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RESOLVENT ESTIMATES
FOR ELLIPTIC FINITE ELEMENT OPERATORS

IN ONE DIMENSION

M. CROUZEIX, S. LARSSON, AND V. THOMÉE

Abstract. We prove the analyticity (uniform in h ) of the semigroups gen-

erated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a one-

dimensional second-order elliptic operator A under Dirichlet boundary con-

ditions. This is accomplished by showing the appropriate estimates for the

resolvents by means of energy arguments. The results are applied to prove sta-

bility and optimal-order error bounds for numerical solutions of the associated

parabolic problem for both smooth and nonsmooth data.

1. Introduction

Let A be an elliptic differential operator in one dimension defined by

Au = -(au')' + bu' + cu,        x efts (0,1), with u(0) = u(l) = 0,

where u' = du/dx and the coefficients a, b, c are smooth and real-valued

with a positive on Ù. Defining the corresponding sesquilinear form

A(u,v) = (au',v') + (bu',v) + (cu,v),        where (u,v)= /   uvdx,
Jo

we assume that there is a0 > 0 such that

(1.1) ReA(v,v)>a0\\v'\\2,       veH¿(Q),

where ||w||2 = (u, u). If this is not satisfied originally, it may be accomplished

by adding a positive multiple of u to Au.

Let 0 = xo < Xi < • • • < Xn < Xn+x = 1 define a partition of the interval Q

into subintervals Í2, = (x¡, x,+1 ) of lengths /z, = x,+1 -x, and with h = max h¡.

We shall think of this partition as a member of a family of such partitions,

which is assumed to be quasi-uniform in the sense that for some c > 0 we have

h¡>ch, i = 0, 1, ... , N. For a fixed integer r > 2, we define

Sh = {veHx(Q):v\çi,enr-X, i = 0, 1,... ,N},
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where nr_i denotes the space of all polynomials (with complex coefficients)

of degree < r - 1. We then define a discrete analogue Ah : Sh -* Sh of the

operator A by the relation

(AV, X) = ¿(V, X),        Víí/,/€¿V

Let R(X, -A) = (XI + A)~x, where X is a complex parameter, denote the

resolvent of -A . More precisely, we define R(X, -A)f for / e H~X(Q), the

dual space of H0X(Q), as the solution u = u(-, X) e H0x(£i) of the variational

equation

(1.2) A(u,x) + *(u,x) = (f,x),        ^xeHx(ÇÏ),

where (•,•) denotes the duality pairing between H~X(Q) and H¿(Q). Simi-

larly, we note that R(X, -Ah)Phf is the solution uh = uh(-, X) e Sh of

(1-3) A(uh,x) + ¿(uh,x) = (f,x),        VxeSh,

if we define the projection Ph : H~x(il) —* S¡, by

(1.4) (Phf,X) = (f,X),        V/eS*.

Note that the restriction of P¡, to L2(Q) is the standard orthogonal projection.

The main purpose of this work is to prove the following estimates of the

resolvents of —A and -Ah . We use the notation || • \\p for the standard norms

in LP(Q), 1 <p < oo .

Theorem 1.1. There are tp e (\n, n) and C > 1 such that the linear operators

R(X, -A) and R(X, -Ah)Ph are bounded from H~X(Q.) into H0X(Q.), uniformly
with respect to X in the sector 1,9 = {X e C : | argA| < tp}, and, for 1 < p < oo,

we have

\\R(X, -A)f\\p + \\R(X, -Ah)Phf\\p < y^Tj 11/11..        / e LpM , * e V

This theorem is proved in §2. The proof is based on estimates of the Green's

functions of (1.2) and (1.3), which we obtain by an energy argument. Since

the relevant Green's functions do not belong to H0X(Q) in the multidimen-

sional case, it is not clear whether this technique can be generalized; one-

dimensionality is also used in various technical details below.

In the final §3 we discuss some applications of these resolvent estimates. The

first application concerns stability and error estimates for spatially semidiscrete

finite element approximations of the parabolic initial-boundary value problem

ut + Au = f(x,t), xeQ, />0,

(1.5) u(0,t) = u(l,t) = 0,       t>0,

u(x, 0) = uo(x), x e Q,

where u = u(x, t), ut = du/dt, and where / and uo are given. The semidis-

crete finite element approximation uh(t) e Sh is defined by the equation

(1.6) uhtt + Ahuh = Phf(-,t),    t>0;        uh(0) = uoh,

where u0t, e Sh is an approximation of «o .
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We now think of A as an unbounded operator on Lp(Sl) with domain

31(A) = W2(ÇÏ) = {u e W2(Q) : u(0) = u(l) = 0}. Elementary arguments

show that

(1.7) \\u\\m,p<Cm\\Au\\m-2,p,       ueWpm(Çi)nWp2(Q), m>2,

where \\u\\m>p = CE'Jlo II^IIp)1^ denotes the standard norm in Wpm(Çl) (with

the usual modification for p = oo ), and hence that A is a closed operator on

Lp(Sl). Together with the resolvent estimates in Theorem 1.1, this shows that

A and An generate analytic semigroups E(t) = e~u and Eh(t)Ph = e~'AhPh

in LP(Q) ; see, for example, [12, Theorem 2.5.2]. In the usual way we obtain

the representation

(1.8) E(t) = e~tA = ~ [eaR(X,-A)dX,
¿Til Jr

where the contour Y is the boundary of Y,9 oriented so that Im A increases

along T, and similarly

(1.9) Eh(t) = e-tA* = ~j eaR(X, -Ah)dX.

