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UNIFORM ERROR ESTIMATES FOR CERTAIN
NARROW LAGRANGE FINITE ELEMENTS

N. AL SHENK

Abstract. Error estimates of Dupont and Scott are used to derive uniform

error estimates for Lagrange finite elements in 5ft" (n > 2) under the follow-

ing conditions: ( 1 ) The elements can be arbitrarily narrow in any coordinate

direction such that a sufficient number of interpolation points are grouped on

lines parallel to that coordinate axis, and (2) the space of approximating func-

tions FT in each element T must include the space of polynomials of degree

< m - 1 for some m > 1 + n/2 . If n is odd, this does not cover elements

of lowest degree that are normally considered with the shape regularity require-

ment that the ratio of their outer and inner diameters be bounded. For example,

if n = 3 , the usual requirement with shape regularity is that each Ft contain

all first-degree polynomials. The result of this paper requires that each Ft

contain all quadratic polynomials, and consequently does not apply to linear

(Courant) elements in tetrahedrons or trilinear (tensor) elements in rectangular

boxes. Counterexamples in these two cases are included.

1. Introduction

Most discussions of uniform a priori error estimates for finite element ap-

proximations in SR" with n > 2 use the shape-regularity assumption that the

ratios of the outer and inner diameters of the elements are bounded, where

the outer diameter of an element is the diameter of the smallest disk or sphere
containing it and its inner diameter is the diameter of the largest disk or sphere

contained in it. For triangular elements in 5R2 this is equivalent to assuming
that the angles in the triangles are bounded away from zero. I. Babuska and

A. K. Aziz [ 1 ] showed that for certain Lagrange elements on triangles in 3Î2, this
condition is unnecessarily stringent. (We use the term Lagrange element for an

approximation that is determined by values of the function being approximated

at a finite number of points, in contrast with Hermite elements which also de-

pend on the interpolated function's derivatives.) They showed that instead of

requiring that none of the angles in the triangles be small, it suffices to require

that none of them be large, i.e., that all angles be bounded away from n. P.

Jamet [2] obtained uniform estimates for Lagrange elements under the assump-

tions that (i) the directions of the sides of the elements are not arbitrarily close
to being parallel to any hyperplane and (ii) the space of approximating func-

tions in each element include all polynomials of degree k with k > n/2. The

last restriction eliminates linear, bilinear, and trilinear elements in ÍR2 and K3.
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Later, E. Barnhill and J. A. Gregory [3, 4] derived uniform estimates for linear

elements on triangles with angles bounded away from 7r, and M. H. Schultz [5,

pp. 19-20] obtained such results for certain Lagrange elements on arbitrarily

narrow rectangles. Also, L. Dechevski and E. Quak [6] have derived uniform

LP estimates for arbitrarily narrow elements in R" with n < p .

In this paper we use error estimates of Dupont and Scott [7] for approxima-

tions by averaged Taylor polynomials to generalize these results to other types

of Lagrange elements in SR" for n > 2. The necessary results from [7] require

only Schwarz inequalities and changes of variables in multiple integrals. (See

also the expository article [8]). We will show that, in most cases, uniform esti-

mates can be obtained for elements that are arbitrarily narrow in any coordinate

direction such that a sufficient number of interpolation points are grouped on

lines parallel to that coordinate axis, and for the images of such elements under

nonsingular linear transformations such that the ratios of their greatest and least

singular values are bounded. The main result (Theorem 1 ) applies to all types

of elements covered by standard results under a shape-regularity requirement,

with one important exception. It does not apply to elements of the lowest possi-

ble degree in spaces of odd dimension n . The results based on shape-regularity

require that the space of approximating functions Ft in each element T in-

clude the space Pm-X of polynomials of degree < m — 1 for some m > n/2,

while Theorem 1 here requires that Ft include Pm-X for some m > 1 + n/2.

