the ones that are of interest. Another generalization of the symmetric

Lanczos algorithm is Arnoldi's algorithm (see [1, 26]), which does not have the

difficulty of breakdown. Using a single Krylov subspace, the Arnoldi algorithm

produces an orthonormal basis by the Gram-Schmidt method; however, all it-

erative vectors are present in the recurrence. This significantly increases the

computational cost and the demand of storage, and is therefore of limited use

in applications to large matrices. The breakdown phenomenon has also been

studied in the context of nonsymmetric linear systems (see [4, 7, 9, 11, 16]).
For further discussions of the Lanczos algorithms, see [2, 3, 5, 20, 22, 24].

In this paper, we derive a new algorithm, which is a generalization of both

the original look-ahead Lanczos algorithm and the Arnoldi algorithm, and pro-

vides a connection between them. We observe that the magnitude of the pivots

in the nonsymmetric Lanczos algorithm is essentially fixed by the Krylov sub-
spaces. The difficulty with the incurable breakdown suggests that the two Krylov

subspaces may not match well, and should therefore be changed. When a near-

breakdown occurs (the pivot given by two basis vectors constructed is less than

a threshold parameter), we propose to replace one of the two vectors by a "new-

start" vector. Then a Krylov subspace can be generated from the new-start

vector. We then modify one of the old Krylov subspaces by adding the new one

to it in an appropriate way, so that the biorthogonalization step in the Gram-

Schmidt method for the modified pair of subspaces is reduced to a recurrence

similar to the nonsymmetric Lanczos algorithm with a few more terms added.

With the new-start strategy, our method keeps the pivots above the threshold

and, at the same time, produces a matrix in condensed form (banded upper
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Hessenberg form, see §§3 and 4), which can be used to approximate the original

matrix.

We also point out that the Lanczos algorithms may suffer from a bad choice

of the Krylov subspaces not only in the nonsymmetric case but also in the

classical symmetric case. For instance, if the initial vector in the symmetric

Lanczos algorithm has small components in the eigendirections of interest, then

convergence could be significantly slow. Of course, a single Krylov subspace

cannot contain information on multiplicities of eigenvalues. In practice, it will

also be difficult to find clustered eigenvalues from a single Krylov subspace.
Under these circumstances, changing the single Krylov subspace to a sum of

two will be beneficial and necessary. So a symmetric version of the algorithm

presented in this paper will be relevant also in the symmetric case. We leave

the details to future work.

The paper is organized as follows. We first briefly describe in §2 the nonsym-

metric Lanczos algorithm and its modifications, as well as the Arnoldi algorithm.

We then present our main algorithm and related results in §3, and follow this

by a section on a projection matrix. We also discuss theoretical and practical

issues concerning the new-start procedure in §5. It turns out that the look-ahead

Lanczos algorithm and the Arnoldi algorithm can be recovered as two special

cases of our algorithm. Also, there is a symmetric version of the algorithm

for symmetric pencil problems. These topics, together with some comparisons,

are the subjects of §6. Following that, we establish convergence results in §7.

Finally, we present some numerical examples in §8 and concluding remarks in

§9.
We follow the notational convention used in numerical analysis. In particular,

|| • || represents the 2-norm for both vectors and matrices. The m x m identity

matrix is denoted by Im , and e¡¡m denotes the /th coordinate vector in Rm ,

i.e., [ex<m, ... , emim] = Im. Furthermore, S¡j is the Kronecker symbol and

{x, y) is the angle between the vectors x and y.

2. Lanczos algorithms

There are several different generalizations of the classical symmetric Lanczos

algorithm to the nonsymmetric problem. These include, for example, the (two-

sided) nonsymmetric Lanczos algorithm, the look-ahead Lanczos algorithm, the

nongeneric Lanczos algorithm and the Arnoldi algorithm. They are based on

different interpretations of the symmetric Lanczos algorithm, such as the Gram-

Schmidt orthogonalization method, the LDL* decomposition of a moment

matrix and generation of orthogonal polynomials. In this section, we briefly

describe three generalizations that are closely related to our method; the details

can be found elsewhere.

2.1. Nonsymmetric Lanczos algorithm. In [ 19], Lanczos presented his algorithm

for nonsymmetric matrices in the form of two-sided iteration. Given two initial

vectors px , qx , they determine two Krylov subspaces (or more precisely, two

sequences of Krylov subspaces)

Kmiqx) = span{qx, Aqx, ... ,Am~xqx}
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and
km{px) = span^, , A*Pl, ..., {Am-xyPx}.

It is well known that applying the Gram-Schmidt biorthogonalization method

(cf. [23]) to the two given bases of Kmiqx) and Km(px) yields the following

three-term recurrence:

(1) ßj+\Qj+\ = Sj = Aqj - ajqj - y¡qj-\ ,

(2) Vj+lPj+l = rj = PjA - a/Pj - ßjPj-i.

where p0, <7o = 0, and ßj+X7j+\ = r*Sj, a, = p*Aq¡.

If r*Sj = 0, then pj+x and qj+x cannot be defined and the algorithm is

said to break down at step j . This, together with the instability that it causes

when the algorithm is close to breakdown (i.e., when cos(r;, Sj) « 0) has been

a major difficulty in the application of the nonsymmetric Lanczos algorithm.
Note here that ojj := cos(pj, qj) is generally referred to as the j'th pivot.

When no breakdown occurs (i.e., in the generic case), the algorithm produces,

at step m , biorthogonal bases {px, p2, ... ,pm), {q\, q2, ... , qm) , i.e.,

PÎQj = ôij,

and a tridiagonal matrix

A*i    72 \
ß2    a2    ■

I m = j

•     "m-1      7m

V ßm       amJ

such that

-< m = *m    *¿m ;

where Pm = \px, ... , pm] and Qm = \qx,..., qm] ■ In particular, at step n ,

the matrix Tn is similar to A . An important point about the Lanczos algorithm

is that, even when m « n , some eigenvalues of Tm give good approximations

to those of Tn , and hence those of A (see [30] for an analysis).

2.2. Look-ahead Lanczos algorithm. As we have mentioned, the nonsymmetric

Lanczos algorithm suffers from breakdown and is, therefore, regarded as unsta-
ble in general. In dealing with this difficulty, the look-ahead Lanczos algorithm

(LAL) was introduced in [23, 27]. The idea can be described as follows.

Consider the jth step of the Lanczos algorithm and let the vectors r7, Sj

be generated by (1) and (2). The regular Lanczos algorithm generates the next

basis vectors pj+x, qj+x by normalizing rj, Sj, which involves a division by the

ij + l)st pivot o)j+\ = cos(rj, Sj). So the difficulty arises when a>J+l is zero or

close to zero. One observation leading to LAL is that forming the subsequent

r,+] and sj+x for building up bases of the Krylov subspaces uses only the

directions of pj+x and qj+x , i.e., those of r¡, s¡, rather than the vectors Pj+X ,

q¡+x themselves. Specifically, in LAL, r;+1 and s¡+x are computed from r¡

and Sj before forming p¡+x, q¡+x by a formula similar to (1) and (2). Then

Pj+\, Pj+2 e span {r;, rj+x] and qj+x, q¡+2 e span {s¡, sj+\} are constructed
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appropriately such that they are biorthogonal. This construction involves a

factorization of a 2x2 matrix and can be understood as using a 2x2 block

pivot. In the version of LAL worked out in [23], qj+x and q¡+2 are chosen as

normalizations of Sj and Sj+X as usual. The subsequent vectors Pj+3, ... , pm

and q¡+3, ... , qm depend on r¡, r¡+x, Sj and Sj+X and can be recovered from

the corresponding p's and g's. So LAL involves a local change of the two basis

vectors Pj+\ and Pj+2, and the other basis vectors remain unchanged.

A limitation of the algorithm is that it is not always possible to obtain bet-

ter denominators (Oj+x = cos(j)j+i, q¡+x) and o)j+2 = cos{p¡+2, qj+2). In-
deed, the best possible denominators are determined by the angles between

span {rj, rJ+1} and span {sj , Sj+X}. For example, if one of the angles is a right

angle, i.e., the 2x2 block pivot is singular, then one of the new denominators

must be zero (see [23]). In such a case, it was suggested to use a t x t pivot,

or equivalently to include t vectors in the subspaces, say, rj, ... , r;+i_i and

Sj,... , S/+/-1, and then choose pj+l, ... , p¡+t and qi+x, ... , q¡+t from the

two subspaces respectively. However, the implementation becomes very com-

plicated without there being any guarantee of success. A possible contingency

is incurable breakdown, i.e., all block pivots are singular (see [23, 27]). In such

a case, all Ritz values are eigenvalues, by the mismatch theorem of Taylor, but

this is known at the cost of forming all the block pivots.

We also remark that the LAL process is equivalent to applying the Gram-

Schmidt method to a slightly modified Krylov basis of {px, Apx,... , Am~lpx}
with A>~xp\, AJpi replaced by two linear combinations of them.

