
MATHEMATICS OF COMPUTATION
Volume 65, Number 213
January 1996, Pages 235–245

COMPUTING π(x): THE MEISSEL, LEHMER, LAGARIAS,

MILLER, ODLYZKO METHOD

M. DELEGLISE AND J. RIVAT

Abstract. Let π(x) denote the number of primes ≤ x. Our aim in this paper
is to present some refinements of a combinatorial method for computing single
values of π(x), initiated by the German astronomer Meissel in 1870, extended
and simplified by Lehmer in 1959, and improved in 1985 by Lagarias, Miller

and Odlyzko. We show that it is possible to compute π(x) in O(x
2/3

log2 x
) time

and O(x1/3 log3 x log log x) space. The algorithm has been implemented and
used to compute π(1018).

1. Introduction

One of the oldest problems in mathematics is to compute π(x), the exact number
of primes ≤ x. The most obvious method for computing π(x) is to find and count
all primes p ≤ x, for instance by the sieve of Eratosthenes. According to the Prime
Number Theorem

π(x) ∼ x

log x
, x→∞.(1)

Therefore, such a method cannot compute π(x) with less than about x
log x opera-

tions.
Despite its time complexity, the sieve of Eratosthenes has been for a very long

time the practical way to compute π(x). In the second half of the 19th century, the
astronomer Meissel discovered a practicable combinatorial method that is faster
than finding all primes ≤ x. He used his algorithm to compute by hand π(108) and
π(109) (which turned out to be too small by 56) [4, 5, 6, 7].

In 1959, Lehmer extended and simplified Meissel’s method. He used an IBM 701
computer to obtain the value of π(1010) (his value was shown [1] to be too large by
1).

In 1985, Lagarias, Miller and Odlyzko [2] adapted the Meissel-Lehmer method

and proved that it is possible to compute π(x) with O(x
2/3

log x) operations using

O(x1/3 log2 x log logx) space. They used their algorithm to compute several val-
ues of π(x) up to x = 4 · 1016. They also corrected the value of π(1013) given in [1],
which was too small by 941.

In 1987, Lagarias and Odlyzko [3] described a completely different method, based
on numerical integration of certain integral transforms of the Riemann ζ-function,
for computing π(x), using O(x1/2+ε) time and O(x1/4+ε) space for each ε > 0.

Received by the editor January 12, 1994 and, in revised form, December 1, 1994.
1991 Mathematics Subject Classification. Primary 11N05, 11Y70.

c©1996 American Mathematical Society

235

236 M. DELEGLISE AND J. RIVAT

Despite its asymptotic superiority, this algorithm has never been implemented. Its
authors noted [2] that the implied constants are probably large, and therefore that
it would not be competitive with their version of the Meissel-Lehmer method for
x ≤ 1017.

In this paper we describe a modified form of the algorithm presented in [2] which

computes π(x) using O(x2/3

log2 x
) time and O(x1/3 log3 x log logx) space.

2. Outline of the method

For clarity we will describe the whole method given in [2], in order to introduce
the quantities needed for the analysis. For the convenience of the reader we adopt
the notations used in [2], and follow as long as possible the same approach. In
particular, §§3, 4, 5 are close to [2].

The idea that many special leaves (see below, §6) could be computed at the
same time, saving much computation (and a log x factor in the complexity) was
also present in [2]. We develop this idea further, and show that it is possible to
compute more special leaves at the same time, saving another logx factor in the
complexity (see §6.2 and below).

3. The Meissel-Lehmer method

Let p1, p2, p3, . . . denote the primes 2, 3, 5, . . . numbered in increasing order. Let
φ(x, a) denote the partial sieve function, which counts numbers ≤ x with all prime
factors greater than pa:

φ(x, a) = #{n ≤ x; p|n⇒ p > pa}(2)

and let

Pk(x, a) = #{n ≤ x; n = q1q2 · · · qk, q1, . . . , qk > pa},(3)

which counts numbers ≤ x with exactly k prime factors, all larger than pa. We set
P0(x, a) = 1.

If we sort the numbers ≤ x by the number of their prime factors greater than
pa, we obtain the following identity:

φ(x, a) = P0(x, a) + P1(x, a) + · · ·+ Pk(x, a) + · · · ,
where the sum on the right has only finitely many nonzero terms, because Pk(x, a) =
0 for pka > x.