If n is even, these are equivalent conditions. If n is odd, however, the latter

condition is stronger. For n = 3 , the requirement with shape-regularity is that

each Ft contain all first-degree polynomials and Theorem 1 here requires that

each Ft contain all quadratic polynomials. Consequently, Theorem 1 does not

apply to linear (Courant) elements in tetrahedrons or trilinear (tensor) elements

in rectangular boxes, and we include counterexamples to Theorem 1 in these

two cases.

2. The finite elements

We assume that the reference element T0 is a closed polygon in W with

n = 2, or a closed polyhedron in SR" with n > 3, and that the domain Q c Sft"

under consideration is a polygon or polyhedron whose closure is paved by a

finite number of images T of T0 under affine transformations Vr(x) = ATx +

br, where >r and x are column vectors and for each T, At is an n x n

nonsingular matrix, A'T is its transpose, and ¿>r is a constant vector. Here we

view the transformation from the reference element T0 to the general element

T as the composition of three transformations by writing A'T in the form

(1) AT = hTSTDT,

where /V is a positive constant, St is an arbitrary real, nonsingular n x n

matrix, and Dt is a real, diagonal n x n matrix whose diagonal elements drr

satisfy the following condition:

I. There is a subset R of {1,2, ... , n} such that

(2) 0 < drr < 1    for   r e R   and   d„ =\    for   r $ R.

The factor A 7- in (1) represents a uniform contraction or expansion in all

directions, the matrix DT represents contractions parallel to the xr-axes for

r e R, and St can involve contractions parallel to the xr-axes for r $. R or
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other nonsingular linear transformations. We will obtain, for a fixed reference

element, estimates involving /zr and the singular values of St that are inde-

pendent of Dt and hence uniform for the images under hTS'T of elements that

are arbitrarily narrow in the jc'-directions for r e R .

We also make the following assumptions. Of these, it is Condition VIII that

allows for narrow elements.

II. The reference element To contains an open convex set Co with the prop-

erty that To is star-shaped with respect to all points in c70.

III. The finite-dimensional space F0 of functions <fi(x) that are used as

approximations in the reference element T0 consists of functions in C(Tq)

whose first-order distribution derivatives in the interior of To are in L2(To) and
includes all polynomials of degree < m- 1, where m is an integer > l + n/2.

IV. The interpolation data in T0 consist of the values {u(pj)} of the inter-

polated function at N points {pj} in T0, with N the dimension of F0 and

such that

(3) B0u = [u(px), u(p2), ... , u(pN)] :F0^^tN

is an isomorphism. The interpolant of u e Cm(T0) is the unique function u¡

in Fo such that B0U[ = B0u.

V. The space Ft of approximating functions y/(y) in a general element T

is obtained from F0 by the affine mapping yr(x) ; i.e., Ft = {y/(y) : ft(x) =

y/(yT(x)) e F0}.

VI. The interpolation data Btu in the general element T are obtained from

the data in T0 by the mapping yr(x) :

(4) Btu = Bqu

with u(x) = u(yr(x)) for u(y) e Cm(T). This means that

BTu = [u(qx), u(q2), ... , u(qN)]

with q¡ = yT(Pj) • The interpolant of u(y) e Cm(T) is the unique function

Ui(y) in FT such that BTu¡ = BTu.

VII. The interpolation data is such that the interpolations of a function u e
Cm(Q) in the various elements combine to form a function u¡ e C(Q).

VIII. For each interpolating point p¡ in T0 and each r e R, let 4>jr(x) be

the function in F0 that equals 1 at all interpolating points on the line through

Pj parallel to the the x'-axis and equals 0 at all other interpolating points.
Then <j>jr(x) is independent of xr.

