
MATHEMATICS OF COMPUTATION
Volume 68, Number 225, January 1999, Pages 55–72
S 0025-5718(99)01038-8

A SHADOWING RESULT WITH APPLICATIONS
TO FINITE ELEMENT APPROXIMATION
OF REACTION-DIFFUSION EQUATIONS

STIG LARSSON AND J.-M. SANZ-SERNA

Abstract. A shadowing result is formulated in such a way that it applies
in the context of numerical approximations of semilinear parabolic problems.
The qualitative behavior of temporally and spatially discrete finite element
solutions of a reaction-diffusion system near a hyperbolic equilibrium is then
studied. It is shown that any continuous trajectory is approximated by an
appropriate discrete trajectory, and vice versa, as long as they remain in a suf-
ficiently small neighborhood of the equilibrium. Error bounds of optimal order
in the L2 and H1 norms hold uniformly over arbitrarily long time intervals.

1. Introduction

The purpose of this article is to compare the dynamical system arising from a
semilinear parabolic evolution problem with the dynamical systems that arise from
its temporal and spatial discretizations. The long-time behavior of a dynamical
system is governed by its invariant sets such as fixed points, periodic orbits, attrac-
tors, etc. It is therefore important to investigate whether the discretized dynamical
systems have the same kinds of invariant sets and whether their orbits have the
same qualitative behavior near these sets. Our aim here is to do so for the special
case of a hyperbolic fixed point.

The inspiration for this work came from an article of Beyn, [3], on multi-step
approximations of systems of nonlinear ordinary differential equations, u′ = f(u).
Beyn showed that if the continuous problem has a hyperbolic fixed point ū, then
there is a neighborhood O of ū such that the following conclusion holds: for each
initial value u0 ∈ O there is U0 ∈ O such that the approximate orbit U starting
from U0 is close to the exact orbit u starting from u0 as long as the latter orbit
stays in O. The error u− U satisfies an estimate which is uniform with respect to
u0 ∈ O and of optimal order of convergence. Note, in particular, that the error
bound is thus uniform over arbitrarily long time intervals. The converse statement
is also true: for each U0 ∈ O there is u0 ∈ O such that the corresponding orbits U
and u are optimally close as long as they remain in O. We emphasize that U0 6= u0
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in general, because the initial value problem is typically unstable near a hyperbolic
fixed point.

Beyn’s result was extended to infinite dimensional spaces by Alouges and Debus-
sche [1], who were thus able to cover pure time-discretization of semilinear para-
bolic equations. Another extension to semilinear parabolic problems was made by
the present authors in [12], where we considered spatial semi-discretization by a
standard finite element method. We proved a result analogous to that of Beyn,
including optimal order error bounds in both the L2 and H1 norms.

Noting that the analysis in [12] is rather ad hoc, and that the more general
framework in [1] does not readily apply to spatial discretizations, we decided to
reconsider this problem. In §2 below we provide an abstract framework for the
long-time aspects of the analysis, which is based on carefully chosen assumptions
to be checked in each application by proving rather standard finite-time error and
perturbation estimates. More precisely, in §2.1 we prove a shadowing result for
discrete dynamical systems of the form un+1 = S(un), where S is a nonlinear
operator in a Banach space X . We assume that S = L + N , where the bounded
linear operator L is hyperbolic, and the nonlinear remainderN has a small Lipschitz
constant on a subsetD ⊂ X . This is an adaptation of the classical shadowing lemma
of Anosov [2] and Bowen [4].

In §2.2 the mapping S is studied together with a family of approximations Sh =
Lh +Nh, where Lh is linear, and it is assumed that we have access to bounds for
Lh−L and Sh −S, as well as estimates of the Lipschitz constant of Nh. The main
result of §2.2 is a theorem analogous to that of Beyn concerning the behavior of
the orbits of S and Sh near a hyperbolic fixed point of S.

If S(t, ·) is a continuous dynamical system (nonlinear semigroup) with orbits

u(t) = S(t, u0), t ≥ 0, u(0) = u0,

then, for fixed T , the mapping S = S(T, ·) defines a discrete dynamical system
with orbits un = u(nT ), n = 0, 1, 2, . . . , satisfying the assumptions of §2.1 in a
neighborhood D of a hyperbolic fixed point.

In §3 we apply the abstract framework in the context of a system of reaction-
diffusion equations discretized in the spatial variables by a standard finite element
method, and in the time variable by means of the backward Euler method. The
assumptions on Lh − L and Sh − S are verified by application of rather standard
error estimates over the finite time interval [0, T ], which we quote from Larsson
[11].

Our framework is similar to that of [1], but more flexible. First of all, it admits
applications with both time and space discretization. In the applications discussed
in §3 it also allows us to obtain error bounds of optimal order in both the L2 and
H1 norms. Moreover, it avoids the assumption that Sh − S is small in C1(D,X)
that was used in [1], but which we found inconvenient. Note, in this connection,
that we do not assume that L is a derivative of S. This is important, because even
in a situation where L is formally a linearization of S, it may not be a Fréchet
derivative with respect to the norms that we use; see Remark 3 below.

If X,Y are Banach spaces, then L(X,Y ) denotes the space of bounded linear
operators from X into Y , L(X) = L(X,X), and BX(x, ρ) denotes the closed ball
in X with center x and radius ρ.
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2. A general framework

2.1. A basic shadowing result. We consider a mapping S : D ⊂ X → X , where
X is a Banach space and D a nonempty subset of X . It is assumed that S can be
decomposed in the form

S = L+N(2.1)

in a such a way that, for some constants µ ≥ 1 and κ ∈ (0, 1), the following
hypotheses (HL) and (HN) are fulfilled.

Hypothesis (HL). L ∈ L(X), i.e., L is a bounded linear operator in X . Further-
more, X can be decomposed as a direct sum X = X1⊕X2 of closed subspaces X1,
X2 that are invariant by L, i.e., LXi ⊂ Xi, i = 1, 2. If Li ∈ L(Xi), i = 1, 2, denotes
the restriction of L to Xi, then L1 is invertible and

‖L−1
1 ‖L(X1) ≤ κ, ‖L2‖L(X2) ≤ κ.(2.2)

Moreover, the projections Pi, i = 1, 2, associated with the decomposition X =
X1 ⊕X2 (i.e., Pix = xi, i = 1, 2, for x = x1 + x2, xi ∈ Xi) satisfy

‖Pi‖L(X) ≤ µ.(2.3)

Hypothesis (HN). The mapping N : D → X is Lipschitz continuous with a
Lipschitz constant that satisfies

Lip(N) ≤ 1− κ

4µ
.(2.4)

Note that the boundedness of the projections P1, P2 is a consequence of the
closedness of subspaces X1, X2; this is a well-known consequence of the closed
graph theorem, see [10, p. 167].