Let y denote an integer such that x1/3 ≤ y ≤ x1/2, and let a = π(y).
From P1(x, a) = π(x) − a and Pk(x, a) = 0 for k ≥ 3 we deduce

π(x) = φ(x, a) + a− 1− P2(x, a).(4)

Hence, for computing π(x) it remains to compute φ(x, a) and P2(x, a).

4. Computing P2(x, a)

By (3) we have to count all pairs (p, q) of prime numbers such that y < p ≤ q
and pq ≤ x.

We first remark that p ∈ [y + 1,
√
x]. Furthermore, for each p, we have q ∈

[p, x/p]. Thus,

P2(x, a) =
∑

y<p≤
√
x

(
π

(
x

p

)
− π(p) + 1

)
.(5)

COMPUTING π(x) 237

When p ∈ [y + 1,
√
x], we have x

p ∈ [1, xy]. Hence, P2(x, a) can be computed by

completely sieving the interval [1, xy] and then adding up π(xp) − π(p) + 1 for all

primes p ∈ [y + 1,
√
x]. In order to reduce the space complexity of the above

method, we can work with blocks of length L. For L = y, we can compute P2(x, a)
in O(xy log logx) time and O(y) space.

5. The sieve machinery for computing φ(x, a)

For b ≤ a the set of all integers ≤ x whose prime factors are > pb−1 is composed
of two classes:

1. those that are multiples of pb,
2. those not divisible by pb.

The first class has φ(xpb , b − 1) elements, while the second has φ(x, b) elements.

Hence we conclude:

Lemma 5.1. The function φ satisfies the following identities:

φ(u, 0) = [u],(6)

φ(x, b) = φ(x, b− 1)− φ
(
x

pb
, b− 1

)
.(7)

A straightforward method for computing φ(x, a) can be deduced from this lemma:
it suffices to apply repeatedly the recurrence (7) until we get terms of the form
φ(u, 0), which are easy to compute using (6). One may think of this process as
creating a rooted binary tree starting with the root node φ(x, a); see Fig. 1. Using
this method, we obtain the following formula:

φ(x, a) =
∑

1≤n≤x
P+(n)≤y

µ(n)
[x
n

]
,

where µ(n) denotes the Möbius function and P+(n) denotes the greatest prime
factor of n.

φ(x, a−1) −φ(, a−1)

φ(x, a)

φ(x, a−2) −φ(, a−2)

x
pa

x
pa−1

−φ(, a−2)x
pa

φ(, a−2)x
papa−1

Figure 1. A binary tree for computing φ(x, a): the sum of the
terminal nodes is φ(x, a)

238 M. DELEGLISE AND J. RIVAT

Unfortunately, this sum has too many terms for our purpose: as y ≥ x1/3, if we
only count the n’s which are the product of three primes ≤ y, we get at least about
x

log3 x
such terms.

In order to limit the growth of the tree, we must replace the trivial truncation
rule,

Truncation Rule 1. Do not split a node µ(n)φ(xn , b) if b = 0

with the more powerful:

Truncation Rule 2. Do not split a node µ(n)φ(xn , b) if either of the following
holds :

1. b = 0 and n ≤ y,
2. n > y.

We are now able to define two clases of leaves:

1. ordinary leaves are those of the form µ(n)φ(xn , 0) satisfying n ≤ y,
2. special leaves are those of the form µ(n)φ(xn , b − 1) satisfying n > y with
n = mpb and m ≤ y.

We conclude that:

Lemma 5.2. We have

φ(x, a) = S0 + S,(8)

where S0 is the contribution of the ordinary leaves,

S0 =
∑
n≤y

µ(n)
[x
n

]
,(9)

and S is the contribution of the special leaves,

S =
∑

n
δ(n)
≤y<n

µ(n)φ
(x
n
, π(δ(n)) − 1

)
,(10)

where δ(n) denotes the smallest prime factor of n.

The computation of S0 can be achieved in O(y log logx) time, which is negligible.
It remains to compute S.

6. Computing S

We have

S = −
∑
p≤y

∑
δ(m)>p
m≤y<mp

µ(m)φ

(
x

mp
, π(p)− 1

)
.(11)

COMPUTING π(x) 239

We now write

S = S1 + S2 + S3

with

S1 = −
∑

x
1
3<p≤y

∑
δ(m)>p
m≤y<mp

µ(m)φ

(
x

mp
, π(p)− 1

)
,

S2 = −
∑

x
1
4<p≤x

1
3

∑
δ(m)>p
m≤y<mp

µ(m)φ

(
x

mp
, π(p)− 1

)
,

S3 = −
∑
p≤x

1
4

∑
δ(m)>p
m≤y<mp

µ(m)φ

(
x

mp
, π(p)− 1

)
.

