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THE SHARPNESS OF KUZNETSOV'S 0(VÄx)   Lx-ERROR ESTIMATE

FOR MONOTONE DIFFERENCE SCHEMES

TAO TANG AND ZHEN-HUAN TENG

Abstract. We derive a lower error bound for monotone difference schemes to

the solution of the linear advection equation with BV initial data. A rigorous

analysis shows that for any monotone difference scheme the lower 1} -error

bound is O(VÂx), where Ajc is the spatial stepsize.

1. Introduction

Conservative monotone difference schemes, which include the Lax-Friedrichs

scheme, Godunov's scheme, and the Engquist-Osher scheme [3], play an impor-

tant role in both theoretical analysis and practical computation for hyperbolic

conservation laws. From the viewpoint of numerical computation, accuracy and

error bounds are of particular interest. Harten, Hyman, and Lax [4] pointed

out that the monotone difference schemes are of at most first-order accuracy

and Kuznetsov [6] showed that their (upper) L'-error bound is 0(y/~Kx) as

Ax goes to zero, where Ax is the spatial stepsize.

In this paper we demonstrate that all monotone schemes applied to linear

first-order conservation laws in one dimension have a best possible VKx rate

of convergence when applied to discontinuous data.

A (p + q + l)-point conservative finite difference scheme

v»+x=H(v»_p,v»_p+i,...,v»+q)

= vnj - X[f(vJ.p+i,..-, vj+q) - f(vj_p,..., v»+Q_i)}

is said to be monotone if H is a monotone nondecreasing function of each of

its arguments, and is said to be consistent with a scalar conservation law

(1.2a) ^ + ^ = 0> *€*.    <>0,
at       ox

(1.2b) u\t=0 = u0(x),

if the numerical flux / satisfies

(1-3) f(w,...,w) = f(w),
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where X = Ar/Ax = const, p and q are given nonnegative integers, and

i      pXj+Ax/2

(1.4) v°j = Tte(u0)(Xj) = — / u0(x)dx,    x} = jAx.
¿yK Jxj-Ax/2

Stability, convergence, and error estimates for monotone difference schemes can

be found in [2], [6], and [8].
It is easy to see that if (1.2) is the linear advection equation

,-i c \ du       du     n , 4.
(1.5a) ~dt+adx= (a = const),

(1.5b) u\t=o = u0(x),

then a linear (p + q + 1 )-point monotone difference scheme is of the form

(1.6) v]+i= Yasv]+S,
s=-p

where

(1.7) as > 0      for   s = -p, ... ,q.

The consistency condition (1.3) implies that

(1.8) ¿fl, = l
s=-p

and

(1.9) Y sa' = ~la-
s=-p

Denote

¿7[ = {s\as> 0}   and   <9\\s0 = {s I s e S?i and s ¿ s0},

where so is an index which satisfies aSo = maxie^ as. For the analysis of (1.6),

we introduce

(1.10) v^x, t) = v]   for   (x,t)e [x,-1/2, x7+1/2) x [tn, tn+i),

where X/+i/2 = (;' + l/2)Ax , i„ = «Ai, n <E N and jeZ.
In this paper we will prove the following theorem.

Theorem. Any monotone difference scheme (1.6), which is consistent with (1.5),

has the following Ll-error bounds: for any M > 0 and t > 0

c(/>,î)MVv/427a/TV/Âx<      SUP     ||Vax(-, *)-«(•» f)llL'(R)

(1.11)
/Ax + Ax<M 2¡Ys2as-X2a2^\

provided that Ax ii ima// enough. Here, c(p, q) > 0 ¿s cz constant depending

only on p and q, u(x, t) is the solution of (1.5) and

IAlió W
(1.12) |»o|bv = sup 7xtII"o(- + h) - Mo(0lli,'(»)-
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Remark I. The lower bound of (1.11) indicates that, except in a trivial case

(as = 0 for s t¿ so, a pure translation), any monotone difference scheme

applied to a linear advection equation has an Lx convergence order of at most

one-half in the class BV of solutions.

Remark 2. Several authors have studied error estimates for difference schemes

to first-order hyperbolic equations by using Fourier methods (see [1,5] and ref-
erences therein). However, to the best of our knowledge, none of these includes

a lower error bound for monotone difference schemes in the presence of dis-
continuous initial data.

2. Some lemmas

A key step in proving the lower error bound of ( 1.11 ) is to get a precise lower

bound of a sum of terms with multi-indices running over a set /„ (see the

right-hand side of (3.7)). Lemma 2 and Lemma 4 below provide a precise lower
cardinality of Jn and precise lower bounds of the summand terms, respectively.
Consequently, they yield the desired lower bound. Lemma 1 gives a multinomial
equality, while Lemma 3 is a generalized de Moivre theorem [7], which gives

an asymptotic formula for the multinomial probabilities.

