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A MIXED FORMULATION OF BOUSSINESQ EQUATIONS:
ANALYSIS OF NONSINGULAR SOLUTIONS

M. FARHLOUL, S. NICAISE, AND L. PAQUET

Abstract. This paper is concerned with the mixed formulation of the Bous-
sinesq equations in two-dimensional domains and its numerical approximation.
The paper deals first with existence and uniqueness results, as well as the
description of the regularity of any solution. The problem is then approximated
by a mixed finite element method, where the gradient of the velocity and the
gradient of the temperature, quantities of practical importance, are introduced
as new unknowns. An existence result for the finite element solution and
convergence results are proved near a nonsingular solution. Quasi-optimal
error estimates are finally presented.

1. Introduction

Let Ω be a bounded domain of R2, with a Lipschitz continuous boundary Γ.
We consider the stationary equations of thermohydraulics in the setting of Bous-
sinesq approximation with Dirichlet boundary conditions for the velocity and mixed
Dirichlet and Neumann boundary conditions for the temperature:

−ν∆u + (u · ∇)u + α θ +∇p = f in Ω,

−k∆θ + (u · ∇)θ = g in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

θ = 0 on ΓD,

∂θ
∂n = 0 on ΓN ,

(1)

where u is the velocity field, p the pressure, θ the temperature, and

(u · ∇)u =

 2∑
j=1

uj
∂u1

∂xj
,

2∑
j=1

uj
∂u2

∂xj

 , ∇ · u =
∂u1

∂x1
+
∂u2

∂x2
.

ΓD is a nonempty open part of Γ, ΓN = Γ\ Γ̄D, n denotes the unit outward normal
to Γ, and by ∂

∂n , we mean the exterior normal derivative. We suppose that the
right-hand sides of (1) are square-integrable in Ω, i.e., we impose that f ∈ (L2(Ω))2

and g ∈ L2(Ω). The coefficients ν and k in (1) are assumed to be positive; ν is
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called the kinematic viscosity and k the thermal diffusivity. α denotes a constant
vector in R2, the term αθ in the first equation is related to the buoyancy forces;
in our context α is arbitrary while usually in physical contexts it is parallel to the
vertical axis.

Recently, Paquet [14] and Bernardi et al. [1] have studied systems of equations
similar to (1). They have proved that this problem has at least one solution. In
[1], the authors also show that under some very restrictive hypothesis on the data,
this solution is unique; moreover they analyze the corresponding discrete problem
by classical finite element methods.

Let us mention that the first equation of (1) is slightly different from the one
considered in Bernardi et al. [1]. However, in Section 2 we adapt the proof of
the existence results obtained by Bernardi et al. to our system (1). We further
give sufficient conditions on the data f and g insuring uniqueness. The difference
between system (1) and the system considered in [14] comes from the boundary
conditions since there thermocapillarity effects are taken into account. Note also
that in [14] existence results are based on fixed point arguments (as in [11]), while
here we use the degree theory as in [1].

In Section 3, we analyze the regularities of the solutions u, p and θ. Namely
assuming that Ω has a polygonal boundary, we give the optimal regularities of
the solutions (in the spirit of [13, 4, 5]). As a consequence, we deduce sufficient
geometrical conditions insuring the regularity H2(Ω) for u, θ and H1(Ω) for p. As
usual such results are useful for finite element analysis. Here they are also used to
check the equivalence between the classical weak formulation of problem (1) and
its mixed formulation.

In Section 4, we consider a mixed formulation of problem (1), where the gradient
of the velocity and the gradient of the temperature are introduced as new unknowns.
Thus the problem (1) can be formulated as

σσσ = ν∇u in Ω,

∇ · (σσσ − pδδδ)− 1
νσσσ · u− α θ + f = 0 in Ω,

∇ · u = 0 in Ω,

ξ = k∇θ in Ω,

∇ · ξ − 1
k u · ξ + g = 0 in Ω,

u = 0 on Γ,

θ = 0 on ΓD,

∂θ
∂n = 0 on ΓN ,

(2)

where δδδ is the identity tensor,

∇u =
(
∂ui
∂xj

)
1≤i,j≤2

, σσσ · u =

 2∑
j=1

σ1juj ,

2∑
j=1

σ2juj

 ,
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and for a tensor τττ ,

∇ · τττ =
(
∂τ11

∂x1
+
∂τ12

∂x2
,
∂τ21

∂x1
+
∂τ22

∂x2

)
.

Clearly, a classical finite element method may be used for the approximation of
(1) as used in [1]. However in many applications, the knowledge of the gradient of
the velocity and the gradient of the temperature (σσσ and ξ) is of particular impor-
tance. In such cases, the use of a mixed finite element method might be preferred
as long as it provides a better accuracy for σσσ and ξ.

The mixed finite element that we will consider in this paper, for problem (2), is a
combination of the one that we have analyzed in [9] for the Navier-Stokes problem
and the lowest degree Raviart-Thomas finite element [15] for Dirichlet’s problem.
Assuming that (u, p, θ) is an isolated solution of (1) and that the mesh width h is
small enough, we will prove in Section 5 that the discretized scheme has a solution
and we will find optimal bounds for the error of the same order on u, p, θ, σσσ and ξ.
Let us mention that a numerical test confirming the theoretical estimates has been
performed in [10].

We close this introduction by pointing out that the analysis of the mixed finite
element for problem (2) with nonhomogeneous boundary conditions presents more
technical difficulties. This problem is left for the future.