First observe that the m’s involved in S1 and S2 are all prime: otherwise, since
δ(m) > p > x1/4, we would have m > p2 >

√
x, a contradiction with m ≤ y.

Moreover, the condition y ≤ pm is true when mp > x1/2 ≥ y. Hence we have

S1 =
∑

x
1
3<p≤y

∑
p<q≤y

φ

(
x

pq
, π(p)− 1

)
,

S2 =
∑

x
1
4<p≤x

1
3

∑
p<q≤y

φ

(
x

pq
, π(p)− 1

)
.

6.1. Computing S1. Since

x

pq
< x1/3 < p,

we have

φ

(
x

pq
, π(p)− 1

)
= 1.

Hence all terms involved in S1 are equal to 1. So we have to count all pairs (p, q)
such that

x1/3 < p < q ≤ y.

Thus,

S1 =
(π(y)− π(x1/3))(π(y) − π(x1/3)− 1)

2
.

This takes constant time to compute S1.

6.2. Computing S2. We have

S2 =
∑

x1/4<p≤x1/3

∑
p<q≤y

φ

(
x

pq
, π(p)− 1

)
.

240 M. DELEGLISE AND J. RIVAT

We split S2 in two parts, depending on q > x/p2 or q ≤ x/p2:

S2 = U + V

with

U =
∑

x1/4<p≤x1/3

∑
p<q≤y
q> x

p2

φ

(
x

pq
, π(p)− 1

)

and

V =
∑

x1/4<p≤x1/3

∑
p<q≤y
q≤ x

p2

φ

(
x

pq
, π(p)− 1

)
.

6.3. Computing U . The condition q > x/p2 implies p2 > x/q ≥ x/y and p >√
x/y. Thus,

U =
∑

√
x
y<p≤x1/3

∑
p<q≤y
q> x

p2

φ

(
x

pq
, π(p)− 1

)
.

From x/p2 < q we deduce x/pq < p and φ(x/pq, π(p) − 1) = 1. Each term in the
sum U equals 1. Hence,

U =
∑

√
x
y<p≤x1/3

#

{
q;
x

p2
< q ≤ y

}
.

Thus,

U =
∑

√
x
y<p≤x1/3

(
π(y)− π

(
x

p2

))
.

Since x/p2 < y, the sum U can be calculated in O(y) operations once we have
tabulated π(t) for t ≤ y.

6.4. Computing V . For each term involved in V we have p ≤ x
pq < x1/2 < p2.

Hence,

φ

(
x

pq
, π(p)− 1

)
= 1 + π

(
x

pq

)
− (π(p) − 1)

= 2− π(p) + π

(
x

pq

)
.

Thus,

V = V1 + V2

with

COMPUTING π(x) 241

V1 =
∑

x1/4<p≤x1/3

∑
p<q≤min(x

p2 ,y)

(2− π(p)),

V2 =
∑

x1/4<p≤x1/3

∑
p<q≤min(x

p2 ,y)

π

(
x

pq

)
.

Computing V1 can be achieved in O(x1/3) time once we have tabulated π(t) for
t ≤ y.

In order to speed up the computation of V2, we observe that for each p we
can split the summation over q into sums over q on intervals where the function
q 7→ π(xpq) is constant. Thus, we only need the length of these intervals, and the

set of values of q where q 7→ π(xpq) is changing.

More precisely, we first split V2 in two parts in order to simplify the condition
q ≤ min(x/p2, y):

V2 =
∑

x1/4<p≤
√

x
y

∑
p<q≤y

π

(
x

pq

)
+

∑
√

x
y<p≤x1/3

∑
p<q≤ x

p2

π

(
x

pq

)
.

We now write

V2 = W1 +W2 +W3 +W4 +W5

with

W1 =
∑

x1/4<p≤ x
y2

∑
p<q≤y

π

(
x

pq

)
,

W2 =
∑

x
y2<p≤

√
x
y

∑
p<q≤

√
x
p

π

(
x

pq

)
,

W3 =
∑

x
y2<p≤

√
x
y

∑
√

x
p<q≤y

π

(
x

pq

)
,

W4 =
∑

√
x
y<p≤x1/3

∑
p<q≤

√
x
p

π

(
x

pq

)
,

W5 =
∑

√
x
y<p≤x1/3

∑
√

x
p<q≤

x
p2

π

(
x

pq

)
.