2.3. Nongeneric Lanczos algorithm. The approach in [10] uses the theory of

formal orthogonal polynomials. The matrix A and two initial vectors px, qx

define, on the space P" of polynomials of degree not exceeding n - 1, a formal
inner product by

(3) (h,g)=pfh{A)g{A)ql  for h,geP".

Then a monic polynomial f of degree /' is called a true formal orthogonal

polynomial (true FOP) if {fi, xj) = 0 for all 0 < j < i. Because (3) is not a

true inner product, a true FOP may not exist, and even if it exists, it may not

be unique. This prompts the classification of true FOPs as regular and irregular

according to their uniqueness. An interesting result is that when no true FOP

exists for a certain i, a so-called deficient FOP exists.

It is well known that the p¡, q, generated by the Lanczos algorithm in the

generic case (i.e., without any breakdown) satisfy

(4) pi = fi-XiA*)pxi\i,        qi = fi-xiA)qxtU,

where f-X is the (i - l)st regular FOP and 11/, 1% are two scalar constants.

The occurrence of breakdown at step j corresponds to nonexistence of the

;'th regular FOP. Generally, an z'th FOP f, though it might be irregular or

deficient, always exists, and then defines />,, q¡ through (4). Furthermore, a

recurrence formula for FOPs has been found, which in turn gives a recurrence

among p¡, q¡. This leads to the nongeneric Lanczos algorithm of [10, 11].

Clearly, p¡ e Kt{px) and q¡ e K,{qx). The formal orthogonal property of

FOPs ensures that the p's and the q's are block biorthogonal provided fn-\ is
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regular. A transformation of the basis vectors in each block makes the bases

biorthogonal and recovers LAL. So, in theory, the nongeneric Lanczos algorithm

differs from LAL by a local change of the bases in each block. However, it

has been shown that the former is preferable to the latter in implementations,

particularly when pivots of size greater than 2 are involved (see [8, 11]). For

essentially the same reason as in LAL, the nongeneric Lanczos algorithm may

encounter incurable breakdown. In terms of FOPs, this occurs when fn-\ is

not regular.

2.4. Arnoldi algorithms. Another generalization of the symmetric Lanczos al-

gorithm is the Arnoldi algorithm (see [1, 26] ). It uses a single Krylov subspace

Km{qx) and generates an orthonormal basis of Km(qx) by the Gram-Schmidt

method. Specifically, a basis {qx, ... , qm} is constructed by the following re-

currence

hj+x jqj+i = Sj = Aqj - hjjq¡-hxjqx,

where h¡j is chosen so that q*+, q¡ = ôj+ \j for 1 < / < j + 1. Because of the

nonsymmetry of A , the coefficients h¡¡ are generally nonzero and all j terms

will be present in the iteration. This significantly increases the computational

cost and use of storage, which are crucial for large-scale problems. On the other

hand, using only one sequence of vectors (i.e., a single Krylov subspace), the

Arnoldi algorithm yields an orthonormal basis. In this regard, the algorithm is

more stable.

At step j, a j x j upper Hessenberg matrix is obtained and can be used

to approximate some eigenvalues of the original matrix. As we will see in §7,

however, convergence is expected to be slower. Finally, we refer to [26] for

more discussions on the Arnoldi algorithm.

3. Avoiding breakdown by new-start

The various methods presented in §2 construct (block) biorthogonal bases

of two Krylov subspaces. Clearly, the bases constructed depend on the initial

vectors. In particular, the best (block) pivots are essentially fixed. The difficulty

with the incurable breakdown suggests that the Krylov subspaces may be wrong

in the sense that they do not match well. In such a case, any modification in

the recurrence would not help, and it is the Krylov subspaces that need to be

changed.

An old strategy is to abandon the computation and start over with new initial

vectors. Unfortunately, there is no known method to make the new choice a

better one, not to mention the waste of computation.

The new idea in this paper is to replace one of the two Krylov subspaces by a

sum of two Krylov subspaces. When a breakdown occurs at step j, instead of

using the normalization of r,_i for p¡ , as in the Lanczos algorithm, we choose

a new vector for p¡ , which we call a new-start vector. With this new p¡, we

replace the Krylov subspace Kn{p\) by an appropriate sum of Knipx) and

KniPj) ■ Obviously, the Lanczos three-term recurrence no longer works, but the

Gram-Schmidt biorthogonalization method is still applicable for the new pair

of subspaces. Moreover, it turns out that the basis of the new subspace can

be arranged in such a way that the biorthogonalization step will collapse to a

four-term recurrence.
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Let e < 1 be a threshold parameter for breakdown, and let r;_i and Sj-\ be

generated by (1) and (2). From now on, breakdown is defined by e , i.e., we say

that a breakdown occurs at step j - 1, if the pivot \ojj\ = | cos(r/_i, S/_i)| < e .

When it occurs, let q¡ = Sj-X/\\Sj-X\\ and choose p} to be any vector satisfying

P*Qi = ôij for 1 < i < j - 1 and |<y,| = \cos(pj, q¡)\ > e (assuming the

existence of Pj). We call Pj a new-start vector.

We now describe how to continue the construction of the subsequent basis

vectors after the introduction of the new-start vector p¡. First, p¡+\ and q¡+x

can be generated by

7f+xPj+i = tj = Pj-iA - ßj-xp)_2 - aJ.iPj_l - yjP] ,

ßj+\Qj+\ = Sj = Aq} - a¡q¡ - y¡qj-X,

where a, = p*Aq}, y¡ = p*_xAqj and yj+1, ßj+i are chosen such that

P*+ xQj+i = 1- Clearly, the definition of o.¡, y¡ ensures local biorthogonal-

ity. Furthermore, it can be checked that qJ+x is orthogonal to p¡, and pj+x is

orthogonal to q¡, for I < i < j. Note that at this stage an additional term is

added to the formula for the p's but not for the g's. However, from step j + 1

until the next breakdown, both formulas have an additional term. We have the

following four-term recurrence for p¡+l, q!+l  ( / > j):

yi+iPî+i -r* = p*-\a - ßi-iPt-2 - ai-iP*-i - yip* .

Â+19/+1 = si = Aq¡ - atq¡ - y¡qi-X - y\2)q¡-2 ,

where a¡, y¡, yj , , and ßi+x are chosen similarly as above. Again, it can be

verified that the vectors obtained are indeed biorthogonal.

When a further breakdown occurs, a similar recurrence with five terms can

be used and so on. In general, yj    will be introduced into the recurrence when

there are k — I breakdowns. To be consistent, we rewrite y, as yj '. Also, to

distinguish between the two formulas for pJ+i and qj+x immediately after a

new-start, it is necessary to introduce two index parameters k and k', which

are related to the number of consecutive breakdowns. The following is the main

algorithm of this paper.

Algorithm 3.1. Input a breakdown threshold parameter e and two initial vec-

tors px and qx with \qx\2 = 1 and p*qx = 1 . Initialize k = k' = k" = 1 ,

Sk = 0 and po = <7o = 0 and ßx = 0.

For I = 1,2,3,..., m — 1 do
1) k' = k" (this defines k' = k'{l));

2) a¡ = pfAqi and y\]) = p¡_jAq¡ for 1 < j < k' ;

3) s{l,k') = {A-al)q¡-YlCj=xy\Í)Ql-j;
4) Â+1 = ||i(/,fc')||;
5) If ßi+x = 0, stop (emergence of a right invariant subspace);

else, qM = s{l, k')/ß,+x;
6) k = k" = k' + Sk (this defines k = k{l));

1)     r*H, k") = p¡_k„+liA - a,.k,,+x) - ß,-k„+xplk„ - Ej=r' Ä-+7+r

Pl-k"+j+l'
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8) If ||r(/, A:")|| = 0 and k" = 1 , stop (emergence of a left invariant

subspace);

If \\r{l, k")\\ = 0 and k" > 1, then k" <-k" - 1 and goto (7);
9) lf\r*{l,k")qM\/\\ril,k")\\>e,

PM=r{l,k")lr*{l,k")ql+x and 4 = 0;
else

choose a nonzero p¡+x by newstart and 5k = 1 ;

(i.e., /?;+10; = <5/+1J for 1 <;'</+ 1)

end if.

Two index functions are generated with k = k{l) defined by the value of k at

6) and k' = k'{l) defined by the value of k' at 1).

We add some remarks to help in understanding the algorithm.

Remark 1. The two index functions k{l), k'(l) are related to the number of

successive breakdowns that occur at step / and control the number of terms

involved in the recurrence with k for the p's and k' for the g's. One has

k{l) = k'{l) + Sk (see 6)) with Sk = 0 or 1 depending on whether or not
a breakdown occurs at step / - 1. This difference is due to that between the

recurrences for p¡ and q¡ immediately after a breakdown. Also note that, at

step /, the value of k" is initially equal to k(l) at 6) but might be decreased

at 8). Then the value of k" at the end of 8) carries to step / + 1 and defines

k'U + 1). Therefore, k'{l + 1) < fc(/). In particular, if k'{l + 1) < k{l), then
r{l, k") = 0 for k'(l + 1 ) + 1 < k" < k{l).