We now state the main result of this section.

Theorem 2.1. (i) Assume that for the mapping S in (2.1) the hypotheses (HL),
(HN) are satisfied and set

σ :=
4µ

1− κ
.(2.5)

Let i and f be integers, i < f , and let {x̃n}f
n=i ⊂ D be a sequence. If {xn}f

n=i ⊂ D
is an orbit of S, i.e., xn+1 = S(xn), n = i, . . . , f − 1, which satisfies the boundary
conditions

P2xi = P2x̃i, P1xf = P1x̃f ,(2.6)

then

sup
i≤n≤f

‖xn − x̃n‖ ≤ σ sup
i≤n≤f−1

‖x̃n+1 − S(x̃n)‖.(2.7)

(ii) Assume, in addition to (HL), (HN), that the domain D of S contains a
closed ball BX(z, ρ) and that

‖z − S(z)‖ ≤ ρ/σ.(2.8)

Then, for any sequence {x̃n}f
n=i ⊂ BX(z, ρ/(µσ)), there exists an orbit {xn}f

n=i ⊂
BX(z, ρ) of S for which (2.6) and hence (2.7) hold.
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Remark 1. With the terminology used in shadowing theory (see, e.g., [6]) we say
that {x̃n}f

n=i is a δ-pseudo-orbit of S if supi≤n≤f−1 ‖x̃n+1 − S(x̃n)‖ ≤ δ. If this
is the case, then the estimate (2.7) means that {x̃n}f

n=i is ε-shadowed by the true
orbit {xn}f

n=i with shadowing distance ε ≤ σδ. Part (ii) ensures the existence of a
shadow orbit.

Remark 2. Analogous results hold also for infinite sequences {x̃n}f
n=−∞, {x̃n}∞n=i,

or {x̃n}∞n=−∞ with obvious modifications. For instance, for a sequence {x̃n}f
n=−∞,

the first condition in (2.6) is absent and the ranges in (2.7) become n ≤ f and
n ≤ f−1. The proof is essentially the same as that given below for finite sequences.
Note in this connection that the stability constant σ in (2.7) does not depend on
the initial and final indices i and f .

The theorem is proved by using the following lemmas.

Lemma 2.2. Assume that L satisfies hypothesis (HL), and that i, f are integers
with i < f . Set ν = f − i, X = Xν+1, Y = X2 × Xν × X1, and define a linear
operator L : X → Y by L : (xi, . . . , xf ) 7→ (yi, . . . , yf+1), where

yi = P2xi, yf+1 = P1xf ; yn+1 = xn+1 − Lxn, n = i, . . . , f − 1.(2.9)

Then L is invertible and, with respect to the supremum norm of the product spaces
X,Y,

‖L−1‖L(Y,X) ≤
2µ

1− κ
.(2.10)

Proof. Given an element y = (yi, . . . , yf+1) ∈ Y, we define x = (xi, . . . , xf ) ∈ X
by the relations xn = P1xn + P2xn, where

P1xn = (L−1
1 )f−nyf+1 −

f∑
j=n+1

(L−1
1 )j−nP1yj ,

P2xn = (L2)n−iyi +
n∑

j=i+1

(L2)n−jP2yj .

It is a simple matter to check that (2.9) holds. This proves that L is onto. To
see that L is one-to-one, assume that yn, n = i, . . . , f + 1, in (2.9) vanish. Then,
by (2.9), P2xi = 0 and P1xf = 0. Recursion in (2.9) reveals that P2xn = 0 for
n = i+ 1, . . . , f . Similarly, a descending recursion in (2.9) shows that P1xn = 0 for
n = f − 1, . . . , i, so that the kernel of L is trivial.

To derive (2.10), use (2.2)–(2.3) in the definition of xn, n = i, . . . , f ,

‖xn‖ ≤ κf−n‖y‖ +
f∑

j=n+1

κj−nµ‖y‖+ κn−i‖y‖+
n∑

j=i+1

κn−jµ‖y‖

≤
(
1 +

f∑
j=n+1

κj−n + κn−i +
n∑

j=i+1

κn−j
)
µ‖y‖

≤
( ∞∑

j=n

κj−n +
n∑

j=−∞
κn−j

)
µ‖y‖ =

2µ
1− κ

‖y‖.
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Lemma 2.3. Let X and Y be Banach spaces and let L : X → Y be a linear
bijection with bounded inverse L−1. Assume that the mapping N : D ⊂ X → Y,
defined in a nonempty subset D of X, is Lipschitz continuous with

α := ‖L−1‖L(Y,X) Lip(N) < 1.

Define S = L + N and set σ := ‖L−1‖L(Y,X)/(1− α). Then

‖x1 − x2‖X ≤ σ‖S(x1)− S(x2)‖Y, for all x1,x2 ∈ D.(2.11)

Proof. The bound (2.11) follows readily from the identity

x1 − x2 = L−1
(
S(x1)− S(x2)

)
− L−1

(
N(x1)−N(x2)

)
.

Lemma 2.4. In addition to the hypotheses of Lemma 2.3, assume that the domain
D of N contains a closed ball BX(z, ρ). Then, for each y ∈ Y with

‖y − S(z)‖Y ≤ ρ/σ,(2.12)

the equation S(x) = y has a unique solution x ∈ BX(z, ρ).

Proof. This is a simple consequence of the contraction mapping theorem. In fact,
if we define T(x) = L−1(y −N(x)), then Lip(T) = α < 1. Moreover, the identity

T(x)− z = L−1
(
y − S(z)

)
− L−1

(
N(x)−N(z)

)
and (2.12) imply that T maps BX(z, ρ) into itself.

Proof of Theorem 2.1. Given i and f , we construct the spaces X and Y and the
linear operator L as in Lemma 2.2. We further consider the mapping N : D =
Dν+1 ⊂ X → Y defined by N(x) = y, where

yi = yf+1 = 0; yn+1 = −N(xn), n = i, . . . , f − 1.(2.13)

The assumption (HN) implies that Lip(N) ≤ (1 − κ)/(4µ), and (2.10) leads to
‖L−1‖ Lip(N) ≤ 1/2. We can therefore apply Lemma 2.3 with α = 1/2; this yields
a value of σ = ‖L−1‖/(1 − α) that coincides with σ in (2.5). Note also that S is
defined by S(x) = y, where (see (2.1), (2.9), and (2.13))

yi = P2xi, yf+1 = P1xf ; yn+1 = xn+1 − S(xn), n = i, . . . , f − 1.