In the case of n = 2, Condition VIII is satisfied if F0 contains the space
Pm_i of all polynomials of degree < m - 1 and if, for each r e R, the inter-

polation points {pj} are grouped on m lines parallel to the V-axis. This is a

consequence of the fact that a polynomial of degree < m - 1 in one variable

can be chosen to have arbitrary values at m points. For example, Figures 1

and 2 (next page) represent triangular elements in the isosceles right triangle To
with vertices px = (0,0), p2 = (1,0), and p3 = (0, 1). Both types of ele-
ments satisfy Condition VIII with R = {1, 2} . In the case of Figure 1, which

represents linear (Courant) elements determined by values of the functions at

the three vertices, m = 2 and the interpolation points are on two lines parallel

to each coordinate axis. Here, 1 can be in R because the linear function \-x2

that is 1 at px and p2 and is 0 at p¿ and the linear function x2 that is 1
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Figure 1 Figure 2 Figure 3

at /?3 and is 0 at px and p2 are both independent of xx. Similarly, 2 can be
in R in this case. For cubic elements determined by the ten points in Figure 2,

m = 4 and 1 and 2 can be in R since the ten points are grouped on four

horizontal and four vertical lines.

The situation is different for linear elements if To is the isosceles triangle

with vertices px = (0,0), p2 = (2, 0), and p3 = (1, 1) in Figure 3. In this
case, 1 can be in R because px,p2, and pi are on two horizontal lines. The

function x2 that is 1 at p^ and is 0 at px and p2 and the function 1 - x2
that is 1 at px and p2 and is 0 at p^ are both independent of xx. However,

2 cannot be in R because the linear function x2 that is 1 at p->, and 0 at

px and p2 is not independent of x2. The interpolating points are not on two

vertical lines. These examples reflect the results of Babuska and Aziz because

compressing the triangle of Figure 3 in the x2-direction would violate their
maximum angle condition, while compressing this triangle in the xx-direction

or compressing the triangle in Figure 1 and 2 in the xx- or jc2-direction would

not.
To deal with the case of general n > 2 and a fixed r, we let

Í- _ (yi vr— 1     „r+1 Yn\

denote the point in SR"_1 obtained by removing xr from x = (xx,x2, ... , x"),

and use (x, xr) as alternate notation for x. Suppose Pm-X is the space of

polynomials of degree < m- 1 in x and Ñ is its dimension. Then Condition

VIII is satisfied if F0 contains Pm_i and the interpolation points {Xj} are

grouped on Ñ lines x = cv, v = 1,2,..., Ñ, such that a polynomial in

Pm-X can be assigned arbitrary values at the points {c„} € W~x.

3. Norms and seminorms

For a nonnegative integer j and a function u with continuous derivatives

of order ;' at x,

1/2

;!

["M],.H££
\a\=j

dx
u(x)

denotes the ¿2-normin W' of the x-derivatives of u of order j at x, with the

mixed partial derivatives obtained by different orders of differentiation counted

separately. Here the multi-index a = (ax, a2, ... , a") is an «-tuple of non-

negative integers, \a\ = ax + a2 H-+ a" , a\ = ax\a2\ ■■ • a"\ and

\dx)    ~ (dxx)*!••• (dx")0"-'
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(6) \u\tj = \j \M(x)]2xJdx\

1/2

is the seminorm (a norm if j = 0 ) formed by the L2-norms of the ;' th deriva-
tives of « in r, and

1/2

(7)

.7=0

is a norm in L2(T) for k = 0 and in the Sobolev space HX(T) for k = 1 .

4. The main result

Theorem 1. Suppose that the reference data—the reference element To, its subset

Co. the integer m, the space of approximating functions Fo, and the interpola-
tion points {pj}—satisfy hypotheses (II) through (VIII) above.

Let hT be a positive constant, St a nonsingular nxn matrix, Dt an nxn

diagonal matrix satisfying hypothesis (I), and br a constant vector in W . Let

T be the image of To under the mapping yT — hTSTDTX + bT ■
Then there is a constant C, that depends only on the reference data in To,

such that for all ueCm(T),

(8) I" - "/Ir.o + (Mr)2|w - "/Ir, i < C2 (hTAT)
2m

\T,m:

where u¡ is the interpolant of u in T and Xt and At are the least and greatest
singular values of St ■

If At/Xt is bounded for all elements T under consideration, then the fac-

tors Aj- and Xt can be dropped from (8)—with a different constant C.