Remark 2. For 1 < k < I, we define

(5) sil ,k) = iA- ai)q, - y\x)qi_x-y\k)q,_k ,

r*{l, k) =p*_k+l(A - a¡_k+x) - ßt_k+xp*_k

(6) _v(ü     n*       _v(fc_1V
7l-k+2Pl-k+2 71 Pi ■

At step / of the algorithm, y)1', ... , yf (/)) are defined at 2). Then the use

of s{l, k'(l)) at 3) is justified. Note here that s{l, k'{l)) depends on / only.

Also, r(l, k") for k'{l + 1) < k" < A:(/) are used at 7) and they are well defined
owing to Lemma 3.4 below.

Remark 3. If s(l, k') = 0, then Aq¡ e span{^/_^.-, ... , q¡}, which implies
that span {^i, q2, ... , q¡} is a right invariant subspace. If r{l, k) = 0 with

k > 1, then A*p¡_k+X e span{p¡_k , ... , p¡} , which is not sufficient to imply

^"-invariance of span {px, ... , p¡), as A*p¡_k+2 may not be in this subspace.

It is natural then to consider r(l, k - 1) that uses A*pt_k+2, and continue

until r(l, 1) = • • • = /■(/', k) = 0 when a left invariant subspace is obtained. A

rigorous proof will be presented in Corollary 3.6.

Remark 4. If r*(l, k)q!+l/\\r(l, k)\\2 < e , a breakdown occurs. Then we choose

a new-start vector p¡+l by a procedure newstart (see §5). Because of the new-

start process, k, k', and k" will be increased by 1 after the next g's have

been formed. This is done by setting an increment ök = 1 and add it to k
later at 6).
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Remark 5. It can be easily checked that r*{l + I, k + I) = r*(l, k) - y)+|p*+1 •

If a breakdown occurs at step /, then r{l, k) formed there is not used, but it can

be used at the next step in forming r{l + 1, k + 1) to save some computations.

Remark 6. As in the Lanczos process, various normalizations exist, which, how-

ever, are theoretically equivalent. We have chosen to normalize the vectors so

that \\q,\\ = 1 and p*q¡ = 1 for the sake of theoretical simplicity.

From Remark 1, we have the following

Lemma 3.2. For / > 2, there holds

k'{l) < k{l) < k'{l) + 1 < /   and   k'{l + 1) < k{l).

We also note that, at each step, k{l) and k'(l) can increase at most by 1,

i.e., k{l + 1) - k{l) < 1 and k'{l + 1) - k'{l) < 1. This immediately leads to
the following property.

Lemma 3.3. If i > I, then k{i) - k{l) <i-l and k'{i) - k'{l) <i-l.

The definition of r{l, i) depends on y)_/+,+1 for 1 < j < i - 1. The next

lemma shows that r{l, i) is well defined for 1 < i < k{l) at step /.

Lemma 3.4. At step I of Algorithm 3.1, y¡_i+j+i is defined for I < i < k(l) and

1 < ; < i - 1 •

Proof. First, I > I - i + j + 1 > 2 . By Lemma 3.3, k{l) - k{l - i + j + 1) <
i - j - 1. So, k(l - i + j + 1) > k{l) - i + j + 1 > ; + 1. Hence, ;' <

k'il - i + j + 1) by Lemma 3.2, and y/}i+j+x is defined at step {I - i + j + 1)

of the algorithm,   d

Let Tm be the mxm matrix whose /th column for 1 < / < m is

(0,...,0,y/(*'(,)),...,y/(1),a/,A+,,0,...,0)r,

where a¡ is in position /. Then y)  ^'' is in position l-k'(l) and

ß2

(7)     Tm =

y2

a2

I)
0

ßj

,(!)

0

yO)

\

y%

ßj+i

y{l\
'i+i 7{2\'i+2a i

ßi+\    aI+x    y]l+'2

ßi+2     <*i+2

,(*')

,<2)

,d)

V Otm I

where we note that by Lemma 3.3
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Because the first nonzero entry of the /th column is in position / - k'(l), it is

easily seen that if 1 < / < m - k'(m), the /th row of Tm is

(8) (0, ... , 0, /?,, a,, y<¡l+\, yg>, ... , y]1^ , 0, ... , 0),

where  /  is the integer satisfying  / - k'(l) < i < I + 1 — k'{l + 1), and if
m — k'{m) < i < m , the /th row of Tm is

(9) i0,...,0,ßi, a¡, y|l)1,7|?2,...,yi,w"/)).

In both (8) and (9), a¡ is in position /.
The next theorem summarizes the results of Algorithm 3.1. Recall that e;m

is the /th column of Im .

Theorem 3.5. Algorithm 3.1 produces biorthogonal sequences px, p2, ... ,pm

and qx,q2, ... ,qm, i.e., p*q} = ôtJ   (1 < i,j < m) and \\q¡\\ = 1, and a
matrix Tm of (7), such that

(10) AQm = QmTm+sim,k')e*m>m

and

PmA = TmPm + em_k+l,mr*{m,k) + em_k+2,mr*{m, k- 1)

+ --- + em,mr*{m, 1),

where k' = k'{m), k = k{m) and Pm = \P\,p2, ... ,pm\, Qm = [qx, <?2, • • • ,

9m]-

(12) PMí(m, A:') = Q*mrim,k) = ■■■ = Qmr(m, 1) = 0.

Proof. For 1 < / < m , by the definition of s(l, k) (see (5)),

k'

(13) ^ = sil, k'il)) + a,q, + Y, 7\J)q,-j.
j=\

If / < m - 1, then sil, k'il)) = ßj+xqi+\ , and hence

k'

Ml = ßl+\Q!+x + a¡qi + Y^ 7(iJ)Qi-j ,

which together with (13) yields (10).
In defining pt+x, as well as k'(l + 1) and k{l + 1) at step /, there are three

cases.

Case 1.   /■(/, j) = 0 for / < ; < k{l) and r(/, /) ¿ 0 for some í ( 1 < i < k(l))
with

r*il,i)ql+x/\\ril,i)\\>e.

In this case, no breakdown is encountered and p¡+x = r(/, i)/r*{l, i)q¡+] . Then

fc(/+l) = ifc'(/+l) = !<*(/).

Let
y¡k+{¡+l)) = r*ü,kil+l))ql+l.
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Hence, for (/ =) k{l + 1) < j < k{l),

,0-D,PÎ-J+[A = ßi-j+xpUj + <*i-j+iP*-j+i + ■ ■ ■ + Ti     Pî + r*0 > J)

(.4,   =A_,,^+...+?r..P?+{F"v- ïj:gî:!i-
Case 2. r{l, j) = 0 for i<j< k(l) and r{l, i) ¿ 0 for some / ( 1 < / < k{l))
with

r*(/,i)fl/+i/||r(/,/)||<e.

In this case, a breakdown is encountered and p¡+ x is formed by newstart. As it

is assumed that / < k{l), we have

jfc(/+l) = Ä:'(/+l) + l =i + l <k{l).

So, for fc(/ + 1) < j < k{l), we have r(l, j) = 0, i.e.,

( 15) PÎ-j+iA = ßi-j+iPlj + *i-j+iPÎ-j+i + ■■■ + y¡J~l) PÎ-

Case 3. r(l,kil)) ¿ 0 with r*il,k{l))ql+x(\\r{l,kil))\\ < e. Again, in this
case, a breakdown is encountered and p¡+x is formed by newstart. Then

fc(/+l) = fc'(/+l) + l =*;(/)+ 1.

Interestingly, we have

f(/-l)-A:(/) + l if j = kil+l),
[l0) '    J + l~\(l+l)-k{l+l)+l   ifj = kil).

Now, it can be easily seen that

{l,2,...,m-k(m)}c     [J    {l-k(l) + l,...,l-kil+l) + l}.
l</<m-l

Because of ( 16), the union can be restricted to those / in cases 1 and 2, i.e., those

satisfying k(l + 1) < fc(/). So, for any / with 1 < / < m - k{m), there are /,
; with 1 < / < m - 1, fc(/ + 1) < j < kil) such that / = /-;'+ 1. Then p*A
can be written as in (14) or (15). If it is (14), then either / -k'il) < i < I + 1 -
*:'(/+1) (when j > k(l + I)) or /+1 - k'{l + I) < i < I+ 2-k'{l+ 2) (when
j = kil+l)). If it is (15), then I - k'{l) < i < I + I - k'il + I). A comparison

with (8) shows that we have obtained the /th row of ( 11 ) with y^//+1^ possibly

replaced by y/(*'1(/+1)). We will show y/(f1(/+1)) = y%xm)), and therefore the first

m - kim) rows of (11) hold. Furthermore, for m - A;(m) + 1 < / < m , by (6),

p*A = art + ■■■ + y{m'l)P*m + r*im, m - i + 1).