Using (1.8), (1.9) and the resolvent estimates, we obtain the bounds

(1.10) \\E(t)v\\p + t\\AE(t)v\\p<C\\v\\p,        t>0,

and

(1.11) \\Eh(t)Phv\\p + t\\AhEh(t)Phv\\p<C\\v\\p,       r>0,

by a standard argument. In a similar way we see that E(t) and Eh(t)Ph are

bounded from H~X(Q) into H¿(íl) for t > 0; in the latter case the bound is

independent of h. From semigroup theory it also follows that u(t) = E(t)uo

and Uf,(t) = Eh(f)Uoh are solutions of the homogeneous problems (1.5) and

(1.6) with f(x, t) = 0. Solutions of the nonhomogeneous problems can then
be obtained by Duhamel's principle: for (1.5) we have

(1.12) u(t) = E(t)u0+ ! E(t-s)f(-,s)ds,        i>0,
Jo

under suitable regularity assumptions on /. An analogous formula holds for

(1-6). _
In this connection we note that when p = oo we have 2(A) = Co(fi) =

{u e C(Ù) : u(0) = u(l) = 0}, so that A is not densely defined in L^Q),
and hence the standard theory of analytic semigroups does not apply when

p = oo. However, most of the semigroup theory can be developed without the

assumption that 3(A) is dense; see [13] and [6]. Note also that A is densely

defined in Co(Cl) with the maximum norm; in that space the classical semigroup

theory is thus applicable. But the existence theorems for (1.12) then require

that f(t) e Co(Ci), which is not satisfactory, since it places an unnecessary
boundary condition on f(t). We therefore prefer to work in L^Q.) rather

than in C0(Cl).
Stability estimates of the form (1.11), with p = oo, but with logarithmic

factors in the right-hand sides, were obtained in [15] and [14].   Apart from
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removing the logarithm, our present proof of stability is simpler than those of

[15, 14].
Using the stability estimate for Eh(t) in (1.11) we prove in Theorem 3.2 that

for Uoh suitably chosen we have the error estimate

1 <p < oo.(1.13)      ||ffA(f) - u(t)\\p < Chr(\\u0\\r,p + f \\U,(s)\\r.,ds) ,

Smooth solutions are thus approximated to optimal order.

In some applications it is important to allow nonsmooth initial data, such as

discontinuous functions or even ¿-functions. Let ^f(ñ) denote the set of finite

measures p with \\p\\jt = \p\(&) = Ja d\p\. With each p e Jt(Q) we associate

a distribution (also denoted p) in the usual way: (p, x) = fçiX(x)dp(x) for

X e C(Cl). Recall that Ph : Jf(£l) -♦ Sh is defined in (1.4). For solutions of
the homogeneous equations, i.e., (1.5) and (1.6) with f(x, t) = 0, and with

Uoh = PhUo, we show in Theorem 3.5 that, for í > 0,

(114)      \\uh(t)-u(t)\\P<Chrrr'2\\uo\\P, u0eLp(Çl),   l<p<œ,

||MA(0-M(Olloc<C^r(r+1)/2||Mo|U,       uoeJ?(Q.).

In addition to (1.10) and (1.11) the proof uses a stability property of E(t) and

Eh(t) considered as operators from „#(Q) to Loo(ß), namely

||£(0v||oc + ||£A(0Moo < crl'2\\v\u,       t > 0,

resulting from the corresponding resolvent estimates, which are also derived in

§2.
We remark that our proofs of these error bounds differ slightly from those of

[14], which introduce additional logarithmic factors.
Another application of the resolvent estimates in Theorem 1.1 concerns the

stability and error analysis of fully discrete schemes based on rational approxi-

mations of the analytic semigroup Eh(t). Let r(X) be a rational approximation

of the exponential function exp(A), which is accurate of order q > 1, i.e.,

(1.15) r(X) = ex + 0(X«+X),        X^0,

and ^-acceptable, i.e.,

(1.16) kW|<l,        ReA<0.

Then E£hUoh = r(-kAh)nUon is an approximation of Eh(tn)uoh, where k is

the timestep and t„ = nk for n = 1,2, ... . Using the resolvent estimate and

contour integral representations, one may then prove stability for the discrete

evolution operator E£h,

(1.17) \\ElhUoh\\p < C\\uoh\\p,        n>0,   l<p<oo,

see [3, 10, 11]. Stability may be combined with a local truncation error analysis
in a similar way as in (1.13) to yield an error bound for certain completely

discrete schemes. We demonstrate this in Theorem 3.3 for the backward Euler

method:

( 1   1 Rï Un £ Sh,    Uo = Uoh ,

d,Un + AhUn = Phf(t„),        dtUn = (Un-Un-X)/k,        «>1,
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and the Crank-Nicolson method:

11 191 Un e Sh, Uo = uoh,

[-    ' dtUn + Ah(Un + Un-X)/2 = Phf(tn-X/2),        n>l.

For general time discretization schemes it is necessary to introduce more com-

plicated approximations of the source term /; see [2]. We refrain from ad-
dressing this difficulty here and restrict further discussion to the homogeneous

problem ( / = 0 ). In this case we have U„ = E£hu0h , u¡,(t) = Eh(t)u0h , and the
resolvent estimates and contour integral representations yield the error bounds

(1.20) \\Un-Uh(tn)\\p<CkJ\\AjhUoh\\p,

t„ = nk > 0,   1 <P <oo,  1 < j <q,

and, if r is strongly ^-acceptable, that is, if in addition |r(oo)| < 1, then

(1.21) \\Un-uh(tn)\\p<Ck«t-(1\\uoh\\P,        t„ = nk>0,  l<p<cx>,

see for example [8]. Using the above bounds for Uh(t) - u(t) and some addi-

tional arguments, one may then obtain bounds for the total error U„ - u(tn).

For example, when u0h = Pnuo, the error bounds (1.14) and (1.21) immediately

give

\\Un-u(tn)\\p<c(hrtnrl2 + kqt-<l)\\uo\\p,        tn = nk>0,  1</j<oo,

because Ph is stable in LP(Q) by a result of [4]. We may also obtain error

bounds which hold uniformly as t -> 0, although an argument based directly

on (1.20) is not satisfactory, since this applies a discrete norm to the discrete
initial value. We show in Theorem 3.6 by a somewhat more involved argument

that

(1 22) l|C/" " U{tn)h - C{hrWUoWr,P + ^II"0||2,,„) ,

t„ = nk>0,   1 <p < oo,

if / = 0, «o is sufficiently smooth and satisfies the appropriate compatibility

conditions at x = 0, 1, and w0a is suitably chosen.

2. Resolvent estimates

The main object of this section is to prove the bounds in Theorem 1.1 for the

resolvents R(X, -A) and R(X, -Ah). The resolvent operators will be studied

for X in a sector

ZK,e = {XeC: \arg(X-K)\ < 6},        with>c>0,  de(\n,n).