Throughout this discussion, C denotes various constants that depend only
on the reference data in T0 . By the standard error estimates for To , there is a

constant C such that

l"_M'lr0,o + lM~M'l7"o,i ^Ql lMlr„,m   for ueCm(To).

We rewrite this, using only L2-norms, as

(9)     \u-ui
i2

17b, 0
+E

7=1

d

dxJ
(u - Uj) <

T0,0
c2£

m\

\a\=m

d_

dx

2

T0,0'

Let Tx be the image of T0 under the mapping z = Dx , which compresses
the xr-directions for r e R. Under this change of variables,

(10)
d

dxi

dz^_d_ _,   _d_

dxi dzJ ~   JJ dzJ '

so that (9) becomes, after cancelling the Jacobian, det(D)-1,

W-M/L   „ + >     \djjT—i(U-Ul) <Cl   >      —r  da    — )    u
i 'I7Ï.0     ¿_rf l »qzik ' t,,o ¿-"   a\        \dz)

7=1 \a\=m

2

T,,0



110 N. A. SHENK

with da = ¿f, • • • df„ . Since \dj¡\ < 1 for j = 1, 2,...,«, we have \da\ < 1
and

M-W/L     +>     \djj^—¡(u-uj) <Cl  >      —r      — }    u
i ir,,o     z_^ | JJdzJK t,,o ¿^   a\    \dz)

7=1 \a\=m

2

T,,0

or

(11) l"-"'lr1,o + £ \dJJ^7](u-u')
7 = 1

r, ,0
< C   «L
—        !    17) , m

for weCm(ri).

Estimate ( 11 ) by itself will not give Theorem 1 because \d„\ can be arbitrarily

small for r e R. We also need the following result.

Lemma 1. There is a constant C, depending only on the reference data in To,

such that for u e Cm(T0) and reR,

(12)
d   ( s

dx^{U-U,) To, 0
<c2

du

dx'
T0,m-\

Suppose that Lemma 1 has been established. We rewrite (12) with L2-norms

as

d

dxr
-£-{u-u¡)\       <C2   Y

(m-l)\

n, o a
\a\=m—l

Then the change of variables z = Dx yields

a Y du
dx      dxr T0,0

drr^—.(u - U,) < CL    >        i-t-¡- dadrr [-—)    —
dzr t,,o z—' q! \dzj    dzr

\a\=m-\

We cancel \drr\2 and use the estimate \da\ < 1 to obtain for reR,

2

7"i,0

2

r, ,o'

_a
dz

x2       ^2  v-   (m-iy.  ( d y du

-M-u^^C2   Y    K-^L\\d-i)   J?
(13)

<

\a\=m— 1

2 v   m!
L   a\

\a\=m

d_\a

dz t, ,o
rl\    I2

= C¿\U _I    I /1 , m

Deleting the terms in the sum of ( 11 ) with j = r e R, for which d„ < 1,

and replacing them by (13) yields

0
l"-M'Lo + E bw("_M/)T, ,0

<C2\U
2|„l2

7| ,nt

or

7=1

I I2 ,   I I2        ^ ^21    |2
\u-uA~ n+ M-M/L  , < CL\u\T

Making the change of variables y = foSj-z + br yields (8) (see Lemma 3 of
[8]). Hence we can establish Theorem 1 by proving Lemma 1.
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5. Proof of Lemma 1

For u e Cm(To), let Qmu be the averaged Taylor polynomial approximation

of u of degree m - 1 defined in equation (3.1) of [7] with Q = T0 and

B = U0. We will estimate -§^(u - u¡) for reR by estimating -¡^{u - Qmu)

and j^(Qmu - u¡). Equation (3.3) and the last set of inequalities on p. 38 of

[7] with \a\ = 0, j = 0, u replaced by Jp , and m replaced by m - 1 give

(14)
ñ?o-<rv>n, o

Q
du

~dxr~

m-ldU

m-\

R
dXr

du

dxr

<C

T0,0

du

To, 0 dxr T0,m-i

This is the estimate we need on -¡^(u- Qmu).