Computing W1 and W2. These two quantities need values of π(x/pq) with y <
x/pq < x1/2. They are computed simultaneously with a sieve of the interval [1,

√
x].

The sieving is done by blocks, and for each block we sum π(x/pq) for the pairs (p, q)
subjected to the conditions of the sums W1 or W2 and such that x/pq lies in the
block.

Computing W3. For each p we speed up the computation of the sum over q by
computing in O(1) operations the sums of the π(x/pq) for the values of q for which
π(x/pq) is constant. When we obtain a new value of q, we compute π(x/pq) with

242 M. DELEGLISE AND J. RIVAT

the table of values of π(t) for t ≤ y. Then a table of all primes ≤ y gives t such that
π(t) < π(t + 1) = π(xpq). We then deduce the next value of q for which π(x/pq) is

changed.

Computing W4. We simply sum over (p, q). There would be no advantage to
proceed as for W3 since most of the values π(x/pq) are distinct.

Computing W5. We proceed as for W3.

7. Computing S3

We sieve the interval [1, xy] successively by all primes less than x1/4. As soon as we

have sieved by pk−1, we sum all −µ(m)φ(x
mpk

, k− 1) for all squarefree m ∈ [y/p, y]

such that δ(m) > pk. This computation can be done by blocks, see [2]. The
main idea is that we maintain a binary tree (as explained in [2, pp. 545, 546])
in connection with the interval we are sieving, to keep track of the intermediate
results after sieving by all primes up to a given prime. It is then possible to know
the number of unsieved elements in the interval less than a given value, using only
O(log x) operations.

8. Time and space complexity

The time and space significant computations are:

1. The computation of P2(x, a),
2. The computation of W1,W2,W3,W4,W5,
3. The computation of S3.

8.1. Cost of computing P2(x, y). We have already seen that it costsO(xy log logx)

time and O(y) space.

8.2. Cost of computing W1,W2,W3,W4,W5. For W1 and W2 the sieve costs
O(
√
x log logx) time and O(y) space, working by blocks of length y.

The time necessary to compute the sum W1 is about

π

(
x

y2

)
π(y) = O

(
x

y log2 x

)
.

The time necessary to compute the sum W2 is about

O

 ∑
x
y2<p≤

√
x
y

π

(√
x

p

) = O

(
x3/4

y1/4 log2 x

)
.

In W3, for each p we have x
pq ≤

√
x/p. Hence, π(x/pq) takes at most π(

√
x/p)

values. For each such value it costs constant time to determine the number of q’s
concerned. Hence, the time necessary to compute the sum W3 is about

O

 ∑
x
y2<p≤

√
x
y

π

(√
x

p

) = O

(
x3/4

y1/4 log2 x

)
.

COMPUTING π(x) 243

The time necessary to compute the sum W4 is about

O

 ∑
√

x
y<p≤x1/3

π

(√
x

p

) = O

(
x2/3

log2 x

)
.

We proceed for W5 as for W3, and the time necessary to compute the sum W5

is about

O

 ∑
√

x
y<p≤x1/3

π

(√
x

y

) = O

(
x2/3

log2 x

)
.

8.3. Cost of computing S3. The sieve. Owing to the necessity of quickly
retrieving the values φ(u, b), we have to maintain a data structure such that
each access costs O(log x) instead of O(1) in a normal sieve. Hence the cost is
O(xy logx log logx).

The sum. For each term in the sum we have to access the data structure men-
tioned above, doing O(log x) operations. It remains to count the terms in the sum.
All leaves are of the form ±φ(x/mpb, b − 1) with m ≤ y and b < π(x1/4). Hence,
the number of these leaves is O(yπ(x1/4)).

The total cost of S3 is

O

(
x

y
log x log logx+ yx1/4

)
.

8.4. Total cost. We have described an algorithm taking O(y) space and

O

(
x

y
log logx+

x

y
log x log logx+ x1/4y +

x2/3

log2 x

)
time.

If we choose y = x1/3 log3 x log logx, the time complexity is O(x2/3

log2 x
).

9. Practical considerations

We describe here some modifications which improve the time of computation
without changing the asymptotic complexity.

• In the truncation rule 2, we may replace y by some z > y. It is possible to
prove that the time complexity for computing S3 then becomes

O

(
x

z
log x log logx+

yx1/4

logx
+ z3/2

)
.

This also gives a good way for checking the computations by changing the
value of z.
• For clarity we chose to split the sum S at x1/4, but in fact we only need

to have p ≤ x
pq < p2. One can take advantage of this, but the asymptotic

complexity remains the same.
• Precomputing the sieving by the first primes 2, 3, 5 saves some more time.