For X e Y,K ? $ it is convenient to write

(2.1) X- k = (t + in)2 = t2 - n2 + 2itn,        with £ + in e I0,e/2 , t,r]eR.

For future reference we note that for AeZ^^.we have

(2.2) \n\ < at,        where Ô = tan(±0) > 1,

and

(2.3) t2 < |A - k\ = t2 + rr2 < ( 1 + S2)t2.

The following estimate will be a basic tool.
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Lemma 2.1. For any 6 e(\n,n) there are k > 0 and C > 1 such that

(2.4) \\v'\\2 + e\\v\\2<c\A(v,v) + X\\v\\2\,       veH¿(Q), XelK,e,

where t is related to X as in (2.1). If A is selfadjoint, i.e., b(x) = 0, then we

may choose k = 0.

Proof. Setting

(2.5) F = A(v,v) + X\\v\\2,

we obtain, by taking the real part of (2.5) and using the transformation of

variables in (2.1),

ReA(v ,v) + (K + t2- r]2)\\v\\2 = ReF,

and together with (1.1),

(2.6) ao\\v'\\2 + (K + t2-n2)\\v\\2<\F\.

By taking the imaginary part of (2.5) we obtain

lmA(v,v) + 2tn\\v\\2 = lmF,

and, since lmA(v , v) = lm(bv', v),

2¿M|M|2<|F| + llèlUMI NI-

Multiplying by \¿ = \ tan(jô) we have, in view of (2.2),

Adding this to (2.6), we obtain

ao\\v'\\2 + (k + t2)\\v\\2 < (1 + X2Ô)\F\ + \ao\\v'\\2 +

and (2.4) follows by taking k = <52||¿>||2X)/(8ao) •   □

ô2\\b\\2c
2u)\i  i -r 2"0ll"f II    "I"      gfl

If / e L2(Çï), then taking x = u in (1.2) and applying the lemma shows

||M'||2 + ¿2|M|2 < Q(f, u)\ < C\\f\\ \\u\\,       XeïK,o-

In particular, using (2.3), we have

\\R(X, -A)f\\ < ^11/11 < jt^II/II ,        A e ZK,e ,

which shows that -A is a sectorial operator on L2(Sl). The same argument

applies to equation (1.3), so that -Ah is also sectorial, uniformly in h, with

respect to the topology of L2(Q).
We next prove that -A is sectorial on LP(Q) for 1 < p < oo. This result is

well known, but we give an elementary proof based on the energy estimate of

Lemma 2.1, which we shall then modify in Theorem 2.3 to show that -Ah is

sectorial in the topology of LP(Q) uniformly in h .
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Theorem 2.2. For any 6 e (\n, n) there are k > 0 and C > 1 such that

\\R(X,-A)f\\p<TJ^-\\f\\p,       feLp{Q), XeZK,e, l<P<oo.

Proof. Let 6 e (\n, n) be arbitrary and let k be as in Lemma 2.1. Lemma

2.1 implies that the sesquilinear form Bk(u, v) = A(u, v) + X(u, v) is coercive

on H¿(Sl), that is, \Bk(u, u)\ > C-X\\u'\\2 for all u e H0X(Q) and X e IK,e.
Hence, by the Lax-Milgram lemma we conclude that (1.2) has a unique solution

and that

\\R(X,-A)f\\H¿<C\\f\\H-l,       feH~x(Çl), XeïK,e.

We shall prove the resolvent estimate for p = oo . Since Lx(Çï)* = L^íl) and

R(X, -A)* = R(X, -A*), where the adjoint operator A* is of the same form

as A, the estimate then follows for p = 1 by duality and for 1 < p < oo by

interpolation.

To complete the proof, it thus remains to show

(2.7) ||M(.,A)||TO<    C—ii/i^,       XelK,e,

where u(-, X) e H¿(Q) is the solution of equation (1.2) with / e L^Q.). Let

S = <?(•, y, A) € H¿ (fí) be the Green's function of the adjoint operator A* +XI
with singularity at the point yefi, i.e.,

(2.8) A(x,g)+X(x,g) = x(y),        V/€//0'(ß).

Since by (1.2) and (2.8) we have u(y, X) = (f, g(-, y, X)) = (f, g(-, y, X)),
the estimate (2.7) follows if we show

(2.9) ii^-^ii^-JI-,       yen,Xe-LK,d.

Our strategy for proving (2.9) is to introduce the function

(2.10) v(x) = v(x,y,X) = g(x,y, X)e^x~^ ,

where Ç is related to X as in (2.1) and y is a positive number to be chosen

below. We shall prove

(2.11) IM^y^lU^cr1,       yen, XeZK,e,

which implies

\g(x,y,X)\<Ct-xe-^x-yK       x,yeQ, XelK,e,

and (2.9) follows in view of (2.3). The Ansatz (2.10) is motivated by the ob-
servation that, in the special case when Au = -u" , we have

O^x,^2)^-1^1*-'1,       £>0,

by the maximum principle, the bound being a fundamental solution. We also
remark that g(x, y, X) may be calculated explicitly in this case to give a direct

proof of (2.9); see [5, §8.1].
To complete the proof, it thus remains to prove (2.11). From (2.10) we have

S(x) = v(x)e-*,x-yl, so that

(2.12) g'(x) = v'(x)e~^x-^ - ytv(x)e-^x-y^s(x - y),
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where s(x) = ±1 according to the sign of x. Choosing x(x) = v(x)eY^x~y^

for the test function in (2.8), we obtain by straightforward calculations that

(2 13) A(v , v) + X\\v\\2 = v(y) + 2iytlm(as(- - y)v', v)

+ y2t2(av , v) - yt(bs(- - y)v , v).

In order to apply Lemma 2.1, we need to bound the right-hand side. First

we use the inequality

(2.14) llvlloo < %/ÍMÍIÑÍ,       veHx(£l),
to get

i«(30i < V¥ñ¥\\ < ir'r ' + >'ii2 + \v2t2\\v\\2.
Next we have

2yt\ lm(as(- - y)v', v)\ < 2tf ||a|U|t;'|| ||v|| < >'||2 + Cy2t2\\v\\2.