The estimate (2.7) is then a straightforward consequence of (2.11).
To prove part (ii) of the theorem, we apply Lemma 2.4 in the ball B(z, ρ) =

B(z, ρ)ν+1, where z = (z, . . . , z). Given {x̃n}f
i=1 ⊂ B(z, ρ/(µσ)), we put y =

(P2x̃i, 0, . . . , 0, P1x̃f ). The condition (2.12) is satisfied. In fact, the first component
of y−S(z) is the vector P2x̃i−P2z, whose norm can be estimated by ‖P2‖ ‖x̃i−z‖ ≤
ρ/σ. Similarly, the last component of y − S(z) has norm ≤ ρ/σ. The remaining
components of y−S(z) equal 0− (z−S(z)) and, in view of (2.8), are also bounded
in norm by ρ/σ. Since (2.12) is satisfied, the equation S(x) = y has a solution
x = (xi, . . . , xf ). The choice of y ensures that {xn}f

n=i is the sequence required.
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2.2. Shadowing and approximation. We now consider, along with the mapping
S in (2.1), a family of approximations {Sh}.

Let H be a set of positive numbers with infH = 0. For each h ∈ H, let Xh be
a subspace of the Banach space X , chosen in such a way that there exist bounded
projections Qh : X → Xh and a number γ ≥ 1 with

‖Qh‖L(X) ≤ γ.(2.14)

We assume that the spaces Xh approximate X in the sense that

lim
h→0

Qhu = u, for all u ∈ X.(2.15)

For h ∈ H, we consider mappings Sh : Dh ⊂ Xh → Xh with domains Dh = D∩Xh,
that approximate S in the sense that a continuous positive function ε(h) exists such
that

lim
h→0

ε(h) = 0(2.16)

and

‖Sh(Qhu)− S(u)‖ ≤ ε(h), for all u ∈ D such that Qhu ∈ Dh.(2.17)

Finally, we assume that Sh can be decomposed as

Sh = Lh +Nh,(2.18)

and that (HL) and (HN) hold for this decomposition. More precisely, this means
that Lh ∈ L(Xh); Xh can be decomposed as a direct sum Xh = X1h⊕X2h of closed
subspaces invariant by Lh; the restrictions Lih, i = 1, 2, of Lh to Xih satisfy

‖L−1
1h ‖L(X1h) ≤ κ, ‖L2h‖L(X2h) ≤ κ;(2.19)

the associated projections satisfy

‖Pih‖L(X) ≤ µ, i = 1, 2;(2.20)

and Nh : Dh → Xh with Lipschitz constant

Lip(Nh) ≤ 1− κ

4µ
.

Note that Xih is in general different from Xi∩Xh; the latter may well be the trivial
subspace {0}.

Theorem 2.5. (i) Assume that the subspaces Xh of the Banach space X possess
the approximation properties (2.14)–(2.15), the mappings S in (2.1) and Sh in
(2.18) satisfy (HL) and (HN), and the Sh approximate S as in (2.17). Let i and f
be integers with i < f . Then the following results hold.

(i.a) Let {uh,n}f
n=i ⊂ Dh be an orbit of Sh. If {un}f

n=i is an orbit of S with

P2ui = P2uh,i, P1uf = P1uh,f ,(2.21)

then

sup
i≤n≤f

‖un − uh,n‖ ≤ σε(h),(2.22)

where σ is the constant in (2.5).
(i.b) Let {un}f

n=i ⊂ D be an orbit of S with

Qhun ∈ Dh, n = i, . . . , f.(2.23)
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If {uh,n}f
n=i ⊂ Dh is an orbit of Sh with

P2huh,i = P2hQhui, P1huh,f = P1hQhuf ,(2.24)

then

sup
i≤n≤f

‖Qhun − uh,n‖ ≤ γσε(h).(2.25)

(ii) Assume that the hypotheses in (i) hold and that S has a fixed point ū such
that BX(ū, ρ) ⊂ D for some ρ > 0. Then the following conclusions hold.

(ii.a) For any orbit {uh,n}f
n=i ⊂ BX(ū, ρ0), ρ0 = ρ/(µσ) < ρ, of Sh there is an

orbit {un}f
n=i of S for which (2.21) and (2.22) are true.

(ii.b) Let h be small enough for the inequalities

‖ū−Qhū‖ ≤ ρ/2, 2γσε(h) ≤ ρ(2.26)

to hold (cf. (2.15)–(2.16)). Then, for any orbit {un}f
n=i⊂BX(ū, ρ0), ρ0 =ρ/(2γµσ),

of S, the relation (2.23) is satisfied and there is an orbit {uh,n}f
n=i of Sh for which

(2.24) and (2.25) hold.
(ii.c) For h chosen as in (ii.b), the mapping Sh has a fixed point that is unique

in the ball BXh
(Qhū, ρ/2). Furthermore,

‖Qhū− ūh‖ ≤ γσε(h).(2.27)

Proof. To prove (i.a) we apply part (i) of Theorem 2.1 with x̃n = uh,n ∈ Dh ⊂ D,
and xn = un. Then (2.7) yields

sup
i≤n≤f

‖un − uh,n‖ ≤ σ sup
i≤n≤f−1

‖uh,n+1 − S(uh,n)‖.

Since uh,n+1− S(uh,n) = Sh(Qhuh,n)− S(uh,n), the bound (2.22) is a consequence
of (2.17).

For part (i.b) we again resort to part (i) of Theorem 2.1, but this time with Sh

playing the role of S, and x̃n = Qhun ∈ Dh, xn = uh,n ∈ Dh. The estimate (2.7)
reads

sup
i≤n≤f

‖uh,n −Qhun‖ ≤ σ sup
i≤n≤f−1

‖Qhun+1 − Sh(Qhun)‖,

and (2.25) is a consequence of (2.14) and (2.17), in view of the identity

Qhun+1 − Sh(Qhun) = Qh[S(un)− Sh(Qhun)].