This verifies the last kim) rows of (11) and thus (11).

Next, we show the biorthogonality and (12). First we prove (12) by assuming

p*qj = ôjj for I < i, j < m . For 1 < i < m - k'im) - 1 < m - kim), one has
/ = /-; + 1 with 1 < / < m - 1, kil+l) <j < k{l). If / < m - 2 , then

p*sim,k'im))=p*Aqm = p*_j+xAqm = 0,

where we use (14) and (15). If / = m - 1, then m - j = i < m - k'{m) - 1,

i.e., k'im) + 1 < j < kim - 1).   So p*_j+xA is given either by (14), where
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kirn) = k'{m) < j, or by (15), both of which lead to p*_j+xAqm = 0. Hence,

p*s{m, k'im)) = 0. For i with m - k'im) < i < m, it follows from the

definition of am and ym] that p'sim, k'im)) = 0. So we have shown that

Pmsim,k'im)) = 0.
On the other hand, let 1 < / < k{m). For 1 < j < m - i - 1,

r*im, i)q¡ = p*m_l+xAqj = 0,

and for j = m - i,

/■*(/«, i)qj = pm_l+lAqm_i - ßm-i+x = ßm-i+i - ßm-i+\ = 0,

where we note that Aq¡ is given by (13). For j = m - i + 1,

r*{m, i)qj = p*m_i+lAqm_i+l - am_(+1 = 0.

For m>j>m-i + 2,we have j - m + i - I > 1 . Also A;(m) - kij - 1) <
m - j + I. We have j — fcQ" — 1) < m — i + 1, and hence

r\m, i)q} = pm_l+xAq} - y^^ = ?t/-«+*-D _ yC/—«-i) = 0.

In summary, r*(w, A;)ßm = 0 for 1 < / < A:(w).

Now, pm+\ ( ̂ m+i , resp.) is obtained from the normalization of r{m, i) or

from newstart (from the normalization of s(w, A:'), resp.). Then pm+xqj =

P*Qm+\ = 0 for 1 < _/ < w . An induction argument yields the biorthogonality

and hence (12).
Finally, we have for k' = k'(l + 1)

$? =*'(/, A:')?/+i =PU+iAqM = y%¡.

This completes the proof,   d

An immediate consequence of the theorem justifies the claims of Remark 3.

Corollary 3.6. If i(m, k'im)) = 0, then span-^ , ... , qm} is a right invariant

subspace. If r{m, k(m)) = ■•■ = r{m, 1) = 0, then span{/?i, ... , pm} is a left

invariant subspace.

Proof. If s{m, k'im)) = 0, then AQm = QmTm by (10), which shows that
span {qx, ... , qm) is a left invariant subspace. The rest is proved similarly.   □

4. Projection matrix

The algorithm presented in the previous section constructs biorthogonal bases

and, at the same time, a banded upper Hessenberg matrix Tm in the form of

(7). We note that the first nonzero entry of the /th column of Tm is in position

/ - k'il). By Lemma 3.3, / - k'{l) < i - k'ii) for / > /. Thus, Tm can also
be characterized as the Hessenberg matrix having the following structure:

/       m-I

(17) Tm=(Txx     r° ) W'(,+,"    .
V Vr21      722/   m-/+*'(/+l)

The matrix Tm is indeed a skew projection of A onto the column subspaces

of Pm and Qm .
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Theorem 4.1. Under the hypotheses and notation of Theorem 3.5,

(18) Tm = PmAQm.

In particular, P* = Q~ ' and

(19) Tn = Q-xAQn.

Proof. By the biorthogonality, PmQm = Im . Then by (12) of Theorem 3.5,

PmAQm = P*mQmTm + P*ms{m,k{m)) = Tm.

In particular, when m = n, then P*Qn = In, so P* = Q~x and hence (19)

holds.   D

If the algorithm is carried out to the full n steps, we obtain a similarity

reduction of A to the condensed form Tn, which is somewhere between the

tridiagonal form of the nonsymmetric Lanczos algorithm and the upper Hessen-

berg form of the Arnoldi algorithm. Without restricting ourselves to orthogonal

bases, we achieve a more condensed form than the Hessenberg form. This is

particularly important for the convergence behavior (see §7). On the other hand,

relaxing the tridiagonal form of the Lanczos algorithm, we gain control over the

magnitude of the pivots and hence the quality of the bases.

We point out that a method can be developed in a straightforward manner

to reduce A to T„ of form (7) through a sequence of elementary similar trans-

formations. Again, by relaxing the condensed form, the magnitude of pivots

can be controlled. Some discussions on the similarity reduction can be found

in [13, 17].
An eigenvalue 9 of Tm is called a Ritz value. If u, v are left and right

eigenvectors of Tm , respectively, i.e.,

u*Tm = du*,      Tmv = 6v ,

then

(20) x = Pmu   and   y = Qmv

are called left and right Ritz vectors, respectively. In particular, (6, u*, v) is

called a Ritz triple.
Ritz values can be used as an approximation to the eigenvalues of A. An

interesting point of the algorithms of this type is that good approximations to

eigenvalues can be obtained from Ritz values for m « n. This makes it a

powerful method for large-scale problems. An analysis of convergence will be

presented in §7. Here, we discuss the computations of Ritz values.

An important issue in our method is the efficient computation of eigentriples

of the projection matrix. Since Tm is an upper Hessenberg matrix, the QR

algorithm can be used to compute the eigenvalues and eigenvectors of Tm .

However, one step of QR iteration will destroy the sparseness structure of Tm .

Therefore, the QR algorithm may not be the best choice. An alternative to

the QR algorithm is the LR algorithm (cf. Chapter 8 of [28, §8.3]). A typical
single-shift step of the LR algorithm is to compute the LU decomposition of

Tm - ol and form UL + al as the next iteration matrix (this can usually be

performed by a so-called "bulge chasing" process).   The next theorem shows
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that the structure of Tm (i.e., the envelope of Tm) is invariant under the LR

algorithm.

Theorem 4.2. Let Tm be a matrix of the form (7) and Tm-al = LU be an LU

decomposition with some shift a. Then UL + o I has the same structure (7) as

Tm.

Proof. The matrix Tm - ol has the same structure as Tm . Then L is a lower

bidiagonal matrix, i.e., l¡j = 0 if j > i or j < i - 1 . By comparing the rows

of Tm - a I and LU from the first to the last, we see that U has the same

structure as Tm . Multiplying U on the right by L is to add a multiple of the

{j + l)st column to the jth column, giving a form of Tm . Clearly, UL + a I

yields the same structure as 7m.   □

The theorem shows that the LR algorithm preserves the sparseness structure

of Tm and is potentially an efficient method for Tm . It is well known, however,

that the LR algorithm can break down for certain shifts. Even so, it has been

suggested that the LR algorithm is a competitive alternative to the QR algorithm

for tridiagonal matrices (see [17], for example), and we expect the same in our

context.

5. New-start procedure

One of the key steps in our algorithm is the new-start procedure at 9), i.e.,

the choice of a vector for p¡+l such that p¡+iq¡ = S¡+x,,- ( 1 </'</+ 1) as well

as |<y/| = | cos(p/+i, q¡+x)\ > e . Clearly, if e = 0, the choice always exists, and

we can always conquer the exact breakdown. For e > 0, however, the choice is

not always possible. Indeed, the best pivot is given in the next theorem. Here

we remark that an extreme case is e > 1 , for which the choice never exists.

Theorem 5.1. Let qx, ... , q¡, q¡+x  be linearly independent vectors of norm I,

and let

S¡ = span{<?i, ... , q¡).

If <7/+i = u + v , where u e S¡ and v e S^ , then

max|cos(x, qM)\ = \\v\\.
x€Sf

Proofi For any x e Sf-, we have

'x*qi+i\ _ \x*v\
|cos(x, ql+l)\ =

||A|| ||A||

which is maximized when x = v .   D

The best possible pivot at step / is ||v|| and finding v requires forming and

solving an / x / linear system. Note that ||u|| is indeed the sine of the angle

between ql+x and the subspace S¡. Therefore, a small ||v|| suggests that ql+x is

nearly linearly dependent of qx, ... , qt, and also S¡ is close to a right invariant

subspace. The precise measure of the invariance of S¡, however, depends on
||s(/, fc)|| as well.
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Theorem 5.2. Under the hypotheses and notation of Theorems 3.5 and 5.1, we

have

mm\\AQl-QlT\\ = \\s{l,k')\\\\v\\,

where T is an I x I matrix.

Proof. By Theorem 3.5,

AQl-Q1T = Q,iTl-T)+si¡,k')e¡J.

Now sil, k') = \\sil, k')\\q¡+i = \\s{l,k')\\u + \\s(l, k')\\v . Therefore, the last
column of AQ¡ - Q¡T is û + \\s(l, k')\\v , where û e S¡ and ||s(/, k')\\v e S¡-.
Hence,

\\AQi - Q,T\\ > \\û + \\s{l, k')\\v\\ > \\s(l, k')\\ \\v\\.