Similarly,

?2t2(av, v) < y2e\\a\U\v\\2 = Cy2e\\v\\2,

and, using Poincaré's inequality ||u|| < ||ü'|| ,

yt\(bs(- - y)v , v)\ < yillôllocllv'H IMI < >'l|2 + Cy2t2\\v\\2.

Thus the right-hand side of (2.13) can be bounded by

(2.15) L27-lrl + ¡\\v'\\2 + Cy2e\\v\\2,

and Lemma 2.1 yields

>'||2 + (1 - Cy2)?\\v\\2 < x2y-xt~ ',        X e lKt6.

By taking y sufficiently small, we arrive at

(2.16) ||«|| <C<T3/2,    ||w'||<Cr1/2,       ¿eZK,ö,

which in view of (2.14) implies the desired bound (2.11).   D

Remark. Since \\g(-, y, X)\\x = \\v(-, y, X)e~^-y% < Ct~x/2\\v(-, y, X)\\, we
note that (2.9) actually follows directly from (2.16) without passing through

(2.11).
We now turn to the corresponding result for the discrete problem (1.3).

Theorem 2.3. For any 6 e(\n,n) there are k > 0 and C > 1 such that

\\R(X,-Ah)Phf\\p<j^-l\\f\\p,       feLp(Çl), XelK,e, 1</><oo.

Proof. Let 9 e (\n, n) be arbitrary and let k be as in Lemma 2.1. Referring
to the discussion at the beginning of the proof of Theorem 2.2, we note that it

suffices to show the resolvent estimate for p = oo .

Step 1. We first dispose of the case when X is large compared to h~2 by

noting that

(2.17) \\Ahx\\ao<Cih-*\\xU,        XeSk.

In fact, by inverse inequalities and the stability of P/, in LX(Q,) (see [4]), we

have

(AhX,<p) = (AhX,Ph<t>) = A(x,Ph<t>) < C||*'|U¡CrWlli

< CA-2||af||oo||^^||i < CiA-2||xlleoll^||i,
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for x e Sh , <t> e LX(Q), which shows (2.17). Thus, if

(2.18) |A| > C2h~2,       where C2 = max(2Ci, k) ,

then ll/l^'y^xlloo < îtlzlloo , so that by the stability of Ph in L^Q) (see [4])

oo

\\(XI + Ah)-xPhf\\oo = ¡r1 Y(-^Ah)iphf\
(2.19) v=o

< lilln/lloo < |B/Bc

Since (2.18) implies (note that A < 1 )

(2.20) k < C2 < C2h~2,

so that \X - k\ < 2\X\, we may conclude that the desired estimate holds for
|A| > C2h~2.

Step 2. In this step of the proof we shall bound the solution of (1.3) at the

nodal points and show

(2.21) max\Uh(x   ^Kjj^—Ul^,       XelK<e, \¿\<C2h~2.

For future reference we note that, by (2.3) and (2.20), the assumption \X\ <

C2h~2 implies that £2 < \X - k\ < \X\ + k < 2C2h~2, that is, £h < C.
Following the proof of Theorem 2.2, we let x; be an arbitrary nodal point

and introduce the discrete Green's function gh = gh(-, Xj, X) e S h defined by

A(Xh , Sh) + KXh , gh) = Xh(Xj),        VXh e Sh-

With v(x) = v(x, Xj, X) = gh(x, Xj, X)eyZ\x~x>\, we shall show for some y e

(0,1) that

(2.22) \\v(., Xj, X)\\x < CÇ-X,        j=l,... ,N, XelK,e,  \M<C2h~2,

which leads to (2.21) in the same way as in the proof of Theorem 2.2.

With ^(x) = v(x)eyZ\x~xi\, the argument leading to (2.13) now yields

A(v, v) + ¿IMI2 = A(x - Xh , gh) + KX - Xh , gh)

(2.23) +Xh(Xj) + 2iyc;im(as(--Xj)v',v)

+ y2£}(av, v) - yÇ(bs(- - xj)v, v),

where Xh £ Sh is arbitrary. For Xh we choose an "elliptic projection" of x
defined by

(X'h,4>') = (x',<t>'),      V^e%

It is well known that Xh(xj) = x(xj), so that Xh(xj) = v(Xj). The last four
terms are thus the same as in (2.13) and can be bounded as in (2.15). For the

two remaining terms we have, by a well-known error estimate and an inverse
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inequality, with WuW2^ = /n |w|2 dx ,

\A(X-Xh, gh) + Kx-Xh, gh)\
N

< C^(\\X' - X'hWsii Wg'hïïn, + |A| \\X - XhWa, UhWa.)
¡=0

< cYi^Wx^lh U'hWci, + |A|Anix(r)lk Hallo,)
1=0

<CYhri-2\\X{r)\\n,\\gh\\ríl,

¡=0

where we have also used the assumption that |A| < C2h~2. Recalling that

X(x) = gh(x)e2^x~x^ , where g{hr)(x) = 0 on Q,, and that £,h < C and

y e (0, 1 ), we have

/*r2ll*(r)lk < CeCyhr-2Y(70r-'\\gil)\\aie2^Xi-x>'
1=0

< Ch\-2 \iym\ghU + Y(V®r~'hi~l\\8'h\\aA eW*'-**

<c{yi\\gh\\Q¡ + \\g'h\\a^e2^x>-^.

Hence,

hrr2\\x{r)\h Hallo, < c(||^ik + YtUh^rtUkh,****-^ t

and since, cf. (2.12),

Itóllo. + tfllalln, < ̂ (llw'llo, + tflMIn,)*-*1*-*'1,

we may finally conclude that

\A(x - Xh , gh) + KX - Xh , gh)\ < \\\v'\\2 + Cy2£2|M|2.

Thus, the right-hand side of (2.23) may be bounded as in (2.15) and the bound
(2.21) follows for y sufficiently small by application of Lemma 2.1 as in the

proof of Theorem 2.2.
Step 3. Having established the estimate (2.21) for Uh at the nodal points,

we now want to show the same bound in the interiors of the subintervals. (Of

course this is trivial if r = 2.) Assume that the maximum of \Uh\ is attained

in the subinterval Q¡. We introduce the subspace

Sh(Sli) = {x€Sh:suppxcUi},

and define vh e Sh(Sl¡) by

(2.24) A(vh -uh,x) + K(vh -uh,x) = 0,        V* e Sh(üi).