Part (ii.a) is a direct consequence of part (ii) of Theorem 2.1 with z = ū.
For (ii.b) we use part (ii) of Theorem (2.1) with Sh playing the role of S and

z = Qhū. If v ∈ BXh
(Qhū, ρ/2), then the assumption (2.26) implies

‖v − ū‖ ≤ ‖v −Qhū‖+ ‖Qhū− ū‖ ≤ ρ;

this shows that BXh
(Qhū, ρ/2) is contained in BX(ū, ρ), which in turn is assumed

to be contained in D. Hence BXh
(Qhū, ρ/2) ⊂ Dh. Furthermore, by (2.14), (2.17)

and (2.26),

‖Qhū− Sh(Qhū)‖ = ‖Qh[S(ū)− Sh(Qhū)]‖ ≤ γε(h) ≤ ρ/2
σ
,(2.28)

so that (2.8) holds with the role of BX(z, ρ) played by BXh
(Qhū, ρ/2). If {un}f

n=i ⊂
BX(ū, ρ0), then, by (2.14), {Qhun}f

n=i ⊂ BXh
(Qhū, ρ/(2µσ)) ⊂ BXh

(Qhū, ρ/2)
and (2.23) holds. The existence of an orbit {uh,n}f

n=i of Sh satisfying (2.24) now
follows from Theorem 2.1.
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For (ii.c) we apply Lemma 2.4 with X = Y = Xh, L = Lh − I, N = Nh,
y = 0 and the role of BX(z, ρ) played by BXh

(Qhū, ρ/2), which we know to be
contained in Dh. By Lemma 2.8, ‖(Lh − I)−1‖ ≤ 2µ/(1 − κ), leading in Lemma
2.3 to α = 1/2 and a value of σ that agrees with the value in (2.5). The condition
(2.12) is fulfilled in view of (2.28), because y − S(z) = −Sh(Qhū) + Qhū. It only
remains to prove the bound (2.27). We again apply Lemma 2.4, but this time in
the smaller ball BXh

(Qhū, σγε(h)) ⊂ BXh
(Qhū, ρ/2); the condition (2.12) is still

fulfilled in view (2.28), so that the unique fixed point ūh of Sh in BXh
(Q)hū, ρ/2)

also lies in BXh
(Qhū, σγε(h)).

Our next theorem gives a condition under which the “hyperbolicity” (HL) of the
operator L carries over to Lh.

Theorem 2.6. Assume that the operator L ∈ L(X), X a Banach space, satisfies
hypothesis (HL), and choose κ̃ ∈ (κ, 1), µ̃ > µ. Assume that the subspaces Xh

with corresponding projections Qh are such that (2.14) holds and that the operators
Lh ∈ L(Xh) approximate L in the sense that

‖L− LhQh‖L(X) ≤ ε(h)(2.29)

with ε(h) as in (2.16). Then there exists h0 > 0 (depending only on γ, κ, µ, κ̃, µ̃,
and the function ε) such that, uniformly for h < h0, the operators Lh satisfy (HL)
with constants κ̃, µ̃.

For the proof of the theorem we need two simple lemmas.

Lemma 2.7. Let A,B ∈ L(X), X a Banach space, with A−1 ∈ L(X) and ‖B‖ ≤
1
2‖A−1‖−1. Then (A+B)−1 ∈ L(X) and

‖(A+B)−1 −A−1‖L(X) ≤ 2‖A−1‖2L(X)‖B‖L(X).

Proof. We have ‖(A + B)−1‖L(X) = ‖A−1
∑∞

n=0(−A−1B)n‖L(X) ≤ 2‖A−1‖L(X)

and (A+B)−1 −A−1 = −(A+B)−1BA−1.

Lemma 2.8. Assume that the operator L ∈ L(X), X a Banach space, satisfies
hypothesis (HL) and let ω be a complex number with |ω| = 1. Then (ωI − L)−1 ∈
L(X) with

‖(ωI − L)−1‖L(X) ≤
2µ

1− κ
.

Proof. Let |ω| = 1. Assumption (2.2) implies that

(ωI − L1)−1 = −L1

∞∑
n=0

(ωL−1
1 )n, (ωI − L2)−1 = ω−1

∞∑
n=0

(ω−1L2)n,

and hence

‖(ωI − L1)−1‖L(X1) ≤
κ

1− κ
, ‖(ωI − L2)−1‖L(X2) ≤

1
1− κ

.

Using also (2.3) and (ωI − L)−1 = (ωI − L1)−1P1 + (ωI − L2)−1P2, we obtain

‖(ωI − L)−1‖L(X) ≤
1 + κ

1− κ
µ ≤ 2µ

1− κ
.
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Proof of Theorem 2.6. Define L̃h = LhQh ∈ L(X) and let |ω| = 1. We begin by
showing that (ωI − L̃h)−1 ∈ L(X). In order to do so we shall apply Lemma 2.7
with A = ωI−L and B = L− L̃h. From Lemma 2.8 we know that ‖(ωI−L)−1‖ ≤
2µ/(1− κ). Hence, for h sufficiently small, we have

‖L− L̃h‖L(X) ≤ ε(h) ≤ 1− κ

4µ
≤ 1

2‖(ωI − L)−1‖ .

Now Lemma 2.7 applies and gives (ωI − L̃h)−1 ∈ L(X) and

‖(ωI − L̃h)−1 − (ωI − L)−1‖L(X) ≤ 2
( 2µ

1− κ

)2

‖L− L̃h‖L(X) ≤ Kε(h),(2.30)

where K = 2(2µ/(1− κ))2.
We next show that (ωI − Lh)−1 ∈ L(Xh) and that

(ωI − Lh)−1Qh = (ωI − L̃h)−1Qh.(2.31)

In fact, if f ∈ X , then u = (ωI − L̃h)−1Qhf ∈ X satisfies

Qhf = (ωI − L̃h)(Qhu+ (I −Qh)u) = (ωI − Lh)Qhu+ ω(I −Qh)u.

We conclude that (I − Qh)u = 0, and (ωI − Lh)Qhu = Qhf , so that u = Qhu =
(ωI − Lh)−1Qhf , which implies (2.31).

We have now proved that, for each sufficiently small h, Lh has no spectrum on
the unit circle. By a standard theorem (see, e.g., [10, Theorem III–6.17, p. 178])
this implies the existence of a splitting Xh = X1h ⊕X2h as required in assumption
(HL). It only remains to prove that the corresponding inequalities (2.19) and (2.20)
with constants κ̃, µ̃ hold uniformly with respect to h.