Since Qmu is a polynomial of degree < m — 1, it and u¡ - Qmu are in Fo

by Condition III. We begin our study of u¡ - Qm by looking at functions in

We suppose that r e R is fixed. We let x = c„, v = 1, 2, 3, ... , Ñ,

be the lines parallel to the xr-axis containing the interpolating points {p¡} in

7o, and let (cu,tVß) for p = 1,2,..., Mv be the interpolating points on

x = cv. Label the points so that tvX < tvß for p > 1. Then (c„, tvfl) for

p = 1,2, ... ,MV and v = 1, 2, ... , TV are all the interpolating points. The
next lemma uses Condition VIII on the geometry of those points.

Lemma 2. There is a constant C, depending only on the reference data, such

that for (f> e F0 and reR,

f      ñrh 2 Ñ     Mv

(15) /   Uj(x)   dx<C2YY \<t>(Cu,tUfl)-<P(cu,t,x)\2,
Jt0 [ox .,_.   „_.

where the inner sum is taken to be zero if Mv = 1.

Proof. For each interpolation point (cv, tvß), let Xuu(x) be the function in

Fo that equals 1 at (c„ , tVfl) and equals zero at the other interpolation points.
Then

(16)

JV     M„

^w = E E w» ' ("ß)x^(x)-
V=\    fl=]

By Hypothesis VIII, the functions  ¿2%=\   X»M(x)  for v = 1,2,... ,Ñ are

independent of xr. Consequently, their ^'-derivatives are zero and

(0

d-x-rX^(x)={

if   Mv = l
M„ M"      d

- E Q^r^(x)     if    Mv > 1   \ = - E dX~~rX»Á
ß=2
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where the sum is taken to be zero if Mv = 1. Using this with (16) gives

dtj) N     Mv
Ö

9^w = EE w» > tvjg^xwix)

Ñ
N r) M" ft

= Y  { W" ' t^)g^Xu\(x) + Y <!>& ' t^)-Q^-rX^(x)}

Ñ

ß=2

M„ Mv
d

= E {~ ^«"^i) z2o^X»m(x) + Y<t>(c„, tUM)—Xvß(x)}
m» I ¿í=2 ¿í=2

Ñ My r,

= E E w(ê» ' '"/«) ~ ̂  » ̂oi^w*) -
¡/=1    n=2

and then with a Schwarz inequality,

a0
ax

2 N     My N     My „

;W <E E k(^» ̂ )-^(^. ^i)l2 E E \dx^Xv"^
i/=l  /j=2 i/=l  /i=2

This yields (15) and establishes Lemma 2 since, by Condition III, -^Xvß(x)

are fixed functions in L2( To).   □

To complete the proof of Lemma 1, we use (15) with <f> = u¡ - Qmu. Since

u = u¡ at the interpolation points (¿V, tUft) and (c„ ,tvX) and (c„ , tv¡l) are on

the same line parallel to the xr-axis , we obtain

IT\£{U>-Qmu){x) dx

N    Mv

<C2E E \(^-Qmu)(cv,tvtl)-{u,-Qmu)(cv,tvX)\'
v=\   ß=2

N My

(17)

<

v=\   fi=2

c2EE /  ^(u-Qmu)(c,,t)dt

c2EE /  \^(u-Qmu)(cv,t) dt
v=\   n=2

We use the following lemma to estimate the integrals on the right of (17).

Lemma 3. There is a constant C such that for v = 1,2,... , Ñ, p = 1,2, ...