Clearly, equality is achieved by T = T¡ + Rx with ||s(/, k)\\ue* ¡ = Q¡RX . The

proof is complete.   □

The theorem shows that \\s{l, A;')|| ||v|| measures the invariance of S¡. Yet

how it bounds the eigenvalue approximation is not clear in the nonsymmetric

case. Also, from the proof, we see that the minimum over T may not be

achieved at T¡.

5.1. Random new-start. A natural way to choose a new-start vector other than

finding the vector v is to pick up a random vector x and then orthogonalize it

against qx, q2, ... , q¡. In view of the existence of the dual biorthogonal basis

P\, P2, ■■■ , Pi, this can be achieved very conveniently by

r = x -axpx-aiPi,

where a, = q*x for 1 < / < /. If |cos(r, <37+i)| > e, normalizing r yields

Pi+X. Otherwise, we try another random vector. As we observed, there may not

exist a vector satisfying the given threshold condition. So after a certain number

of unsuccessful trials, we decrease e . The following is a basic algorithm of the
subroutine newstart:

Algorithm 5.3. For / = 1, 2, ... , 7max , do

1 )      generate a random vector x ;

2) for /= 1, 2,...,/ do
x = x - iq*x)pi ;

3) if | cos(.x, qi+x)\ > e , then p¡+l = x/x*q¡+x and exit.

Of course, more sophisticated devices can be employed in place of 2) to deal

with some difficulties associated with the naive implementation (see [15, §5.2],

for example).

The new-start procedure requires the storage of all preceding vectors p,, q¡.

This cost of storage is critical when the size of the matrix is large. Unlike

the Arnoldi algorithm, however, this difficulty occurs only during the new-start

procedure and can be overcome by storing some admissible new-start vectors

in advance. For example, we can compute some admissible new-start vectors

simultaneously with the iteration by choosing a set of random vectors at the

beginning and orthogonalizing them against q¡ whenever a new q¡ is formed.

Then, when a breakdown occurs, the vectors in the subspace spanned by these
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vectors are candidates for new-start vectors. In particular, random linear com-

binations of the vectors can be used as trials.

A method presented in §5.3 will enable us to increase the number of admis-

sible vectors. Then the number of vectors to be stored in advance need not be

large.

5.2. New-start without reorthogonalizaion. A probably better way to avoid the

cost of storage is not to do orthogonalization in the new-start phase.

It is well known that, for all Lanczos-type methods, the orthogonality will

be lost after certain iterations in finite arithmetic (see [28, §6.32]). Usually,

the methods can be implemented with or without reorthogonalization (cf. [21,

Ch. 13] and [6, Ch. 4]). The same situation applies to Algorithm 3.1. When
a reorthogonalization is adopted, then the new-start procedure is just a step of

rebiorthogonalization and does not incur any extra cost. On the other hand,

when no reorthogonalization is used, we propose to do the orthogonalization

in the new-start procedure only for local vectors, because the biorthogonality

among the vectors are lost anyway. In this implementation, a new-start based

on random vectors often leads to a small pivot, since only a few vectors are

orthogonalized against. We suggest to start from qj rather than a random

vector and then orthogonalize it against local vectors.

The theoretical basis for the implementation without reorthogonalization is

that, even when the orthogonality is lost, equations (11) and (10) remain valid

(see [25] or [21, §13-4]). It is easy to see that equations (11) and (10) still

hold if the orthogonalization is not adopted in the new-start procedure. This

again justifies the implementation of the new-start without orthogonalization.

Finally, we point out that the numerical examples in §7 show that this is indeed

a practically effective way to implement our algorithm.

5.3. New-start subspaces. The methods presented in §5.1 are based on orthogo-

nalization, which leads to the problem of storage space. Although §5.1 suggests

that this can be overcome by storing some candidate vectors, it is difficult to

decide on the number of such vectors required at the beginning.

When there is a new-start vector on hand, more admissible vectors can be

obtained from the Krylov subspace generated by the vector. The choice of the

Krylov subspace is shown in the next theorem. Note that this property is also

used in LAL [23].

Theorem 5.4. Let r0 be a vector orthogonal to S¡ = span{#i, ... , q¡}, where

qx, q2, ... , q¡ are generated by Algorithm 3.1. Let

r*+1 = r*A - dp;   for / = 0, 1,2,...,

where Ç, = r*Aq¡. Then r, is orthogonal to S¡ for i = 0, 1, 2, ... .

Proof. We prove this by induction. Assume r, J_ S¡ for some /. Then, for

1 < j < I — 1, we have Aqj e S¡ by Theorem 3.5. Hence,

r*i+xqj = r*Aqj = 0.

Also, r¡+lq¡ = r*Aq¡ - Ç, = 0. Thus, ri+] 1 S¡. The proof is complete.   D

Note that the computation of r, does not require storage of q¡. So, when we

have one candidate r0 of the new-start vector, any vectors in span {r0, rx, ...}
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can be used as candidates. This significantly increases the number of vectors

available. For example, in the strategy of §5.1, we only need to store a few

vectors, and when a breakdown occurs, more vectors can be constructed in this

way.

In particular, an admissible new-start vector at step / is r(l, k) i±S¡). Then

a sequence of admissible vectors r¡ can be generated from rn = r(/, A;). The

new-start vector can be chosen to be a random linear combination of ro, rx, ...

and choosing rx leads to LAL (see the next section).

6. Some special cases

There are a few special cases of Algorithm 3.1 that are of particular interest.

For example, if the new-start vector is chosen in a special way, Algorithm 3.1

yields the look-ahead Lanczos algorithm of [23]. On the other extreme, if e = 1

and p\ = qx, then the two sequences of the basis vectors are necessarily the

same, and we recover the Arnoldi algorithm. We discuss symmetric matrix

pencils as a special nonsymmetric problem and a symmetric version of the

algorithm involving two-sided new-start will be described. Also, we will present

some comparisons between the new algorithm and LAL in this section.

6.1. Look-ahead Lanczos algorithm. Assume the regular Lanczos algorithm

breaks down at step j (see §2.1). Let r0 = r{j, 1) and r* = r*{j, I)A - C,xp*

as in §5.3. Now, if r*qj+x ■£ 0, then rx can be chosen as the new-start vector

and Pj+X = rx/r*qj+x as is done in [23].

We now proceed with the construction of the subsequent vectors. The vector

qj+2 is generated as usual by normalizing s{j + 1, 1), but with k{j + 1) = 2 ;

the vector pj+2 is obtained by

y%P*j+2 = r*U+l,2) = p*{A - a7) - ßjp*_x - yj+xPj+x = r*0 - yj+lp]+x.

Then pJ+3 is determined by r(j + 2,2) and qJ+3 by s(j + 2,2). Furthermore,

it is easily seen that

r(; + 3, 2)espan{/7i, ... , pj+3]

and, by Theorem 3.5,

rU + 3, 2) _Lspan{^!, ... , qj+3}.

Using biorthogonality, we have r(j + 3, 2) = 0 and k is therefore decreased

to one. Hence, the subsequent p¡ for I > j + 4 are formed by r(l - 1, 1),

i.e., through the regular Lanczos iteration. A direct comparison with [23] shows

that what we obtained is exactly the 2 x 2 block case of the look-ahead Lanczos

algorithm.
The more general version of LAL uses a factorization of a t x t block pivot

and is also a special case of Algorithm 3.1. To be more specific, assume that the

LU decomposition with pivoting is used in constructing pJ+x, ... , pJ+l and

qj+x, ... , qj+! in LAL. Then

pj+] , ... , pj+t e kj+tipx) and q¡ € K¡iqx)   forj+l<i<j + t.

If we apply Algorithm 3.1 with pJ+x, ... , pJ+, as t consecutive new-start vec-

tors, then we obtain the same qi+x, ... , qJ+l, since q, (j+\<i<j + t) is in



196 QIANG YE

Ki{qx) and orthogonal to px, ... , /?,_i ■ Furthermore,

rij + t+ 1, t), ... , rij + t+l,2) ekj+t+x{px) = span{/?1, ...,pj+t+x}

and

r{j + t+ 1, t), ... , r[j + t+ 1, 2) _l_span{tfi, ..., qJ+l+x}.

Hence, r{J + t + 1, t) = • • • = rij + t + 1, 2) = 0. Thus, A; is decreased to

1 and subsequent p¡, qt (for / > j' + t + 2) are formed by r(l - 1, 1) and

s(l - 1, 1), i.e., by the regular Lanczos recurrence.