In order to obtain a bound for ‖P2h‖L(Xh) we first estimate ‖(P2−P2h)Qh‖L(X).
Using the representations

P2 =
1

2πi

∫
Γ

(ωI − L)−1 dω, P2h =
1

2πi

∫
Γ

(ωI − Lh)−1 dω,

where Γ denotes the unit circle with positive orientation, together with (2.31),
(2.30), and (2.14), we obtain

‖(P2 − P2h)Qh‖L(X) =
1
2π

∥∥∥ ∫
Γ

(
(ωI − L)−1 − (ωI − L̃h)−1

)
dω Qh

∥∥∥
L(X)

≤ γKε(h).

This implies that, for x ∈ Xh,

‖P2hx‖ ≤ ‖P2x‖+ ‖(P2 − P2h)x‖ ≤
(
µ+ γKε(h)

)
‖x‖,

so that

‖P2h‖L(Xh) ≤ µ+ γKε(h) ≤ µ̃,

provided that h is sufficiently small. Since (P1 − P1h)Qh = (P2h − P2)Qh, we also
have ‖P1h‖L(Xh) ≤ µ̃.

We now turn to the bound for ‖L2h‖L(X2h). Since

L2P2 =
1

2πi

∫
Γ

ω(ωI − L)−1 dω, L2hP2h =
1

2πi

∫
Γ

ω(ωI − Lh)−1 dω,
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we have

‖(L2P2 − L2hP2h)Qh‖L(X) =
1
2π

∥∥∥ ∫
Γ

ω
(
(ωI − L)−1 − (ωI − L̃h)−1

)
dω Qh

∥∥∥
L(X)

≤ γKε(h).

Hence, for x ∈ X2h,
‖L2hx‖ = ‖L2hP2hx‖ ≤ ‖(L2hP2h − L2P2)Qhx‖ + ‖L2P2x‖

≤ γKε(h)‖x‖+ κ‖P2x‖.
Here, since Qhx = P2hx = x,

‖P2x‖ ≤ ‖(P2 − P2h)Qhx‖+ ‖P2hx‖ ≤ γKε(h)‖x‖+ ‖x‖,
so that

‖L2hx‖ ≤
(
κ+ 2γKε(h)

)
‖x‖,

and we conclude that, for small h,

‖L2h‖L(X2h) ≤ κ+ 2γKε(h) ≤ κ̃.

The required bound for ‖L−1
1h ‖L(X1h) is obtained in the same way, using the

representations

L−1P1 = − 1
2πi

∫
Γ

ω−1(ωI − L)−1 dω, L−1
1h P1h = − 1

2πi

∫
Γ

ω−1(ωI − Lh)−1 dω.

3. Application to a system of reaction-diffusion equations

The purpose of this section is to illustrate how the theory of the previous section
can be applied in the context of a standard finite element approximation of a system
of reaction-diffusion equations.

3.1. The continuous problem. We consider the model problem

ut −D∆u = f̃(u), x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(·, 0) = u0, x ∈ Ω,

(3.1)

where Ω is a bounded domain in Rd, d = 1, 2, 3, u = u(x, t) ∈ Rs, ut = ∂u/∂t, ∆u =∑
i ∂

2u/∂x2
i , D = diag(d1, . . . , ds) is a diagonal matrix of constant coefficients

di > 0, and f̃ : Rs → Rs is continuously differentiable. We assume that Ω is either
a convex polygon or has a smooth boundary. If d = 2, 3 we assume, in addition,
that the Jacobian of f̃ satisfies the growth condition

|f̃ ′(ξ)| ≤ C(1 + |ξ|δ), ξ ∈ Rs,

where | · | denotes the Euclidean norm on Rs and the induced matrix norm, and
where δ = 2 if d = 3, δ ∈ [0,∞) if d = 2.

In the sequel we use the Hilbert space H = (L2(Ω))s, with its standard norm
‖ · ‖ and inner product (·, ·). The norms in the Sobolev spaces (Hm(Ω))s, m ≥ 0,
are denoted by ‖ · ‖m. The space V = (H1

0 (Ω))s, with norm ‖ · ‖1, consists of
the functions in (H1(Ω))s that vanish on ∂Ω. We define the operator A = −D∆
with domain D(A) = (H2(Ω) ∩ H1

0 (Ω))s. Then A is a closed, densely defined
and selfadjoint operator in H with compact inverse. Moreover, our assumptions
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guarantee that the mapping f̃ induces an operator f : V → H through f(v)(x) =
f̃(v(x)); see Lemma 3.1 below. The initial-boundary value problem (3.1) may then
be formulated as an initial value problem in V :

u′ +Au = f(u), t > 0; u(0) = u0.(3.2)

We assume further that (3.2) has a stationary solution ū with ū ∈ D(A), Aū = f(ū);
by standard embedding results ū is continuous in the closure of Ω. The formula
(Bv)(x) = f̃ ′(ū(x))v(x) clearly defines an operator B ∈ L(H). The operator A =
A−B is the linearization of A− f at ū, and, being a bounded perturbation of A,
it is a sectorial operator in H (see [9, Theorem 1.3.2]). Hence −A is the generator
of an analytic semigroup e−tA. We assume that ū is “hyperbolic”, i.e., that the
spectrum of A does not intersect the imaginary axis. Let P1, and P2 the projections
respectively associated with the sets σ1 = σ(A) ∩ {Re z < 0} and σ2 = σ(A) ∩
{Re z > 0} that partition the spectrum σ(A) of A, and let H1 and H2 be the
ranges of P1 and P2. It follows that H is a direct sum H = H1⊕H2; the subspaces
Hi are invariant under A and, if Ai, i = 1, 2, denotes the restriction of A to Hi,
then A1 ∈ L(H1), D(A2) = D(A) ∩H2. Furthermore, there are M ≥ 1 and α > 0
such that

‖e−tA1v‖m ≤Meαt‖v‖, t ≤ 0, v ∈ H1, m = 1, 2,

‖e−tA2v‖m ≤Mt−m/2e−αt‖v‖, t > 0, v ∈ H2, m = 1, 2,

‖e−tA2v‖1 ≤Me−αt‖v‖1, t ≥ 0, v ∈ H2 ∩ V.
(3.3)

We refer to [9, §1.5] for these facts.
Since H1 ⊂ D(A), we see that we also have a direct sum V = V1 ⊕ V2, where

V1 = H1 and V2 = H2 ∩ V , with associated projections P1|V and P2|V . By the
closed graph theorem, we may select a constant µ ≥ 1 such that

‖Pi‖L(H) ≤ µ, ‖Pi‖L(V ) ≤ µ, i = 1, 2.(3.4)

By combining these with (3.3) we have

‖e−tAv‖1 ≤ Ct−1/2eαt‖v‖, t > 0, v ∈ H,
‖e−tAv‖1 ≤ Ceαt‖v‖1, t ≥ 0, v ∈ V.