We shall first show for ù/, = Uh -Vh e Sh that with ||M||oo,n, = supn/|w|,

(2.25) I|waIIoo,í2, <Cmax(|KA(x/)|, |m/,(x/+1)|) ,
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which in view of (2.21) implies

(2.26) ||Moo,*<7rr£jll/lloo,       XelK,e, \M<C2h~2.

We shall then show

(2.27) ii^ii^—Ç—ii/ï^,        A GZ*,*,  \X\<C2h~2,
I   —   I

which completes the proof, since Uh = üh + vh .

To show (2.25) we note that, with ûh equal to the linear interpolant of Uh

on Q/ and ûh = Uh elsewhere, equation (2.24) implies

A(ûh -üh,x) + «(h -ùh,X) = A{ûh, X) + K(ûh,x),        VX e Sh(Qi).

Since wh = ûh - ùh e Sn(Qi), this implies

A(wh , wh) + K\\wh\\2 = A(ûh , wh) + K(Ûh , wh),

and an application of Lemma 2.1 (with X = k and with ||u||^ = JQ |m|2ú?x)

shows

IKH2 < C\A(uh , wh) + K(ûh , wh)\ < CWû'hWl, + c\\ûh\\2ai + {-Ww'hW2.

Since

INaIIoo<hx/2\\w'h||, h^^WûhWn, + ^^Wû'hWn^Cmax(\uh(xi)\, \uh(x,+x)\),

we may conclude that

HwaIIoo < Cmax(|wA(x/)|, |w/,(x/+1)|),

and (2.25) follows, since ûh = uh~wh and \\ûh\\oc,Qi<max-(\Uh(xi)\, \Uh(x¡+x)\).
It remains to estimate ||v/¡||oo • From (2.24) and (1.3) we have

A(vh , X) + Kvh ,X) = (f,X)-(*-x) (ùh ,X),        V* € Sh(ü,).

Taking x = vh , we obtain

A(vh , vh) + X\\vh\\2 = (f, vh) -(X- K)(üh , vh).

An application of Lemma 2.1 yields, in view of (2.3) and (2.26),

IKH2 + ¿>aH2 < C\(f, Vh) -(X- K)(üh , Vh)\

(2.28) < CJJI/IU + \X- KlWühlU^Wvhh

<Chx'2\\f\U\vh\\.

Hence,

ii^ii < cÄ'/2r2ii/iioo.

Since Halloo < Ch~xl2\\Vh\\ by an inverse inequality, we conclude that (2.27)

holds.   D

We may now prove our main result.

Proof of Theorem 1.1. We only consider R(X, -A). The proof for R(X, -Ah)

is identical. Fix 6 e (\n,n). By Theorem 2.2 there are k > 0 and C > 1

such that

(2.29) \\R(X, -A)f\\p < Tj^-AfWp,        ¿ e LK,e.
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The assumption (1.1) and Lemma 2.1 imply that B^(u, v) = A(u, v) + X(u, v)

is coercive uniformly for X e £-a<,/2, k/2 U IK, ö , so that, by Lax-Milgram's
lemma, equation (1.2) has a unique solution and

\\R(X,-A)f\\H,<C\\f\\H->,        feH~x(Q), A6l.ao/2il/2UlK,J.

Hence, \\R(X, -A)f\\p < C\\f\\p , and using also (2.29), we get

l|A(A,-¿)/||p<7^ 11/11,,       Xeï-ao/2,n/2uïK,8.

We then choose tp e (\n, 6] such that I0,«> c I-ao/2,7i/2 uXK;e. Together,
these estimates show the required bounds for R(X, -A) for X e ÍL9 = E0,ç> •   n

We shall also need an estimate of the norms of the resolvents considered

as operators from J((Ç£) to Loo(Q), where ^#(fí) denotes the set of finite

measures p with \\p\\^ = \p\(Q) = fad\p\. With each p e ^#(Q) we associate

a distribution (also denoted p ) in the usual way: (p, x) = ¡aX(x)dp(x) for

X e C(Ù). Recall that Ph : Jt(0) -> SA is defined in (1.4).

Theorem 2.4. There are tp e(\n,n) and C > 1 such that

\\R(X, -A)f\\0C + \\R(X, -Ah)Phf\\oo < -====\\f\U,       feJ?(Q), A el,.
V1 + W

Proof. Let 6 e (\n, n) be arbitrary, and let k be as in Lemma 2.1. Taking
X = u in (1.2) and applying the lemma shows

ll«'ll2 + £2IMI2 < c\(f, ïï)| < c\\f\U ||M|U,      X e lK,e,

which in view of (2.14) and the arguments in the proof of Theorem 1.1 implies

the desired result for R(X, —A). The same argument applies to R(X, —Ah).    O

3. Error estimates

In view of the assumption (1.1) and the Lax-Milgram lemma we may define

a bounded linear operator Rh : H¿(Sl) -* Sh by the equation

(3.1) A(Rhv-v,x) = 0,        Vx&Sh.

For this "Ritz projection" we have the following error estimates.

Lemma 3.1. There is a constant C such that for k = 1, ... , r, 1 < p < oo, we

have

\\Rhv -v\\p + h\\(Rhv - v)'\\p < Chk\\v\\ktP,       v e Hx(Çi) n Wpk{Sl).

Proof. The case p = oo can be found in [14] or [7]. We prove the case p = 1

by a slight modification of the argument of [7]. The remaining case 1 < p < oo

then follows by interpolation.

We shall show below that

(3.2) \\(Rhv-v)'\\x<Chk-x\\v\\kA,        k = l,...,r.