Lemma 1. // a = (a_p , ... , aq) € W+q+x satisfies (1.7) and (1.8), then

(2.1) £C„(a)aa=l,

where a = (q_p , ...,aq)e N"+«+1, |q| = a_„ + • ■ - + aq, aa = a"'" ■■■aq" and

C„(a) is the multinomial coefficient defined by

(2.2) Cn(a) =-fi-
a-pl- ■■aq\

Proof. The above equality can be easily derived, and the proof is omitted.   D

Denote

(2.3) /„-{a | M «it,     aeNp+"+x},

(2.4a)

J„ = {<? | { € Rp+"+x, is = asn +ysVn- (s e &[) and & = 0 (si S\);

y s e [y s, y s + Ays] (s e ^\s0) and  Y ^ = °}

sef,

and

(2.4b) Jn = {a\aeS„nNp+<!+x},

where a = (a-p, ... , aq) satisfies (1.7) and (1.8).

Lemma 2. For sufficiently large n,

(2.5) |/„|>|^|/2(   I]   IAV,|)»(W|-1)/2,
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where \J„\ and [9\\ are the cardinalities of J„ and S*\, respectively.

Proof. Since the set Jn consists of all lattice points of J„ , we have

Hm      \J")     = i
n-»oo meas(J„)

and thus for sufficiently large n ,

\Jn\> »measen).

But from calculus we find that

meas(J„) = |W  ]}   \Ays\\n^-V>2.   □

Lemma 3. If a e Jn, then

l_

(2An)(l-9!l-D/2rL&Sîv^
SZS\

uniformly for ys e \ys, ys + Ays]   (s e <9\\s0), i.e., as n->oc,

2

sup

ys£\ys, y,+ày,]

(seS^\so)

Proof. The proof depends on Stirling's formula

c"(a)V{(2ï^n4==^=-p(-E0 0.

m\ = V2nme~mmm(l + R(m)),

where R(m) -* 0 as m -> oo. Since as = asn + ys\fñ -» co as n —> co for

s e J?!, we have, by using the definition (2.2) and Stirling's formula,

r. >  a_ V2ññe-nnnaa(l+R(n))

(2^)l^1l/2(ns6^ y/ÖTs)e-"oflUs^t^+RM)

=_l+Rjn)_

~ (2ar»)(WI-i)/2nfe9¡ y/as + ys/Vñ

_1_
X Us^+ys/ias^))asn+yssrnUseMl+Rias)) '

where the last equality follows from the fact that

aa = aan nas II 0 +*/W*)r = a""" II 0 +*/(^))us"+"v'\

$6.51      í6^¡ i€^l

Here we have used (1.8) and Y,s£y y s - 0 ■ IR order to prove (2.6), we need to

verify the following formulas:

(2.7) ^, + ^=-^0!

and
asn+y¡y/ñ

ses?, N      -*v-/ \je51
(,s,     f(„, n(,+^)     ~-(e£)-
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The first, (2.7), is obvious. Now we prove (2.8). Since

lnF(«)= 5Z(fl,ii + >Wñ)ln(l + -^=) ,
~~L v      as\jn/

se¿í

we find, by applying Taylor's formula to ln(l +ys/iasy/h~)), that

l / y, \2 , i / ÄlnF(n) = y^ii+y,^) -A=-if-^p)  + t(-V)

-   2^ [*V« + 2flí + fl^    2flí + 3flí2 + 3^3 jj -
je^l

where ys e (0, ^) and ys 6 [&, y, +Ays].  Now using £íe^ ^ = 0.

obtain that for sufficiently large n

*«w-E(g+o(Js)).

This verifies (2.8) and hence (2.6) is proved.   G

Lemma 4. If parameters ys and Ays, defined in J„, are given by

,   s - so > 0,

(2.9) ys = <
s-So

fal
Ays

s - s0 < 0,
\s-s0\

ise^i\s0)

V. S -So

and a satisfies (1.7)— ( 1.9), then for sufficiently large n,

0.5
(2.10) minC„(a)aa > ——-,,0

«*/,   nK '     - i2nn)^\-x)/2Y[se^sfi.
exp{-2(|^|-l)|^|},

(2.11) min Y sas + Xan > \fn Y V^s
s=-P S^Sf,

Proof. By using Lemma 3, we have for sufficiently large n ,

0.5 — »2'
(2.12) C„(a)a«> exp

(2nn)(^\-^2Us^VaS

Since y s G [ys, ys + Ays] for s ^ so , we have, on account of (2.8),

seS"t s°     seS",\so
(s - so)2     2aSo

On the other hand, from Ylsçs*, J^ = u and aSo = max5 as, we see that

J€^i\Jo viG^1\io
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or

§- < 2(|^| -l)2

Substituting this into (2.13) gives

ses".

K
2a,

< 2(|^1|-1)|^|,

and combining this with (2.12) yields (2.10).
We now turn to (2.11). By using (2.4b), (1.9), and (2.9) , we have that

\Ysas + Xan = s/ñ\Y ^ = vrñ\  Y  is ~ so)y¡

s s&S\ seS"i\s0

>\fñYv^¡,    Vae;„cJ„.
s fro

This concludes the proof of (2.11 ).   D

3. Proof of the main theorem

Proof of Theorem. By using (1.6) repeatedly for n := 0, ... ,n - 1, we can

express v1} in terms of the initial data v® as

(3.1) vJ = YCnia)a^+j:sSas,
t»e/„

where Y,s is the sum over s from -p to q . It is also known that the solution
of (1.5) is of the form

(3.2)

Thus, we have

u(x, t) = uq(x - at).