(3.5)

With F (v) = f(v)−Bv, we may rewrite (3.2) as

u′ +Au = F (u), t > 0; u(0) = u0,(3.6)

and clearly we also have

Aū = F (ū).(3.7)

As shown by the following lemma, whose proof is similar to that of Lemma 2.2 in
[12], the nonlinear operator F : V → H is Lipschitz continuous with a Lipschitz
constant that may be rendered arbitrarily small by restricting the attention to a
sufficiently small neighborhood of ū.

Lemma 3.1. If v, w ∈ BV (ū, ρ), then

‖F (v)− F (w)‖ ≤ k(ρ)‖v − w‖1,(3.8)

where k(ρ) = O(ρ) as ρ→ 0.
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The initial value problem (3.6) (or (3.2)) has a unique local solution for any initial
datum u0 ∈ V ; see [9, Theorem 3.3.3]. We denote by S(t, ·) the corresponding
(local) solution operator, so that u(t) = S(t, u0) is the solution of (3.6). The
following lemma shows that the local solutions can be extended in time, if they
start sufficiently near ū.

Lemma 3.2. For each ρ1 > 0 and T > 0 there is ρ > 0 such that, if u0 ∈ BV (ū, ρ),
then S(t, u0) is defined and belongs to BV (ū, ρ1) for t ∈ [0, T ].

Proof. Let ρ1, T > 0 be given. For ρ > 0 let τ ∈ [0, T ] be the largest time such that
u0 ∈ BV (ū, ρ) implies that u(t) = S(t, u0) exists and belongs to BV (ū, ρ1 + 1) for
t ∈ [0, τ ]. We must choose ρ such that τ = T .

Let z(t) = u(t) − ū. Forming the difference between (3.6) and (3.7) and using
the variation of constants formula, we obtain

z(t) = e−tAz(0) +
∫ t

0

e−(t−s)A(
F (u(s))− F (ū)

)
ds.

Invoking (3.5) and (3.8), we therefore have, for t ∈ [0, τ ],

‖z(t)‖1 ≤ Ceαt‖z(0)‖1 + C

∫ t

0

(t− s)−1/2eα(t−s)‖F (u(s))− F (ū)‖ ds

≤ CeαT
(
ρ+ k(ρ1 + 1)

∫ t

0

(t− s)−1/2‖z(s)‖1 ds
)
.

Gronwall’s lemma (see [13, Lemma 5.6.7] or [9, Exercise 4 of §6.1]) now yields

‖z(t)‖1 ≤ C(ρ1, T )ρ, t ∈ [0, τ ],

so that if we choose ρ = ρ1/C(ρ1, T ), then

‖z(t)‖1 ≤ ρ1, t ∈ [0, τ ].

If τ < T , then by local existence we obtain a contradiction with the maximality of
τ . Hence, S(t, u0) is defined and belongs to BV (ū, ρ1) for t ∈ [0, T ].

The following lemma provides a bound for the H2 norm of the solution found in
Lemma 3.2.

Lemma 3.3. Let ρ1 > 0, T > 0 and assume that u(t) = S(t, u0) exists and belongs
to BV (ū, ρ1) for t ∈ [0, T ]. Then there exists C(ρ1, T ) such that

‖u(t)‖2 ≤ C(ρ1, T ) t−1/2, t ∈ (0, T ].

Proof. In view of (3.8) we have ‖F (u(t))‖ ≤ C(ρ1) for t ∈ [0, T ]. The proof is now
obtained by tracing the constants in [9, Theorem 3.5.2].

In order to set the present problem in the framework of §2, we choose T such
that

κ := Me−αT < 1,(3.9)

where M and α are the constants in (3.3). We then define S = S(T, ·), L = e−TA,
N = S −L. It is clear from the above that assumption (HL) is satisfied, with both
X = H and X = V . In order to choose the domain D so that (HN) holds we need
the following result.

Lemma 3.4. For each ε > 0 there is ρ > 0 such that v1, v2 ∈ BV (ū, ρ) implies

‖N(v1)−N(v2)‖m ≤ ε‖v1 − v2‖m, m = 0, 1.
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Proof. Let T be as in (3.9) and let ρ1 > 0. We first carry out an a priori estimation
under the assumption that ui = S(t, vi), i = 1, 2, exist and belong to BV (ū, ρ1) for
t ∈ [0, T ]. From the variation of constants formula

ui(t) = e−tAvi +
∫ t

0

e−(t−s)AF (ui(s)) ds, t ∈ [0, T ],

so that N(vi) = wi(T ), where

wi(t) =
∫ t

0

e−(t−s)AF (ui(s)) ds.

Using (3.5) and (3.8), we obtain

‖w1(t)− w2(t)‖1 ≤ Ceαt

∫ t

0

(t− s)−1/2‖F (u1(s))− F (u2(s))‖ ds

≤ C(T )k(ρ1)
∫ t

0

(t− s)−1/2‖u1(s)− u2(s)‖1 ds.

Here u1(s)− u2(s) = e−sA(v1 − v2) +w1(s)−w2(s), so that another application of
(3.5) yields, for t ∈ [0, T ],

‖w1(t)− w2(t)‖1 ≤ C(T )k(ρ1)‖v1 − v2‖

+ C(T, ρ1)
∫ t

0

(t− s)−1/2‖w1(s)− w2(s)‖1 ds.

Gronwall’s lemma now shows that

‖w1(t)− w2(t)‖1 ≤ C(T, ρ1)k(ρ1)‖v1 − v2‖, t ∈ [0, T ].(3.10)

This is the required a priori bound, and we may now complete the proof. Let
ε > 0. Since k(ρ1) = O(ρ1) and C(T, ρ1) = O(1) as ρ1 → 0, we may choose ρ1 so
that C(T, ρ1)k(ρ1) ≤ ε. Lemma 3.2 provides ρ such that v1, v2 ∈ BV (ū, ρ) implies
u1(t), u2(t) ∈ BV (ū, ρ1) for t ∈ [0, T ], and (3.10) then yields

‖w1(T )− w2(T )‖1 ≤ ε‖v1 − v2‖,

which implies both the required estimates.