The desired bound for \\RhV - v\\x then follows by the standard duality argu-

ment. In fact, let 4> e L^Q) be arbitrary and define y/ e Hq(CI) by

A(x, <p) = (X , 4>),        V^e/^Q).
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Then

(Rhv -v,4>) = A(Rhv -v,y/) = A(Rhv -v,y/-Rh\p)

<C\\(Rhv-v)'h\\(Rhw-y/)'\\oo

<Chk-l\\v\\ktlCh\\iph,oo,

which implies ||äaü-v||i < Chk\\v\\ktX, since clearly ||^||2,oo < C||0||oo •

In order to show (3.2), we introduce the projection Rh : H0X(Q) -> Sh defined
by

((Rhv-v)',x') = 0,       VXeSh.

It follows that (Rhv)' = PhV', where P/, denotes the L2 projection onto Vh =

{X e L2(Ci) : x\n, e nr_2} , see [7, §4]. Hence,

(3.3) ||(4*t;-t;)'||i< CA^H*,!,        k=l,...,r,

since Ph is stable in LX(Q) (this is trivial because Ph is a local projection).

It remains to estimate 6 = RhV - RhV . We introduce the piecewise constant

function ä defined by ä(x) = a(x¡c+X/2) for x e Clk, where xk+Xj2 denotes the

midpoint of Slk , and we note that

(a(v-Rhv)',x'hk=0,        VxeSh.

Since 9 e 5/,, we thus have

Oollô'Hi < A(6, 6) = A(Rhv - Rhv , 6) = A(v - Rhv, d)

= (a(v - Rhv)', 6') + (b(v - Rhv)', 6) + (c(v - Rhv), 6)

= ((a - ä)(v - Rhv)', 6') + (b(v - Rhv)', d) + (c(v - Rhv), 0).

Hence,

IIÖ'H2 < Ch\\(v - Rhv)'\\x\\e'\\oo + C\\(v - RnvYhWeWoo < C\\(v - RhV)'\\x\\8'\\2.

Therefore,

llalli ̂IIÖ'lla^CIKw-Ä»«)'!!!,
which together with (3.3) implies (3.2).   D

We now turn to the proof of an error estimate in the case of smooth solutions
of the nonhomogeneous problem.

Theorem 3.2. Let 1 < p < oo, let u be a sufficiently smooth solution of (1.5)

with «o e #o'(^) n wpr(Q)> and let uh be the corresponding solution of (1.6).
Then

\\Uh(t) - U(t)\\p < C\\u0h - U0\\p + C/2r(||M0||r,p +   /   ||M/||r,prfs).

Proof. Following a standard practice, we divide the error into two parts:

(3.4) e(t) = uh(t) - u(t) = (uh(t) - Rhu(t)) + (Rhu(t) - u(t)) s 0(t) + p(t).

In view of Lemma 3.1, we have

(3.5) \\Dltp(t)\\p<Chk\\Dltu(t)\\k,P,        1 = 0,1, k = l,...,r,



134 M. CROUZEIX, S. LARSSON, AND V. THOMÉE

where Dt = d/dt. Since this estimates ||/>(OII/> m the appropriate way, it only
remains to estimate 6(t), which belongs to Sh . In view of (1.6), the identity

AhRh = PhA and (1.5), we find that 0t + Ah9 = -PhPt, and hence

(3.6) 9(t) = Eh(t)9(0) - f Eh(t-s)PhPs(s)ds.
Jo

The desired error bound now follows immediately by application of (3.5) and

the stability estimate for Eh(t) in (1.11).   □

The proof of Theorem 3.2 is based on the stability in LP(Q) of the dis-
crete evolution operator Eh(t) together with the "truncation error estimate" of

Lemma 3.1. Since LP(ÇÏ) stability is also available for completely discrete evo-

lution operators E£h = r(-kAh)n based on ^-acceptable rational functions, see

(1.17), it is possible to obtain analogous error estimates for certain completely

discrete schemes. We carry this out for the backward Euler and Crank-Nicolson

methods in the following theorem.

Theorem 3.3. Let 1 < p < oo, let u be a sufficiently smooth solution of (1.5)

with uo e H0x(Çl) n Wpr(ÇÏ), and let U„ be the corresponding approximation

obtained by the backward Euler method (1.18). Then

||tfii-"(f«)ll, < C\\uoh-uo\\p + Chr(\\u0\\r,p + J \\ut\\r,pds)+Ck j \\Utt\\pds.

For the Crank-Nicolson method (1.19) we have

\\Un - «(ín)ll, < C||«0A - «Oil, + Chr(\\uQ\\r,p +  /    ||Hf||r.,<fr)

+ Ck2 (||««i||, + ||Mtt||2,,)rfj-

Proof. Using a splitting of the error analogous to (3.4), we have for the back-

ward Euler method instead of (3.6)

n

9n = E"kh90 -kY Khi+XPh (d,Pj + (dtu(tj) - ut(tj))) ,
7=1

where Ekh = (I + kAh)~x , from which the proof proceeds using the stability

property (1.17) with r(X) = 1/(1 - X) and standard estimates. The argument

for the Crank-Nicolson argument is analogous.   G

General time-discretization schemes require more complicated approxima-

tions of the source term /; see [2]. Avoiding this difficulty, we shall content

ourselves in the rest of this section with studying the homogeneous equation
( / = 0 ). We will then need smoothing properties, which are slightly more

general than (1.10). In particular, we need to deal with solutions which already

possess some initial smoothness and compatibility. In order to express this we

define for nonnegative integers m and for all p e [1, oo]

Wpm(Q.) = {v e rVpm(Q) : Ah = 0 at x = 0, 1 for all integers j e [0, m/2) }.
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Lemma 3.4. Let m and k be nonnegative integers. Then

(3.7)\\E(t)v\\m,p + t\\E'(t)v\\m,P<Cmrm'2\\v\\p,        t>0, veLp(Çl),

(3.8) ||£(0ü||oo + I|£a(0^«Hoo< Crx/2\\v\U,        í>0, dg/(í1).

(3.9) \\AkE(t)v\\m,p<Ck,mrk\\v\\m,p,    í>0, veWpm(ü).