6.2. Arnoldi algorithm. The Arnoldi algorithm constructs an orthonormal basis

and can be regarded as enforcing all the pivots to be one. If we impose that all

pivots in Algorithm 3.1 are one, i.e., co,■ = 1, then p¡ must be a multiple of q¡,

which is not the case in general. So the algorithm will break down at every step

and the new-start must be adopted to meet the criterion. The most convenient

choice is Pi = q,. Then oí¡ = 1 and k'(l) = l - 1. Since p¡ is always replaced

by q,, the iteration for p¡ need not be carried out. The iteration for q¡ reads

ßl+\Ql+\ =s{l, k') = {A - a¡)qi - y(X)q¡-\-yf\i-k<

= M-«,)<?,-y'Vi-)f"l)ii,

in agreement with the Arnoldi algorithm. Note that the orthogonality among

the q's follows from the biorthogonality, and Tm becomes an upper Hessenberg

matrix.

6.3. Symmetric pencils and two-sided new-start. In Algorithm 3.1, we adopt a

new-start strategy for the left vector p¡. The algorithm can be generalized

further to allow new-start on both sides, i.e., for both p¡ and q¡. In that case,

the formulae for sil, A:) and r(/, k) will be replaced by formulas combining

the two. However, there is no obvious reason, in general, for doing this, since

the projection matrix will not be in the upper Hessenberg form. On the other

hand, the idea of two-sided new-start is natural in an effort to preserve symmetry

for symmetric pencil problems, including the classical symmetric problem.

An important class of the eigenvalue problems is the symmetric pencil prob-

lem

(21) Ax = XBx,

where A and B are Hermitian matrices with B nonsingular and {X,x) is

an eigenpair. The eigenvalue problem (21) is equivalent to the problem for

B~x A and is essentially nonsymmetric if neither A nor B is definite (see [29]).

When we consider a numerical method for (21), it is important to exploit the

symmetric structure.

The Lanczos algorithm has been applied to B~x A in a symmetric fashion.

By letting px = Bq\ , we have p¡ = Bq¡ for all / ; so the two sequences of

vectors are reduced to one, and a symmetric compression pencil is obtained (see

[20, 24, 29]). If B is indefinite, this symmetric version of the algorithm inherits
the breakdown, i.e., when q*Bq¡ = p*q¡ = 0. To overcome this difficulty,

Algorithm 3.1 can be applied to B~x A , but the new-start strategy is used only

for pj and not for qj. Immediately, the symmetric relation p¡ = Bq¡ is lost.
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and

where

In order to maintain symmetry, therefore, it is necessary to apply the new-start

to both Pj and qj, and this can be carried out implicitly.

Now assume that the algorithm breaks down at step j , i.e., ojj = q*Bqj < e .

We choose a new-start vector for qj and, simultaneously, p¡ = Bq¡, which is,

of course, not explicitly formed. Then qj+x and q¡+2 are constructed according

to

yf]qJ+\ = B~lAqj-i - y(¡\qj-2 - aj-i9j-i - rf]9j

yf+i<lj+2 = B-xAqj - yj%_, - ajqj - vf^qj+i,

a - *JA*J       ,.(»)_ qJAqJ~x    and   r(D _   9]+lAqj
aj-qjBq-'     y>   -   qJBqj      ***   '*> ~ Hj^Tx

It can be verified that qJ+x and qj+2 satisfy the orthogonality. Then, q¡+x for

I > j + 2 is generated by

7¡2)Qi+i = B~lAq¡_i - 7?l2qi-ï - ?/(i)1<?/-2 - ai-\Ql-\ ~ 7f)Qi ■

Note that the last recurrence is a combination of (6) and (5) and involves five

terms. The recurrence produces a .6-orthogonal basis {qx, ... , qm) and a sym-

metric pencil in a condensed form. When a further breakdown occurs, the same

technique can be applied and a general algorithm can be derived. All other dis-

cussions are similar to those for Algorithm 3.1 and are therefore omitted here.

If B is positive definite or equal to / (i.e., the classical case), there is no

difficulty of breakdown. Still we can apply this algorithm at some step j to in-

troduce a new-start vector. The benefit of doing this is that the Krylov subspace

is changed to a sum of two, which may be necessary in some cases.

6.4. Comparisons. We have seen in this section that Algorithm 3.1 is closely

related to some existing algorithms. In particular, we make some comparisons

between Algorithm 3.1 and LAL here. The fundamental difference seems to

be that Algorithm 3.1 introduces a new-start vector and hence changes the old

Krylov subspace, while LAL does not. This difference appears in the following

three aspects.
First, LAL may encounter incurable breakdown, which is due to mismatch

of the two Krylov subspaces. Algorithm 3.1 overcomes this problem by correct-

ing an improper Krylov subspace. Although, theoretically, all Ritz values are

eigenvalues in the case of an incurable breakdown, no eigenvector is obtained.

This makes it difficult to use the information obtained to find the rest of the

eigenvalues. Also, there is no easy way to detect an incurable breakdown nu-

merically. Second, if the Lanczos algorithm is to be terminated at some step m

i < n) as is usually the case, then LAL is confined to Km(px) and may not be

able to resolve a curable breakdown within step m . In contrast, Algorithm 3.1

can freely choose a new-start vector from C (or K„ipx)). Finally, the sym-

metric version of Algorithm 3.1 is new and of significance also in the classical

symmetric case.
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7. Convergence bounds

In this section, we present some theoretical analyses concerning the conver-

gence of Ritz triples. In particular, we give generalizations of familiar results

of the symmetric case, including residuals of the Ritz triples.

7.1. Convergence analysis. For the nonsymmetric Lanczos algorithm, a conver-

gence analysis was derived in [30] based on the tridiagonal structure, which

generalizes the classical results for the symmetric case. The idea also applies to

the structure of the projection matrix Tm of (7). We outline this analysis in

this section.

Let Algorithm 3.1 be carried out to full n steps, giving rise to the matrix Tn

(see Theorem 4.1). We can assume that no breakdown occurs after step m,

i.e., k'H) < k\m) for / > m. Write

Let /n = m - k'im) and construct a strictly monotonically decreasing sequence

I i, till lm¡ = 0 for some mx, by

// = //_!- fe'(/,-I + 1).

Obviously, mx is uniquely determined by the function k'H), i.e., the sparseness

structure of Tm and, if Tm is tridiagonal, mx = m- 1. The following theorem

shows that Tln and Tlm have essentially the same first row (first column, (1,1)

element) for some i.

Theorem 7.1. Assume lo> h > •••> lm¡ = 0. Then

(22) 7X«= (r™o'm)    for i < m-l,

(23) ei,„r¿ = (ef.Á 0)   fori<mx,

and

(24) e\,nTÍ,ei.n=e\,mTtme\>m   fori<m + mx.

Proof. Observe that (22) depends on the lower triangular part of Tn only and

can be shown by the same proof as in [30] for the tridiagonal case. A detailed

proof is omitted here. For (23), we first show that, for 1 < i < mx,

m \Ei) m-l,

This is obviously true for / = 0 ; assume that it is true for / < mx - 1 . Then

T^E=Tm(iy-      =[*Y\   '\hij m-l,       \£-i+\J m-lM

where Tm is partitioned according to (17) with 1 = 1,. Now clearly, e* nT„ =

ie* mTm, 0), and if (23) is true for some / < mx , then

elJ'n" = (elmT¡:x, eUmVmE) = «mT^', 0).
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So (23) is proved. Finally, for i <mx and j < m - 1

p*   j-i+j+lp      _ p*   T'T TJp,     - p*    Ti+J+ip,

where we use (23) and (22). This completes the proof of (24).   D

In the following, we derive an identity concerning the Ritz values, using

Theorem 7.1. For the sake of simplicity, we assume that Tm and A are diag-

onalizable, i.e.,

(25) Tm = S*@T   and   A = Z?AZ,,

where 0 = diag(#i, ... , 8m), S*T = Im and A = diag(Ai,..., X„), Z*Z¡ =

I„ . Let S = isu), T = iUj) and

Zr = [z[r),...,z[nr)]   and   Z¡ = [z®,...,z®].

Then  z|r)   ( z\ ', resp.)   is the right (left, resp.)   eigenvector of A.   Letting

X = ZrPn = ixij) and Y = Z¡Qn = (y,;), we have

(26) Tn = X*AY   and   X*Y = In.

Note that xiX  is the z\ -component of the initial vector px, and y¡x  is the

z-r)-component of the initial vector qx , i.e.,

n n

P\=Y^xiXzf   and   qx=z^yl\Z{p.

Now substitute (25) and (26) into (24) to obtain

e¡ínX*AiYex,n = elmS*eiTel,m

for any / < m + mx . Hence, for any polynomial / of degree not exceeding

m + mx,

elnX*fik)Yex,n = elmS*fie)Tex,m.

Thus,
« m

¿Zf(Xi)xiXyn = Y^f(e>)Si\ti\-

In particular, using fix) = (x - 6x)h(x), we obtain the following theorem.