Lemma 3.4 shows that there is ρ such that, if we set D = BV (ū, ρ), then N
satisfies (HN) with both X = H and X = V . Moreover, we have found a larger
radius ρ1 > ρ such that

u0 ∈ D = BV (ū, ρ) ⇒ S(t, u0) ∈ BV (ū, ρ1), t ∈ [0, T ].(3.11)

In summary, we have chosen the parameters so as to make sure that S = L+N
satisfies (HL) and (HN) in both X = H and X = V .

Remark 3. Note that L is the linearization of S at ū. In fact, the mapping S : D ⊂
V → V is Fréchet differentiable with L = S′(ū) ∈ L(V ). However, the mapping
S : D ⊂ H → H is not differentiable, because D = BV (ū, ρ) is not a neighborhood
of ū with respect to the topology of H .
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3.2. The discrete problem. In this section we first discretize the initial-boundary
value problem (3.1) with respect to the spatial variables by means of a standard
piecewise linear finite element method and apply the shadowing results of §2.2. At
the end of the section we then briefly discuss completely discrete approximations
obtained by means of the backward Euler time-stepping.

Let {Vh}0<h<1 be a family of finite dimensional subspaces of V , where each
Vh consists of continuous piecewise polynomials of degree ≤ 1 with respect to a
triangulation of Ω with maximal mesh size h, see [5]. The approximate solution
uh(t) ∈ Vh of (3.1) is defined by

(u′h, χ) + (D∇uh,∇χ) = (f̃(uh), χ), ∀χ ∈ Vh, t > 0,

uh(0) = u0h

,(3.12)

where = u0h ∈ Vh is an approximation of u0.
We want to set this problem in the framework of §2.2 with Xh = Vh, and both

X = H and X = V . Let Qh : H → Vh be the orthogonal projection. Then Qh

satisfies (2.14) (with δ = 1) if X = H . In order to satisfy (2.14) with X = V we
assume that Qh is bounded (uniformly in h) with respect to the H1 norm. It is
easy to see that this is true if the spaces Vh satisfy an inverse assumption. For a
more general discussion of the H1 boundedness of Qh we refer to [7].

It is well known that (in view of standard interpolation error bounds and the L2

and H1 boundedness of Qh)

‖Qhv − v‖m ≤ Ch2−m‖v‖2, v ∈ D(A), m = 0, 1.(3.13)

Since D(A) is dense in H , it follows that (2.15) holds with X = H and X = V .
Introducing the linear operator Ah : Vh → Vh defined by

(Ahψ, χ) = (D∇ψ,∇χ), ∀ψ, χ ∈ Vh,

and with f : V → H defined as before, we may write (3.12) as

u′h +Ahuh = Qhf(uh), t > 0; uh(0) = u0h,(3.14)

which is the discrete analogue of (3.2). In the same way as for the continuous
problem we can show that there is a local solution operator Sh(t, ·) such that
uh(t) = Sh(t, u0h) is the unique local solution of (3.14). Just as in the continuous
case, the proof is based on the variation of constants formula, the analyticity of the
semigroup exp(−tAh), and the local Lipschitz condition for the mapping f : V →
H , see [11].

With Ah = Ah −QhB and F (v) = f(v)−Bv as before, we rewrite (3.14) as

u′h +Ahuh = QhF (uh), t > 0; uh(0) = u0h,

which is the discrete version of (3.6). Since Ah is selfadjoint, positive definite
(uniformly in h), and QhB is bounded, we deduce that Ah is sectorial (uniformly
in h), so that for some c > 0

‖e−tAhv‖1 ≤ Cect‖v‖1, t ≥ 0, v ∈ Vh,

‖e−tAhv‖1 ≤ Ct−1/2ect‖v‖, t > 0, v ∈ Vh,
(3.15)

which are discrete versions of (3.5). Here we have employed the equivalence of
norms ‖v‖1 ≈ ‖A1/2

h v‖ for v ∈ Vh. The inequalities (3.15) can also be proved by
noting that uh(t) = e−tAhu0h satisfies (3.14) with f(uh) replaced by Buh, and by
making estimations based on the variation of constants formula.
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From [11] we quote the following a priori error estimates.

Lemma 3.5. Let 0 < τ ≤ T and assume that S(t, u0), Sh(t, u0h) ∈ BV (ū, ρ) for
t ∈ [0, τ ]. Then, for t ∈ [0, τ ], we have

‖Sh(t, u0h)− S(t, u0)‖ ≤ C(ρ, T )
(
‖u0h −Qhu0‖+ h2t−1/2

)
,

‖Sh(t, u0h)− S(t, u0)‖1 ≤ C(ρ, T )t−1/2
(
‖u0h − u0‖+ h

)
.

The following is a discrete analogue of Lemma 3.2.

Lemma 3.6. For each ρ1 > 0, T > 0 there are ρ > 0, h0 > 0 such that, if
u0h ∈ BV (ū, ρ)∩Vh and h < h0, then Sh(t, u0h) exists and belongs to BV (ū, ρ1)∩Vh

for t ∈ [0, T ].

Proof. Let ρ1, T > 0 be given. For ρ > 0 let τ ∈ [0, T ] be the largest time such that
u0h ∈ BV (ū, ρ)∩Vh implies that Sh(t, u0h) exists and belongs toBV (ū, ρ1+1)∩Vh for
t ∈ [0, τ ]. By local existence there are t0 > 0 and ρ > 0 such that u0h ∈ BV (ū, ρ)∩Vh

implies that Sh(t, u0h) exists and belongs to BV (ū, ρ1)∩Vh for t ∈ [0, t0]. Moreover,
the second error estimate of Lemma 3.5 gives the a priori estimate

‖Sh(t, u0h)− ū‖1 ≤ C(ρ1, T )t−1/2
(
‖u0h − ū‖+ h

)
≤ C(ρ1, T )t−1/2

0 (ρ+ h0) ≤ ρ1, t ∈ [t0, τ ],

provided that ρ and h0 are sufficiently small. If τ < T , then by local existence we
obtain a contradiction with the maximality of τ . Hence, Sh(t, u0) is defined and
belongs to BV (ū, ρ1) ∩ Vh for t ∈ [0, T ].

We will also use the error bounds
‖e−tAhQhv − e−tAv‖ ≤ Ch2t−1eαt‖v‖, t > 0, v ∈ H,
‖e−tAhQhv − e−tAv‖1 ≤ Cht−1/2eαt‖v‖1, t > 0, v ∈ V,

(3.16)

which can be proved by the using the techniques of [11].
With T as in (3.9) we define Lh = e−TAh , and (3.16) shows that

‖LhQh − L‖L(H) + h‖LhQh − L‖L(V ) ≤ C(T )h2.