Mv, and ueCm(T0),

(18) if" \~(u-Qmu)(cv,t) dt <C
du

dxr To, m-1
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Proof. We are assuming that m > l + n/2. For m > l+n/2 the first inequality

in the proof of Theorem 4.2 in [7] with u replaced by §^, a = 0 and m

replaced by m - 1 gives for (cv , t) e To,

a
dxr

du
(u-Qmu)(cv,t)\ = \^r(x)-Qm-x(^)(cv,t) <C

du

dx' To,m-\

Integrating this inequality yields (18).
We are left with the case of m = l+n/2 (and even n ), for which m-l-n =

-n/2. The first inequality at the bottom of p. 40 of [7] yields for x e T0, with
Da = d/dxr, \a\ = 1, and Ç in place of y ,

a

(19)

)x-(u-Q">u)(x)\

\ß\=m-\

sC/>-<r"/2[0H,»-,¿c-

For x = (êv, t) and Ç = (C, C), set a = \cv - Ç\, a = (t - (J)/a,  and

dt = ado. We have assumed that tvX < tVß for p > 1. Hence, for Ç ̂  cv ,

/     \x - Q-"'2 dt =        \\cu-Ç\2 + (t-C)2        dt
Jtyt Jty,        L J

= y     [a2 + (t-C)2]       dt

r(hP-nia
= ax-"/2  / [1 + a2]-"^ da

J(tvi-t')la

< ax-n'2 f '    [1 + a2]-"'4 do = K(a) = K(\cv - Ç\),
J-d,/a

where dx is the outer diameter of T0 and K(a) is defined by the last equations.

For n = 2 and 0 < a < ¿i,

Ä"(a) = f '    [1 + a2]-1/2 rfff = 2 In frf, + y/a2 + dA -lna

<C(l + \lna\),

while for n > 4,

/oo [1 + ct2]-"/4 rfff < Cax-n'2.
-oo

Hence for n = 2,

(21a) / tf(|c„ - C|)2di < C [ (1 + | In \cv - Q\)2 dÇ<C
Jt0 Jt0



114 N. A. SHENK

and for even n > 4,

(21b) / K(\cv - C|)2î/C < C /' \c„- CI2"" dÇ < C.
JTo JTq

The integrals on the right of (21a) and (21b) are bounded because their inte-

grands have bounded integrals over the intersections of To with the (n - 1)-

dimensional planes xr = c. Hence, (19) with x = (cv, t), (20), and (21a,b)

yield

/
¿-(M - Qmu)(cv, t)
dxr

dt

<C2 LMM^C'^r»*«
sl^-^L«
<c

JTo

C\)2dC
JTn

—(O2
dx'^1 r,m-\

dÇ<C:
du

dx' 7b, m-1

and this gives Lemma 3.   D

(22)

Estimates (17) and (18) imply

<C

_a_
dxr

^-(ur-Qmu)(x)

du

dx'

dx

7b > «-I

dx]
1/2

Finally, (14) and (22) with the triangle inequality give Lemma 1 to complete

the proof of Theorem 1.

6. Counterexamples

We close by using a standard counterexample to the false Sobolev-type in-

equality |v/(0)| < C||^||R2 , for functions in K2 to construct counterexamples

to Theorem 1 (i) for T0 the tetrahedron in 5R3 with vertices px = (0,0,0),

p2 = ( 1, 0, 0), pj = (0, 1,0), p4 = (0, 0, 1 ) and F0 the space of linear func-

tions <j> = Co + cxxx + c2x2 + C3X3 ; and (ii) for Tq the cube 0 < x1, x2, x3 < 1

with Fo the space of trilinear functions spanned by the eight functions x'x2x3,
(l-x»)x2x3, x'(1-jc2)x3, (l-x')(l-x2)x3, x'x2(l-x3), (l-x')x2(l-x3),

xx(l -x2)(l -x2), and (1 -x')(l -x2)(l -x3).

We set R = {3} and write

DT =

1 0 0
0 1 0

0   0/1

with 0 < p < 1, so that dxx = 1, d22 = 1, and d^= p. We take /zr = 1 and
br = 0 and let 57- be the identity matrix.

In the case of a tetrahedron To , its image under the mapping yT = DTx is

the tetrahedron T" with vertices qx = (0, 0, 0), q2 = ( 1, 0, 0), q3 = (0, 1, 0)
and #4 = (0, 0, p). In the case of a cube, the image of To is the box Q? :
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0 < x1 < 1, 0 < x2 < 1, 0 < x3 < p. In both cases all of the hypotheses of
Theorem 1 are valid except the requirement in Condition III that Fo include
all quadratic polynomials.