Theorem 7.2. Assume \XX - 6X\ = min; \XX - 6j\. Then for any polynomial h of
degree not exceeding m + mx - 1, we have

1 /     " m \

Al - öl = hd w   „       -E(A' - ^MXi)xliy¡l+¿Z(0i - 0i)A(0/)5,ií,i    •
rt(/i)A!iiyii \   ~^ —^ J

Some special polynomials, such as Chebyshev polynomials, can be used to

give various bounds on X\ - 6\ as in [30]. Besides, bounds on Ritz vectors can

also be derived from (23) and (22), as in [30].
A conclusion drawn from Theorem 7.2 is that the rate of convergence is

proportional to m + mx - 1 . From the definition of mi , it is clear that mi

is determined by the sparseness structure of Tm and hence by the number of

breakdowns that occurred. This suggests that the more new-starts we encounter,
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the smaller is m\ and thus the slower is convergence. While using the new-start

stabilizes computational results, it slows down the convergence. This behavior is

also confirmed in our numerical examples (§8). Hence, choosing an appropriate

threshold parameter e becomes very important in implementations.

7.2. Residuals of Ritz triples. Another important aspect of convergence con-

cerns the residuals of Ritz pairs. For our algorithm, the residuals are given in

the following theorem.

Theorem 7.3. Let u and v be the right and left eigenvector corresponding to an

eigenvalue 9 of Tm and x and y be the left and right Ritz vectors defined in

(20). If u = [u\, u2, ... , um)T and v* = (vx, v2, ... , vm), then

(27) Ax - 9x = umsim, k')

vm_k+lr*im, k)

+ vm_k+1r*im,k- l) + --- + vmr*{m, 1),

where k = k{m), k' = k'im) are defined in Algorithm 3.1.

Proof. Note that x = Pmu. Multiplying (11) by u, we immediately obtain

(27). Multiplying (10) by v* leads to (28).   d

The theorem shows that the residuals are small if the components um and

vm_k+x, ... ,vm are small and s(m, k') and rim, i) ( 1 < / < k) are bounded.

Note that all these quantities are computable at step m , so the residuals can be

computed without forming the Ritz vectors x and y . This indeed provides an

a posteriori convergence criterion.

We remark that the proof of the theorem uses only equations (11) and (10),

but not biorthogonality. When the algorithm is implemented without orthogo-

nalization (including the new-start process), equations (11) and (10) are valid,

and so are (27) and (28).

8. Numerical examples

This section is devoted to numerical examples. The algorithm is tested for

various choices of the threshold parameter e . The choice e = 0 yields the

nonsymmetric Lanczos algorithm (note that no exact breakdown occurs numer-

ically). We compare the cases e > 0 with the Lanczos algorithm. The interest

here is in demonstrating the numerical behavior of Algorithm 3.1 rather than

in efficient implementations. Of course, a careful implementation would very

likely improve the performance reported here.

It is expected that biorthogonality will be lost in finite arithmetic owing to

cancellation. We use a full rebiorthogonalization device in our examples, except

in Example 4, where the algorithm and the new-start procedure are run both with

and without orthogonalization. The new-start strategy employed is described in
§§5.1 and 5.2.

As is pointed out in §4, the LR algorithm can be used to compute eigenvalues

and eigenvectors of Tm . For reliability, however, we have adopted the QR

algorithm here.

and

(28)
y*A-y*9 =
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Table 1. Results of a serious breakdown in Example 8.1

e =0. € = !.£• e = 1.£- 1

0i - A, Ai 03 i Si - X¡

.E0 .E0 5.1E-10 1.E0 -1.1E-13

1.3E-1 .3E-1 (2.7,-1.8)E-10 1.3E-1 (-1.1, -1.8)E-13
-7.2E-3 -7.2E-3 (2.7, 1.8)E-10 (E-3)-1.5E-l (-1.1, 1.8)E-13

-1.8E-15 (E-15)l.lE-3 -2.4, 6.0)E-11 (E-3)-3.2E-l (4.6, -S.0)E-14
-1.8E-15 1.6E-2 (-2.4,-6.0)E-11 (E-2)-2.5E-l (4.6, 5.0)E-14
-3.1E-3 1.2E-3 -2.2E-12 -3.2E-1 -1.3E-13

In the first two examples, the algorithm is run to the end providing all eigen-

values. We compare the accuracy obtained for various thresholds e and list

the pivots cu i and the approximation errors X¡ - 9¡ (in Tables 1-3). If a new-

start occurs, we list the pivot for the new-start vector with the magnitude of the

old pivot in parentheses. The influence of the magnitudes of pivots u>¡ on the

approximation and the stabilizing effect of the new algorithm are evident.

Example 8.1. Our first example is taken from Example 1 of [23]. The 6x6

matrix is

A =

/0
1

V

1\

1    0)

[1,2,3,4,5, 6]T . The eigenvalues of Aand the initial vectors are px

are the sixth roots of unity.

Table 1 lists the results for e = 0, l.E — 3, l.E—1. The Lanczos algorithm
(e = 0) yields a serious breakdown (a pivot of the magnitude E - 15), no

approximation being obtained (represented by * in the table). The accuracy is
clearly improved as e increases.

Example 8.2. The following matrix comes from Example 5.13 of [14],

A =
B     2B
4B    35

B

(   0

Vio-

1

0
\

1

0)

The eigenvalues of A are (see [14])

Xk = 0.5exp(2A;7r//5), k — 1, z,..., j ,

Xk = -0.1exp(2Ac;r//5),        k = 1, 2,..., 5.

In this example, the two initial vectors are chosen to be different and random

and the algorithm is run to full 10 steps.

The results for two pairs of initial vectors are listed in Tables 2 and 3 for

e = 0., 5.E - 2, 1 .E - 1, and e = 0., 1.2? - 2, 1 .E - 1, respectively. Again,
the accuracy is improved by increasing e .
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Table 2. Results for the first pair of random initial vectors in

Example 8.2

e=0. e = 5.0E - 2 \.E- 1
w. di-Xi (0, Bi-Xi to, 0, - Xi

3.5E-1 1.6E-9 3.5E- 1.0E-11 3.5E-1 3.4E-12
-2.2E-1 (1.5, 2.2)E-9 -2.2E-1 (1.4, 0.4)E-11 -2.2E-1 (3.3, 2.7)E-12
-1.1E-2 (1.5,-2.2)E-9 (E-2)-2.1E-l (1.4,-0.4)E-11 (E-2)-2.1E-l (3.3,-2.7)E-12
-1.0E-2 (1.3, 0.9)E-8 6.2E-2 (0.2, 1.0)E-9 (E-2)1.1E-1 (5.5, 4.3)E-10
2.1E-2 [1.3, -0.9)E-8 (E-2)6.9E-2 (0.2,-1.0)E-9 (E-2)-1.9E-l (5.5, -4.3)E-10

-5.0E-2 (0.5, 1.4)E-8 -4.1E-2 (5.7, 4.7)E-10 (E-2)1.5E-1 (2.2, 6.2)E-10
-2.3E-2 (0.5,-1.4)E-8 (E-2)-2.0E-l (5.7, -4.7)E-10 (E-2)1.3E-1 (2.2, -6.2)E-10
-5.4E-2 1.5E-8 7.6E-2 5.6E-10 (E-2)2.1E-1 6.5E-10
-4.8E-2 (2.4, 2.1)E-9 1.3E-1 (7.1, 5.6)E-12 (E-2)-2.6E-l (1.5, 2.4)E-12
-2.5E-2 (2.4,-2.1)E-9 9.6E-2 (7.1, -5.6)E-12 -2.0E-1 (1.5,-2.4)E-12

Table 3. Results for the second pair of random initial vectors

in Example 8.2

e = X.E-2 e = \.E-\

di-Xi CO, 0i-Xi CO, e,-
5.9E-1 4.6E-10 5.9E-1 3.2E-11 5.9E-I 2.8E

3.9E-1 (2.3, 0.6)E-9 3.9E-1 (2.1, 3.6)E-11 3.9E-1 (2.0, 3.1)E-11
-2.6E-1 (2.3, -0.6)E-9 -2.6E- (2.1,-3.6)E-11 -2.6E-1 (2.0,-3.1)E-11

(6.5, 3.7)E-11

(6.5,-3.7)E-11
(2.1, 8.4)E-11

(2.1, -8.4)E-11
8.6E-11

(3.4, 3.6)E-11
(3.4,-3.6)E-11

-2.9E- (3.4, 1.6)E-5 -2.9E-1 (1.4, 0.7)E-10 -2.9E-

1.0E-1 (3.4,-1.6)E-5 1.0E-1 (1.4,-0.7)E-10 1.0E-1
-3.9E-2 (0.5, 5.3)E-5 3.9E-2 (0.3, 2.0)E-10 (E-2)1.1E-1
8.8E-4 (0.5, -5.3)E-5 (E-4)6.1E-2 (0.3, -2.0)E-10 (E-2)2.2E-1

-8.6E-4 5.9E-5 -1.4E-1 2.2E-10 1.3E-1

3.2E-1 (1.6, 1.2)E-9 3.2E-1 (3.8, 3.8)E-11 (E-2)1.3E-1
5.2E-1 (1.6,-1.2)E-9 4.6E-1 (3.8,-3.8)E-11 -1.0E-

In the next two examples, the intermediate Ritz values are computed in

demonstrating convergence. By §7.1, convergence is expected to be slowed down

as e increases, but numerical errors destroy the faster convergence predicted

theoretically for smaller e . In the long run, more Ritz values will be obtained

by increasing e , owing to the stabilizing effect.