(3.3) v] - u(x,tn) = Y Cn(a)aa(v%^sSas - u0(x - atn)),

a€l„

where we have used the equality (2.1). The upper error bound of (1.11) is

a special case of the error estimate for scalar conservation laws [6], but the

coefficient given here is more accurate. We will not present the proof here.
In order to prove the lower error bound of ( 1.11 ) , we only need to verify

that the first inequality holds for the Riemann initial data

(M/2      for x > 0,

0 for x = 0,

-M/2   for x < 0.

From (1.4) and (3.4), we see that

VH £ ,S*s = "0 ( XJ + ̂ Y^ J   '
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and hence

,o
VJ+J\sa, - U0i*j - a*n)

- < 0,

-M,       -Yßots > j > Xan,
s

M/2,    -~Ysas - J > Xan or - YSOis > J = ^an >

j > (Xan) V I ~y^^Q^ J   or j < (Xan) A I -y^c^ J ,

M/2,       ~YjSas = j < Xan or - Y^sc^ < j = Xan,
s s

M, ~Y,Sas < j < Xan,

where c\/d = max{c, d} and c Ad = min{c, d}. Substituting this into (3.3)

yields for j =¿ Xan

(3.5)

v" - u(Xj ,t„)=Y C«(a:)aQ(tiJ+i:jJaj - uoiXj - at„))
aei„

{ -ME{ae/n}n{;<_EjJQj}C„(a)a«

-M/2 E{«€/.}n{j—D»*l C"(q) a°   f°r j > kan

= <

ME{a&i„}n{j>-j:iSas}Cn(a)aa

+M/2 E{aein}n{j=-j:ssas} Cn(a) a»   for j < Xan.

For simplicity, we assume t = t„ for some n(= t/At). Since u(x, t„) is a

two-piecewise constant function and \vj\ < M/2, we have

ll«Ax(-, t) - U(-, OIL'(R) = ||«Ax(-, t„) - U(-, tn)\\v(&)

> Ax ]T \v" - u(xj , t„)\ - MAx
(3.6a)

> Ax Y \vj - UixJ > ?«)l - MAx.
j ¿kan

We divide the sum in the last term of (3.6a) into two parts,

(3.6b)

where

and

Y   \Vj'-U(Xj,tn)\=l+ + l-,
¡¿Xan

I+= £ \v] -u(Xj,tn)\

j>kan

l-=   Y   \Vj-u(Xj,tn)\.
j<kan
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Substituting (3.5) into 1+ gives

i+ = mY Y       C"^aa
j>Xan  {a€I„}n{j<-¿2ssas}

+ M/2Y       Y      c»w*a
j>Xan   {a€l„}n{j=-Y;,sas}

>m/2Y       Y      c«(a)aa
j>Xan   {ûf€/„}n{;'<-yjjias}

= M/2 Y (-YS(*s-[Xan]\cn(a)aa
{aelnl^XanK-^sSas} s

>M/2 Y (-Ysas-^n)cn(a)aa,
{a6/n}n{Aan<-yjsías} x       i '

where [n] means the largest integer less than or equal to n . Similarly, we have

I_ > M/2 Y fesas + Àan)Cn^*"•
{a€ln}r\{Xan>- £ ,sas} x  s

Adding 1+ and I_ yields

I+ + I_>M/2 Y \YSas + Xan Cn(a)aa
{aehlniXan^-^sSa,}    s

= M/2 Y\YSCts + Xan\cnia)aa.
a£l„     S

By the definitions (2.3) and (2.4b) we know that Jn c /„ and, furthermore,

assume that the parameters in J„ are given by (2.9), so that (2.10) and (2.11)

hold. Then, on account of (2.5), we obtain

(3.7)

I+ + I_ >M/2Y \\Ysas + Àan cnia)aa\

> -=- \Jn\min\Ysas + Xan minC„(a)aa

s

0, 5

S ¿So

exp{-2(|^|- 1)|^|}
J2^«)(l^l-i)/2n^^

^( T7        l    W-2(|^|-1)|^|} ,f/y  ,-V/-

seS",\sQ s fro



THE SHARPNESS OF KUZNETSOV'S O(VÄx)   ¿'-ERROR ESTIMATE 589

It follows from \s - s0\ < (p + q), 1 < \^i\ < (p + q + 1), and aSo < 1, that

(3.8)
1

%(p + q)(p+îî(2n)(P+iy2
mexp{-2(p + q)(p + q + 1)}M(Y v^J sfñ

s¿s0

= 2c(p,q)M(Yv/a~s)Vñ.
\¿s0 J

We can see that c(p, q) > 0 is a constant which depends only on p and q.

Since the Riemann initial data (3.4) satisfies |«o(')Ibv(r) = M, combining (3.6)

and (3.8) yields the desired lower error bound, provided

n2

Ax< c(P,Q)Y^s
S ¿So

t/X.

This completes the proof of the main theorem.   D
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