We consider the case of the tetrahedron first. For u e C2(Tß), u¡ is the

linear function that has the same values as u at qx,q2, q3, q*. If Theorem 1

were valid in this case, there would be a constant C, independent of p with

0 < p < 1, such that

(23) Uw-w/ll^j <C\u\n>2

for all u 6 C2(P). We will prove there is no such constant by finding for each

7 > 0 a p with 0 < p < 1 and a function u e C°°(5R3) such that

(24) ¡"-"/IIj-m >ylMlr«,2-
Let ¡t, = (tx, t2) be the Fourier transform variable in 9c2 and write p = \t\.

Let y/R(xx, x2) be the function in C°°(SR2) whose Fourier transform is the
radially symmetric function

^/    w-n -r¡—    f°r   e<p<R,
F(y/R)(t) = <  P2\np

I      0        otherwise,

where e is the base of the natural logarithm and R is a constant > e to be
chosen later. Then

¥r(x1 ,x2) = ^-[ ^'í'+^í2)F(yR)(i) dt,

(25) V*(0,0)= /   -$—dp = \n(\nR).
Je    PlnP

so that

Also,

(26)

and

(27)

Mk,,= /  |F(^)(£)|2(l + \t\2) di = 2n i" l^f^pdp
Jm Je    P (lnP)

fR j
< 4n  /     "Ti-Y) dP = 4n

Je    P(^P)2
1-h^l<4jt

\V*\1,2 = jv IFÍWíMOWl2 + K2I2)2 dt = 2nj* y^2P dp

<2n       pdp < nR2.
ie

Define

(28) u(xx, x2, x3) = ^=y/R(xx, x2).

Then u(xx, x2, 0) = 0 for all (x1, x2) and u(0, 0, p) = ^/p ^(0, 0), so the
linear interpolation of u in the tetrahedron T1 is

(29) u,(xx,x2,xi) = ^=<pR(0,0).
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Since the x1- and x2-derivatives of u¡ are zero and its x3-derivative is
y/R(0, 0)/^p, we have

N|2t> Xs1 7,1 [(*3)2 + l]|íM0,0)|2¿x
' P Jt*

> - [  \Vr(0, 0)|2 dx = -\y/R(0, 0)|2[Volume of T*]
P Jt" P

= ¡\Vr(0,0)\2.

Combining this estimate with (25) gives

(30) ll«/||j».i > ¿>/61n(lnÄ).

Also, for xeP we have |x3| < 1 and

|m(x)|2 + |Vw(x)|2 = i \\x3y/R(xx, x2)|2 + |x3V^(x', x2)|2 + |^(x», x2)|2'
pi

<-[\VR(xx,x2)\2 + \Vy/R(xx,x2)\2].
P

Let A denote the isosceles triangle that is the base of P* for 0 < p < 1. Then
with (26) we obtain

llMH27> 1^1/ I \^xX • x2)l2 + \VVr(x1 , x2)|2] dx
'       P Jtp

= - [ p(l - x1 - x2)[ IíMx1 , x2)|2 + |V^(x», x2)|2] dxxdx2
(31) P Ja

< 2 Í[\wr(xx , x2)\2 + \Vy/R(xx, x2)|2] dxxdx2
Ja

<2\\Vr\\&,i <8tt,

so that by (30)

(32) Hm-w/II^, > ||w/||r/M - ||"||rili, > iV61n(lnR)-VSn

and ||w - u¡\\Tlt . —► oo uniformly for 0 < p < 1 as R —> oo .