Proof. The regularity estimate (3.7) follows from the analyticity of E(t), see
(1.10), together with (1.7) and the interpolation inequality

||w'||P<C^/||wy|w"||p,        1 <p<oo, ue W2(Cl),

which can be proved by elementary arguments. In fact, let m = 21 + i with

/ > 0 and /' = 0 or 1. Then

\\E(t)v\\m,p < Cm\\AlE(t)v\\i,p < CmJ\\A'E(t)v\\o,p\\A<E(t)v\\2i,p

< Cm^\\AlE(t)v\\o,PUl+iE(tMo,p < cmrm/21|v\\p,

and similarly for E'(t)v . The bounds in (3.8) follow from the resolvent esti-

mates of Theorem 2.4 and the contour integral representation of the semigroups

in the same way as (1.10), (1.11).
We now turn to the proof of (3.9) and first note that it suffices to consider

the cases k = 0 and 1, since the case k > 2 follows from these and the identity

AkE(t)v = (AE(t/k))kv. We also note that the case m = 0 follows from

(1.10). Assume now that (3.9) has been proved also for m = 1. Then for

m > 2 we may write m = 21 + i with / > 0, i = 0 or 1, and obtain for
k = 0, 1

\\AkE(t)v\\m,p < C\\AME(t)v\\Up = C\\AkE(t)Alv\\i,p

< Crk\\Alv\\i,p < Cmrk\\v\\m,p,      v e wpm(£l).

It remains to consider m = 1. For k = 1 we have

||^(0«||i,, < cJ\\AiE(t)v\\p\\AE(t)v\\p

< Ci'-3/21Mb,„ ,        v e Wp2i(£l),  1 = 0,1,

from which the desired result follows by interpolation. In fact, for each v e

Wpx(Q) stnd e > 0 there is vf e Wp2(D.) such that \\v - ve\\p < Ce||u||i,p

and ||ue||2,p < Ce-'H^Hi^ . For e < 1 this is achieved in a standard way by

extension of v to an odd 2-periodic function and by convolution with an even

mollifier on the scale e . If e > 1, then we take ve = 0. Hence with e = txl2

we obtain

||^(í)«I|i,,<||^(í)(»-«*)IIi., + M^(0»<IIi.,
< cr3>2\\v -ve\\p + crx'2\\ve\\2,p < crx\\v\\x,p,   veWpx(Çl).

The final case m = 1, k = 0 follows from the Cauchy integral representation

(1.8) once we have shown the resolvent estimate

(3.10) \\R(X, -A)f\\i.p < rfrj|ll/lli.^        /€ ^(°)-
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To prove this, we set u = R(X,-A)f and v = aBu', where B(x) =

exp(- J0X %$dt). Then it is easy to show that v e W2(C¿) and v' =

B(Xu + cu - f), so that

-(av'Y + cv + Xv = g,    xeCl;       v'(0) = v'(l) = 0,

where g = (aBf)' -(aB)'Xu-(caB)'u satisfies \\g\\p < C||/||ijP . An argument

similar to the proof of Theorem 1.1 now gives \\v\\p < y^r ||g\\p , which implies

(3.10). The proof of Lemma 3.4 is now complete.   G

Remark. The interpolation argument that we used in the proof of the special

case m = 1, k = 1 of (3.9) may also be expressed by saying that Wp(Çl) is

continuously imbedded in the space (LP(Q), W2(il))X/2tOC defined by the real

interpolation method. The estimate (3.9) follows more directly from (1.10)

when 1 < p < oo, because Wx(Çï) = (LP(Q), I^2(ß))i/2,oo in this case. This

is not true when p = 1, oo (cf. [9]), which is the reason for our indirect proof

of the special case m = 1, k = 0 of (3.9).
We now consider the homogeneous equation with nonsmooth initial data.

Theorem 3.5. Assume that f(x, t) = 0. Let u be the solution of (1.5) and Uh

the solution of (1.6) with u0h = Phuo- Then

IIM0-"(0H, <CArrr/2||u0H,, t>0, u0eLp(ci), l<p<oo,

ll"*(0 - "(Olloc < Chrt-(r+xV2\\u0\U,      t > 0, uo e Jt(Q).

Proof. Since u(t) = E(t)uo and Uf,(t) = Eh(t)PhUo, we must estimate the norm

of the error operator Fh(t) = Eh(t)Ph - E(t). We first consider (3.6) again and

divide the interval of integration into (0, t/2) and (t/2, t).  Integrating by
parts in the first integral, noting that Ph?(0) = 0, we get

0(0 = -Eh(t/2)Php(t/2) - [    E'h(t-s)PhP(s)ds- [  Eh(t-s)PhPs(s)ds.
Jo Jt/2

Using the stability estimates in (1.11) and the error estimates (3.5), we obtain

rt/2

\\9(t)\\p<C\\p(t/2)\\p + C f   (t-s)-x\\p(s)\\pds + C f \\ps(s)\\pds
JO Jt/2

<Chk (\\u(t/2)\\ktP + rl f"2\\u(s)\\k,pds+ f \\us(s)\\k,pd
\ Jo Jt/2

for k = 1, ... , r. In particular, it follows that

(3.11) ||FA(0«oll, < Chr sup (\\E(s)u0\\r,p + s\\E'(s)uo\\r,p).

Further, by (3.7) with m = 1 , we obtain a preliminary estimate of low order:

||**(0"o||, < Chrx'2 sup (s^WEis^h.p+s^WE^uoh,,,)
(3.12) o<*<A >

< CAr^Hwoll,.

Writing

(3.13) Fh(t)uo = Fh(t/2)E(t/2)uo + E(t/2)Fh(t/2)uo + Fh(t/2)2u0,
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we have, by (3.11), (3.7) with m = r,

\\Fh(t/2)E(t/2)uo\\P<Chr  sup  (\\E(s)uo\\r,p + s\\E'(s)u0\\r,p)
(3.14) t/2<s<t^ I

<Chrrr'2\\u0\\P,

and in view of (3.8), using t/4 as an intermediate level,

(3.15) \\Fh(t/2)E(t/2)uo\\oo < Chrt-W2\\u0\U.

We further note that E(t/2)Fh(t/2) is the adjoint of the operator

Fh(t/2)*E(t/2)*, where E(t)* = e'iA' and similarly for Fh(t)*. Since the
operator Fh(t/2)*E(t/2)* is bounded in Lp(£l) for 1 < p < oo as in (3.14),
its adjoint is similarly bounded in LP-(Q), p' being the conjugate exponent to
p. Hence,

\\E(t/2)Fh(t/2)uo\\P < Chrrr/2\\u0\\P.