244 M. DELEGLISE AND J. RIVAT

10. Results

The algorithm has been implemented in C + +. All the computations were
done using a HP 730 workstation (SPEC92INT=47.8). The 64-bit integers were
emulated by the long long type of GNU C/C++ Compiler.

For comparison we tried our program for some specific values on a DEC Alpha
3000 Model 600 at 175 Mhz (which has 64-bit integers, SPEC92INT=114). The
latter turned out to be more than three times faster. The difference could be greater
because our program was optimized for a 32-bit computer, which is a drawback on
a 64-bit computer.

We confirmed all the values already computed in [2]. Table 1 gives the new
values compared with the corresponding values of

Li(x) =

∫ ∞
0

dt

log t

Table 1. Results and times of computation on HP-730

x π(x) Li(x) − π(x) R(x)− π(x) Time (s)
1 · 1015 29 844 570 422 669 1 052 619 73 218 4179
2 · 1015 58 478 215 681 891 1 317 791 −37 631 6322
3 · 1015 86 688 602 810 119 1 872 580 233 047 8110
4 · 1015 114 630 988 904 000 1 364 039 −512 689 9949
5 · 1015 142 377 417 196 364 2 277 608 193 397 11572
6 · 1015 169 969 662 554 551 1 886 041 −384 694 12847
7 · 1015 197 434 994 078 331 2 297 328 −144 134 14115
8 · 1015 224 792 606 318 600 2 727 671 127 929 15360
9 · 1015 252 056 733 453 928 1 956 031 −791 857 16608
1 · 1016 279 238 341 033 925 3 214 632 327 052 17738
2 · 1016 547 863 431 950 008 3 776 488 −225 875 27690
3 · 1016 812 760 276 789 503 4 651 601 −193 899 35625
4 · 1016 1 075 292 778 753 150 5 538 861 −10 980 42631
5 · 1016 1 336 094 767 763 971 6 977 890 811 655 48541
6 · 1016 1 595 534 099 589 274 5 572 837 −1 147 719 54266
7 · 1016 1 853 851 099 626 620 8 225 687 997 606 59615
8 · 1016 2 111 215 026 220 444 6 208 817 −1 489 898 64588
9 · 1016 2 367 751 438 410 550 9 034 988 895 676 69378

1017 2 623 557 157 654 233 7 956 589 −598 255 74369
2 · 1017 5 153 329 362 645 908 10 857 072 −1 016 134 115242
3 · 1017 7 650 011 911 220 803 14 592 271 207 129 148270
4 · 1017 10 125 681 208 311 322 19 808 695 3 323 994 177024
5 · 1017 12 585 956 566 571 620 19 070 319 747 495 202791
6 · 1017 15 034 102 021 263 820 20 585 416 609 065 226471
7 · 1017 17 472 251 499 627 256 18 395 468 −3 095 204 253395
8 · 1017 19 901 908 567 967 065 16 763 001 −6 132 224 274919
9 · 1017 22 324 189 231 374 849 26 287 786 2 077 405 293993
1 · 1018 24 739 954 287 740 860 21 949 555 −3 501 366 314754

COMPUTING π(x) 245

and

R(x) =
∞∑
n=1

µ(n)

n
Li(x1/n).

References

1. J. Bohman, On the number of primes less than a given limit, BIT 12 (1972), 576–578. MR 48
#255

2. J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing π(x): The Meissel-Lehmer method,
Math. Comp. 44 (1985), 537–560. MR 86h:11111

3. J. C. Lagarias and A. M. Odlyzko, Computing π(x): An analytic method, J. Algorithms 8
(1987), 173–191. MR 88k:11095

4. E. D. F. Meissel, Über die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen,
Math. Ann. 2 (1870), 636–642.

5. , Berechnung der Menge von Primzahlen, welche innerhalb der ersten hundert Millio-
nen natürlicher Zahlen vorkommen, Math. Ann. 3 (1871), 523–525.

6. , Über Primzahlenmengen, Math. Ann. 21 (1883), 304.
7. , Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde

natürlicher Zahlen vorkommen, Math. Ann. 25 (1885), 289–292.

Département de Mathématiques, Université Lyon 1, 43 Blvd. du 11 Novembre 1918,

69622 Villeurbanne Cedex, France

E-mail address: deleglis@lmdi.univ-lyon1.fr

E-mail address: rivat@caissa.univ-lyon1.fr