On the other hand, with Dj denoting -^ and x = (x1, x2), we have

|m|2      = /   {\DxDxu\2 + \D2D2u\2 + \D3D3u\2
Jtp

+ 2\DxD2u\2 + 2\DxD3u\2 + 2\D2D3u\2} dx

= - f  {\x3DxDxipR\2 + \x3D2D2ipR\2 + 2\x3DxD2y/R\2
P Jt»

+ 2\DxipR\2 + 2\D2ipR\2}dx

.       ,     ruil-x'-X2)

= 7,1 I {(x3)2[ipR(x)}2. 2 + 2\VWr(x)\2}dx
P Ja Jo

= ¿ JÍ [\(x3)3[¥r(x)}\ 2 + 2x3|V^(x)|2]¡(1"X'"2) dxxdx2

^^W\M\,2+M\Mt,i)

(33)
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With (26) and (27), this estimate yields

(34) \u\Tli2<sJ\np2R2 + U

and \u\Tt¡ 2 < 6 for fixed R and sufficiently small p.

Given Y > 0, pick R > e such that ±\/oln(ln.R) - v^ > 6Y and then

pick /i with 0 < p < 1 such that J\np2R2 + %n <(>. Then by (32) and (34),

||"-"/||ril>1 >6T> Y\u\Tll2.

Inequality (24) is satisfied, so there is no a priori estimate of the form (23)
having the same constant C for all tetrahedrons Tf with 0 < p < 1.

For the case of the rectangular boxes Q1, we again define u(x) by (28).

Then for 0 < p < 1,

4 .       4

uj(x) = Y u(P(x) = 7= E PjWVRÜj) >
7=i Vß ;=i

where Pj(x) = (1-x')(l-x2)x3,   P2(x) = x'(l -x2)x3,   P3 = (1-x')x2x3,

P4(x) = x'x2x3,   0, =(0,0), q2 = (1,0),   ft = (0, 1), and q4 = (l, 1).
Short calculations yield for j = 1, ... , 4,

lK;)Hö« i = 77l^^)l2||^l|2e, i
(35) ß

= -|V*(*;)|2(á/<3 + 5*0 = l^(?;)l2(^2 + ?)•

Equations (35) and (25) imply

(36) ll«/%,i > ilMO, 0)|2 = 5[ln(lnÄ)]2,

while for 7 = 2,3,4 and 0 < p < 1,

(37) 11"/%,,, = \VR(Qj)\^P2 + \ < \¥R(qj)\.

By the definition of y/R ,

V*(<72) = V«(l,0) = i- /   -±— ['e'r^'dOdp,
2n Je   p\np Jo

while y/R(qi) and y/R(q^) are given by this formula with cosö replaced by

sin 8 and cos 9 + sin 0 = \/2 sin(0 + 7i/4), respectively. We have

Í     gipcotO dg=   Í     gip«n0 de _ 27r/0(/>) ,
^0 Jo

with Jo the Bessel function of the first kind and order zero. (See any discussion

of Bessel functions, such as M. Abramowitz and I. A. Stegun [9, pp. 360 and

364].) Moreover, there is a constant k such that for p > e,

\MP)\<^=   and   \j0<y/2p)\<JL,



118 N. A. SHENK

so that for j = 2, 3, 4,

^q^k[^ik-pdp

<k i   p~3'2 dp<~< 2k.
Je V?

With (37) we obtain for /' = 2, 3, 4,

|M(7)|| < 2k1"/   llß",l ^ z/c'

which, with (36), gives

llurll >ll«(1)ll -VIIm^II/38n ll"7|lö<M - WUI   \\Q«,\      Z^\\UI   HßM

> ±ln(lnF)-6Â:.

On the other hand, calculations (31) and (33) carried out for Q1* in place of
T" give with (26) and (27)

(39) ||40,;1<V2||^|ls2,1<v/87t'

and

(40) Mö„;2< y i^M^ + ̂ Mfc.i < \J\np2R2 + %n.

Given Y > 0, we pick R > e such that ^ln(lniî) - 6k - \fïn > 6Y and

then pick p so that J\np2R2 + 8?z < 6. Then,

||"-"/||Q^, > ||«/||Q^, - ||"||ö„,i > 5ln(lnÄ)-6fe-v/8n> 6T > Y\u\Ql¡2,

and, consequently, there is no constant C such that

II"-"/He,,, <c\u\Q,2

for all u e C2(ß") and 0 < p < 1.
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