The assumption (2.29) is thus satisfied with both X = H and X = V . We conclude
that Theorem 2.6 applies, showing that, for small h, Lh satisfies (HL) with slightly
larger constants κ̃ > κ, µ̃ > µ. Adjusting κ, µ, we may conclude that (2.19), (2.20)
hold.

Finally, we define Sh = Sh(T, ·), Nh = Sh − Lh, and note that, after these
preparations, the analogue of Lemma 3.4 holds with the same proof. As for the
continuous problem we may select ρ, h0 such that, for h < h0, Nh satisfies (HN)
with Dh = D ∩ Vh, D = BV (ū, ρ). The argument also selects ρ1 such that, in
analogy with (3.11),

u0h ∈ Dh ⇒ Sh(t, u0h) ∈ BV (ū, ρ1), t ∈ [0, T ].(3.17)

Moreover, using Lemma 3.5 together with (3.11) and (3.17), we see that, if v ∈ D,
Qhv ∈ Dh, then

‖Sh(Qhv)− S(v)‖ ≤ C(ρ1, T )h2, ‖Sh(Qhv)− S(v)‖1 ≤ C(ρ1, T )h,

since ‖Qhv− v‖ ≤ Ch‖v‖1 ≤ Chρ. We conclude that (2.17) holds with X = H and
ε(h) = Ch2, and with X = V and ε(h) = Ch.
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We have now checked all the assumptions of Theorem 2.5, and we are ready to
apply it.

Theorem 3.7. There are positive numbers ρ0, h0, and C such that, for any h < h0,
the following hold:

(1) If uh is a solution of (3.12) with uh(t) ∈ BV (ū, ρ0) for t ∈ [0, T ], then there
is a solution u of (3.1) such that

‖uh(t)− u(t)‖m ≤ C
(
1 + t−1/2

)
h2−m, t ∈ (0, T ], m = 0, 1.(3.18)

(2) Conversely, if u is a solution of (3.1) with u(t) ∈ BV (ū, ρ0) for t ∈ [0, T ],
then there is a solution uh of (3.12) such that (3.18) holds.

(3) Equation (3.12) has a stationary solution ūh such that

‖ūh − ū‖1 ≤ Ch.

Proof. Let ρ, ρ1, h0, T be as above. Choose ρ0 and adjust h0 in such a way that
the requirements of parts (ii.a) and (ii.b) of Theorem 2.5 are satisfied with X = V .

(1) Let uh(t) ∈ BV (ū, ρ0) for t ∈ [0, T ] and apply part (ii.a) with X = V to the
sequence uh(nT ), nT ∈ [0, T ], which is an orbit of Sh. This gives the existence of
an orbit u(nT ), nT ∈ [0, T ], of S, satisfying (2.21) of part (i.a), and hence (2.22)
gives the special case m = 1 of the inequality

‖uh(nT )− u(nT )‖m ≤ Ch2−m, nT ∈ [0, T ], m = 0, 1.(3.19)

Another application of part (i.a), now with X = H , proves the case m = 0 of (3.19).
From the sequence u(nT ) we define u(t) = S(t−nT, u(nT )) for t ∈ [nT, (n+1)T ].

By uniqueness of solutions this is a solution of (3.1). Error bounds at intermediate
times are obtained by combining (3.19) with Lemma 3.5 as follows. For t ∈ [0, T ]
we have

‖uh(t)− u(t)‖1 ≤ C(ρ1, T )t−1/2
(
‖uh(0)− u(0)‖+ h

)
≤ C(ρ1, T )t−1/2h.

For t ∈ [(n+ 1)T, (n+ 2)T ], n ≥ 0, we have

‖uh(t)− u(t)‖1 ≤ C(ρ1, 2T )t−1/2
(
‖uh(nT )− u(nT )‖+ h

)
≤ C(ρ1, T )h.

This proves the special case m = 1 of (3.18). The case m = 0 is obtained similarly.
(2) Let u(t) ∈ BV (ū, ρ0) for t ∈ [0, T ] and apply part (ii.b) with X = V to the

sequence u(nT ), nT ∈ [0, T ], which is an orbit of S. This gives the existence of an
orbit uh(nT ), nT ∈ [0, T ], of Sh, satisfying (2.24) of part (i.b), and hence (2.25)
gives the special case m = 1 of the inequality

‖Qhu(nT )− uh(nT )‖m ≤ Ch2−m, nT ∈ [0, T ], m = 0, 1.(3.20)

Another application of part (i.b), now with X = H , proves the case m = 0 of (3.20).
The required error bound (3.18) now follows as in part (1) above, noting that, by
(3.13) and Lemma 3.3,

‖Qhu(t)− u(t)‖m ≤ Ch2−m‖u(t)‖2 ≤ C(ρ1, T )h2−mt−1/2.

(3) Part (ii.c) of Theorem 2.5 gives ūh and the error bound is an immediate
consequence of (2.27) and (3.13).
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We conclude this section by briefly indicating how time discretization by the
backward Euler method can be incorporated into the above argument.

After discretization with constant time steps k (3.14) becomes

(Uj − Uj−1)/k +AhUj = Qhf(Uj), tj = jk > 0; U0 = u0h.

The local solution operator Sh,k(tj , u0h) is readily obtained by using the smoothing
property of the corresponding linear evolution operator Eh,k(tj) = (I−kAh)−j , and
the local Lipschitz condition for f : V → H (see [11]). This smoothing property
carries over to the linearized operator Eh,k(tj) = (I−kAh)−j in the same way as in
the semidiscrete case; see (3.15). Error bounds analogous to those of Lemma 3.5 can
also be found in [11]. With these ingredients we may prove an analog of Lemma 3.6.
Error bounds for Eh,k(tj) analogous to those in (3.16) may be found in [11], and with
a discrete time T suitably chosen we find that Lh,k = Eh,k(T ) satisfies (HL). Setting
Sh,k = Sh,k(T, ·) and Nh,k = Sh,k − Lh,k, we then prove an analog of Lemma 3.4.
Further arguments, parallel to those above, lead to an analog of Theorem 3.7 with
an error bound of the form

‖Uj − u(tj)‖m ≤ C
((

1 + t
−1/2
j

)
h2−m +

(
1 + t

−(m+1)/2
j

)
k
)
, tj ∈ (0, T ], m = 0, 1.

Remark 4. The framework of §2 applies also in the context of a finite element
method for the Cahn-Hilliard equation, for which the finite time analysis was carried
out in [8]. We skip the details.
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