For the third term in (3.13) we have by (3.12)

\\Fh(t/2)2Uo\\p<Chrx'2\\Fh(t/2)uo\\p,

and we may conclude that altogether

\\Fh(t)uo\\P < CArrr/2||w0||, + Chrx'2\\Fh(t/2)uo\\p,

or, after r iterations,

H*Ä(0«oll, < Chrr'l2(\\uo\\p + \\Fh(t/2r)uo\\p).

Since, by stability \\Fh(t/2r)uo\\p < C||«ollp . we infer that

\\Fh(t)uo\\P<Chrrr'2\\uo\\P,

which proves the first inequality of the theorem.

Finally, we consider the case when «o e J?(Çï). For the second term on the
right in (3.13) we then have by (3.8)

\\E(t/2)Fh(t/2)uo\\oo < Crx'2\\E(t/4)Fh(t/2)u0\U.

Here, E(t/4)Fh(t/2) is the adjoint of the operator Fh(t/2)*E(t/4)*. Since the
operator Fh(t/2)*E(t/4)* : Loo(Q) -» C(Cl) is bounded as in (3.14), its adjoint
is similarly bounded in Jf (Í2). In fact,

(E(t/4)Fh(t/2)u0, 4>) = (u0,Fh*(t/2)E*(t/4)<t>) < \\uo\U\\Fh*(tß)E*V/4)<t>\\oo,

for all «o e J?(Çl), <t> e C(Ù). Hence,

\\E(t/2)Fh(t/2)uo\\oo < ChT(r+xV2\\u0\U.

The proof can now be completed in the same way as above, using the inequality

\\Fh(t/2r)uo\\oo<Crx/2\\uo\U,

which follows from (3.8).   G

We conclude by proving the error bound (1.22) for a completely discrete ap-

proximation of the solution of the homogeneous problem, which we announced

in the Introduction.



138 M. CROUZEIX, S. LARSSON, AND V. THOMEE

Theorem 3.6. Let u be the solution of (1.5) with f(x, t) — 0 and let U„ =
r(-kAh)nUoh- Assume that the rational function r is accurate of order q (1.15)

and A-acceptable (1.16). Then, for 1 < p < oo, we have

\\U„ - u(tn)\\p < C(\\uQh - uo\\p + hr\\u0\\r,p + k9\\u0\\2q,Pj ,        t„ = nk>0,

if «o e Wpm(Çï) with m = max(r, 2q).

Proof. By stability (cf. (1.17)) there is no loss of generality in assuming that

«o/, = PhUo ■ Using (3.11) and (3.9), we obtain

\\Eh(tn)Phuo - E(tn)uo\\P < Chr\\u0\\r,p,

and it remains to estimate

GnPhuo = (r(-kAh)n - Eh(tn))PhUo.

Following [1], we use the identity

<7-l

GnPhUo = YGnAh-j(PhA-x-Ah-xPh)AJ+xüok
(3.16) ;=0

+ GnÄ^qPhAqüok + GnPh(uo - üok),

where üok is to be chosen so that

(3.17) ||m0 - üoicWp < Ck9\\uo\\2Q!p ,

(3.18) \\A«üok\\p<C\\uo\\2q,p,

(3.19) \\AJüok\\r,p<Ck-J\\uo\\r,p,        0<j<q-l.

In [1], üoic is defined by truncating the Fourier series of «o, but this is not

suitable here and we choose instead

üok = f(kA)E(kA)u0,        where f(X) = ^(-/l)7«! = ̂  + 0(X9+X), X^O,
n=0

so that 1 - f(X)ex = 0(Xq+x), as X —> 0. Hence, using the same contour Y as

in (1.8) and the resolvent estimate of Theorem 1.1, we have

IN - «0*11, = \\A-"(I - f(kA)E(kA))A"uo\\p

= \^-. (X-q(l-f(kX)ek^R(X, -A)dXA"u0

= kq~x II J-. [X'"(l - f(X)ex)R(k~xX, -A) dXAqi
\\2ni JT      V '

/•OO

< Ckq /    p-q-x\i - f(pe^)e^p(pé^)\dp\\Aquo\\p
Jo

< Ckq\\uo\\2q,p,

where we also used the fact that A is a second-order differential operator. This

is (3.17). Moreover, by the analyticity of E(t), see (1.10), we have

11^00*11, = \\Aqf(kA)E(kA)u0\\P < Y ^W(kA)"E(kA)AqUo\\p
n=0

< C||^9Mo||, < C||Wo||2?,p,

P

"«0
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which is (3.18). Using also the smoothing property (3.9), we obtain

\\Ajùok\\r,P = k-J\\(kAyf(kA)E(kA)uo\\r,P

£ k~S E ^W(kA)n+JE(kA)uo\\r,p < Ck-i\\uo\\r,p ,
n=0

which is (3.19).
Returning now to the identity (3.16), we first note that (1.17), (1.20), and

(1.11) imply

(3.20) \\GnAhJvh\\P<CkJ\\Vh\\p,       0<j<q, vh e Sh.

<-1d.\».m   _ nz>. ti _ t>.\ J-1..II   s rur\\ a-\«,\

Moreover, since AhxPh = RhA  x , Lemma 3.1 implies

\\(PhA~x - A-xPh)v\\p = \\Ph(I - Rh)A-xv\\p < Chr\\A~lv\

Hence, using also (3.19), we find

\\GnA-j(PhA-x-A;xPh)AJ+xüok\\P < Cti\\(PhA-x - A-hxPh)Ai+xüok\\P

<CkJhr\\AJÜok\\r,p<Chr\\Uo\\r,p,

for 0 < j <q - 1. Similarly, using (3.20) with j = q and (3.18), we have

||GBV^,ño*lli> < Ckq\\Aqüok\\p < Ckq\\uo\\2q,p.

Finally, by (3.20) with j = 0 and (3.17), we conclude that

\\GnPh(uo - üok)\\p < C\\uo - Motil, < CA^HmoII^,, >

and we have estimated all the terms in (3.16) in the desired way.   G
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