Example 8.3. This example comes from Example 3 of [23], where the matrix is

the following 100 x 100 diagonal matrix

(29)   ^ = diag(l,2,...,20,41,62, ...,440,481, 522, ... ,

1260, ... , 2561, 2642, ... , 4019, 4100).

The two initial vectors are random and different. We mark a Ritz value con-

verged if it is correct to the fifth significant digit and a{m) is the number of

Ritz values converged at step m .

Figure 1 plots the curve of aim) for a pair of random initial vectors. The

threshold parameter is chosen to be e = 0., Lis - 4, 1.2? — 3. Although,

initially, the case e = 0 demonstrates faster convergence, it deteriorates as m

increases, with only 19 Ritz values converged at step 100.   In contrast, both
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Figure 1. Convergence results of 100 steps for the 100 x 100

diagonal matrix of Example 8.3 with rebiorthogonalization

the cases e = 1.2? - 4 and 1.2? - 3 yield all the 100 eigenvalues to working

accuracy at step 100.

Example 8.4. Our last example is a 500 x 500 block upper triangular matrix.

The first 250 diagonal entries consist of 1 x 1 blocks [a,] and the remaining

250 diagonal entries consist of 2 x 2 blocks of the from

,-Ci   bi
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Here, a¡, b¡, and c, are pseudorandom numbers of normal distribution with

mean 0 and variance 1. The remaining entries above the diagonal blocks are

pseudorandom numbers uniformly distributed in [-0.5, 0.5]. The two initial

vectors are identical random vectors. The eigenvalue distribution is plotted in

Figure 4 (for the upper half plane). We mark a Ritz value converged to an

eigenvalue if the relative error is less than Lis-3 and a{m) again denotes the

number of converged Ritz values.

The threshold parameters are e = 0., 1.2? - 6, 1.2? - 4, 1.2? — 3. We
first implement the algorithm with full rebiorthogonalization, and the results of

a(m) for m = 130 are plotted in Figure 2. We then implement the algorithm

without rebiorthogonalization and the results of a(m) for m = 130 are plotted

in Figure 3. In this case, some repeated Ritz values appear for all three cases,

but are not counted in a(m) and not shown in the figure. Again, a behavior

similar to that in the last example is observed.

20      30      40      50      60      70      80      90    100    110    120    130

Figure 2. Convergence results of 130 steps for the 500 x 500

random matrix of Example 8.4 with rebiorthogonalization
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i. a (m)

20  30  40  50  60  70  80  90  100 110  120  130

Figure 3. Convergence results of 130 steps for the 500 x 500

random matrix of Example 8.4 without rebiorthogonalization

•        •     •   •

-*•
-2 -1

-*- -X-

3

Figure 4. The distribution of the eigenvalues in Example 8.4
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9. Conclusions

We have developed a new method to reduce a matrix to a condensed form,

which is between the tridiagonal form and the upper Hessenberg form. The

sparseness structure is controlled by a threshold parameter. By relaxing from

the tridiagonal form, we are able to maintain the pivots above the threshold

parameter and hence gain in stability. In theory, stability is gained at the cost

of reduced convergence rate owing to more breakdowns. In numerical practice,

however, the minor slowdown in convergence is paid off by stability. On the

other hand, from the stability point of view, it is not necessary to enforce the

pivots to be one, which will not only slow down convergence but also signifi-

cantly increase computational cost. Therefore, our algorithm is optimal in the

sense that it balances stability with convergence rate.

We have also sketched a symmetric version of Algorithm 3.1, which is new

and of significance also in the classical symmetric case.

The question remains of how to choose the best threshold parameter. Too

small an e will result in fewer breakdowns but causes deterioration of the qual-

ity of computational results and eventually reduces the number of eigenvalues

that can be obtained. Too large an e yields more breakdowns and slows down

convergence, but in the long run, more eigenvalues will be obtained. An appro-

priate threshold parameter e should be as small as possible while sufficiently

large to obtain all desired eigenvalues. Inevitably, the best choice will depend on

the number of the eigenvalues desired as well as on the condition of the matrix.

A successful solution to this problem will lead to a robust general algorithm for

large sparse nonsymmetric eigenvalue problems.

Acknowledgment

The author thanks the referee for many valuable comments.

Bibliography

1. W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue

problem, Quart. Appl. Math. 9 (1951), 17-29.

2. D. Boley and G. Golub, The nonsymmetric Lanczos algorithm and controllability, Systems

Control Lett. 16 (1991), 97-105.

3. D. Boley, S. Elhay, G. Golub, and M. Gutknecht, Nonsymmetric Lanczos algorithms and

finding orthogonal polynomials associated with indefinite weights, Numerical Algorithms 1

(1991), 21-43.

4. C. Brezinski, M. Redivo Zaglia, and H. Sadok, Avoiding breakdown and near-breakdown in

Lanczos type algorithms, Numerical Algorithms 1 (1991), 261-284.

5. J. Cullum, W. Kerner, and R. Willoughby, A generalized nonsymmetric Lanczos procedure,

Comput. Phys. Comm. 53 (1989), 19-48.

6. J. Cullum and R. A. Willoughby, Lanczos algorithms for large symmetric eigenvalue

computations, Birkhäuser, Boston, 1985.

7. R. Freund, Krylov subspace methods for complex non-hermitian linear systems, RIACS

Report 91.11, NASA Ames Research Center, May 1991.

8. R. Freund, M. Gutknecht, and N. Nachtigal, An implementation of the look-ahead Lanczos

algorithm for non-Hermitian matrices, SIAM J. Sei. Statist. Comput. 14 (1993), 137-158.

9. R. Freund and N. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian

linear systems, Numer Math. 60 (1991), 315-339.



A BREAKDOWN-FREE VARIATION OF THE NONSYMMETRIC LANCZOS ALGORITHMS     207

10. M.  Gutknecht,  A completed theory of the unsymmetric Lanczos process and related

algorithms, part I, SIAM J. Matrix Anal. Appl. 13 (1992), 594-639.

11. _, A completed theory of the unsymmetric Lanczos process and related algorithms, part

II, SIAM J. Matrix Anal. Appl. (to appear)

12. _, The unsymmetric Lanczos algorithms and their relations to Padé approximation,

continued fraction and the qd algorithm, Preliminary Proceedings of the Copper Mountain

Conference on Iterative Methods.

13. G. A. Geist, Reduction of a general matrix to tridiagonal form, SIAM J. Matrix Anal. Appl.

12(1991), 362-373.

14. R. T. Gregory and D. L. Karney, A collection of matrices for testing computational algorithms,

Robert E. Krieger Publishing Company, Huntington, NY, 1978.

15. G. H. Golub and C. F. Van Loan, Matrix computations. The Johns Hopkins University

Press, Baltimore, MD, 1983.

16. W. D. Joubert, Lanczos methods for the solution of nonsymmetric systems of linear equations,

SIAM J. Matrix Anal. Appl. 13 (1992), 926-943.

17. A. Dax and S. Kaniel, The ELR method for computing the eigenvalues of a general matrix,

SIAM J. Numer. Anal. 18 (1981), 597-605.

18. W. Kerner, Large-scale complex eigenvalue problems, J. Comput. Phys. 85 (1989), 1-85.

19. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators, J. Res. Nat. Bur. Standards 45 (1950), 255-282.

20. P. Lancaster and Q. Ye, Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils,

Linear Algebra Appl. 185 (1993), 173-201.

21. B. N. Parlett, The symmetric eigenvalue problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

22. _, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl.

13(1992), 567-593.

23. B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric

matrices, Math. Comp. 44 (1985), 105-124.

24. B. N. Parlett and H. C. Chen, Use of an indefinite inner product for computing damped

natural modes, Linear Algebra Appl. 140 (1990), 53-88.

25. C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices,

Ph.D. thesis, London University, London, 1971.

26. Y. Saad, Variations on ArnoldVs method for computing eigenelements of large unsymmetric

matrices, Linear Algebra Appl. 34 (1980), 269-295.

27. D. R. Taylor, Analysis of the look ahead Lanczos algorithm, Ph.D. thesis, University of

California, Berkeley, 1982.

28. J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

29. Q. Ye, Variational principles and numerical algorithms for symmetric matrix pencils, Ph.D.

thesis, University of Calgary, Calgary, 1989.

30. _, A convergence analysis of nonsymmetric Lanczos algorithms, Math. Comp. 56

(1991), 677-691.

Department of Applied Mathematics, University of Manitoba, Winnipeg, Manitoba,

Canada R3T 2N2

E-mail address: yeQnewton.amath.umanitoba.ca