2. Existence of a solution

to the steady-state Boussinesq equations

and a uniqueness result

We first introduce some notation that will be used in the following. Hs(Ω),
◦
H
s
(Ω), s ∈ R, denote the standard Sobolev spaces normed by ‖.‖s,Ω [13]. In

particular H
1
2 (Γ) is the space of traces of functions in H1(Ω) and H−

1
2 (Γ) is its

dual space. The inner product of L2(Ω) := H0(Ω) is denoted by (., .). Since no
confusion can arise, we use the same notation for the corresponding norms and
inner products on Ls(Ω) = Ls(Ω) × Ls(Ω), Hs(Ω) = Hs(Ω) ×Hs(Ω), etc. L2

0(Ω)
stands for the subspace of L2(Ω) consisting of functions with zero mean value over
Ω. We will frequently use the spaces

H(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)}
and

H(div,Ω) = H(div,Ω)×H(div,Ω),

which are equipped respectively with the norms

‖v‖H(div,Ω) = {‖v‖20,Ω + ‖∇ · v‖20,Ω}
1
2

and

‖τττ‖H(div,Ω) = {‖τττ‖20,Ω + ‖∇ · τττ‖20,Ω}
1
2 .

Note that the trace operator v −→ v ·n is a continuous mapping of H(div,Ω) onto
H−

1
2 (Γ) where n denotes the unit outward normal to Γ (cf. [12]).

The purpose of this section is to prove the existence of a solution to the Bous-
sinesq equations (1). We will also give sufficient conditions insuring the uniqueness
of the solution. In particular, it will be shown that the solution is unique if the
right-hand sides are sufficiently small.
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Let us first start with the existence problem. The arguments involved consist in
a slight variant of those in [1], the difference coming from the fact that in [1] it is
assumed that f = 0 in the first equation of (1).

Let us now derive the variational formulation of our problem. We begin by
introducing the following functional spaces:

V = {v ∈ (
◦
H

1
(Ω))2; div v = 0 in Ω},(3)

H1
? (Ω) = {η ∈ H1(Ω); η

∣∣
ΓD

= 0},(4)

endowed with the norms

‖v‖2 =
∫

Ω

(|grad v1|2 + |grad v2|2) dx ∀v = (v1, v2) ∈ V ,

‖η‖2 =
∫

Ω

|gradη|2 dx ∀η ∈ H1
? (Ω).

Performing a formal integration by part in the two first equations of (1) against
some v ∈ V and η ∈ H1

? (Ω), respectively, we get the following weak formulation
of problem (1). Find a pair U = (u, θ) ∈ X := V × H1

? (Ω) such that for every
V = (v, η) ∈ X :{

ν
∫

Ω
grad u · gradv dx+

∫
Ω

(u∇)u · v dx+
∫

Ω
αθ · v dx =

∫
Ω

f · v dx,

k
∫

Ω
grad θ · gradη dx +

∫
Ω

(u∇)θη dx =
∫

Ω
gη dx.

(5)

We first need some a priori estimates whose proof is similar to the one of Propo-
sition 2.1 of [1].

Proposition 2.1. Let U = (u, θ) ∈ X be a solution of (5). Then we have

‖θ‖ ≤ γ

k
,(6)

‖u‖ ≤ |α|PP
?

ν
‖θ‖+

P
ν
‖f‖0,Ω,(7)

where

γ = sup
η∈H1

?(Ω)\{0}

∫
Ω
gη dx

‖η‖ ,(8)

P = sup
η∈
◦
H

1
(Ω)\{0}

‖η‖0,Ω
‖η‖ , P? = sup

η∈H1
?(Ω)\{0}

‖η‖0,Ω
‖η‖ .(9)

Consequently, we also have

‖u‖ ≤ |α|PP
?γ

νk
+
P
ν
‖f‖0,Ω.(10)

In particular, the solutions U = (u, θ) ∈ X of (5) are a priori bounded.

As in [1], we are going to use degree theory. Let us then endow X with the
following inner product. For every U = (u, θ), V = (v, η) ∈ X , we take

(U, V ) :=
∫

Ω

grad u · gradv dx+
∫

Ω

grad θ · grad η dx.
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For every α ∈ R2 and f ∈ L2(Ω), we define a nonlinear map Φα,f from X into
X as follows. For every U = (u, θ), V = (v, η) ∈ X :

(Φα,fU, V ) =
∫

Ω

gradu · grad v dx+
1
ν

∫
Ω

(u∇)u · v dx(11)

+
1
ν

∫
Ω

αθ · v dx− 1
ν

∫
Ω

f · v dx

+
∫

Ω

grad θ · grad η dx+
1
k

∫
Ω

(u∇)θη dx− 1
k

∫
Ω

gη dx.

In other words, the right-hand side of (11) defines a continuous linear form on X ,
which by the Riesz representation theorem is the inner product with one and only
one element of X , called Φα,fU . Clearly, U = (u, θ) ∈ X is a solution of (5) if and
only if Φα,fU = 0.

We can also define another nonlinear map Fα,f from X into itself by

(Fα,fU, V ) = (Φα,fU, V )− (U, V ) ∀U, V ∈ X.(12)

It results from (11) and (12) that Φα,f = I + Fα,f ; consequently the equation
Φα,fU = 0 is equivalent to −Fα,fU = U . Therefore, we are reduced to find a fixed
point for the mapping −Fα,f .

In the following, O will denote a fixed bounded open set of X containing the set

{U = (u, θ) ∈ X ; ‖θ‖ ≤ γ

k
, ‖u‖ ≤ |α|PP

?γ

νk
+
P
ν
‖f‖0,Ω}.(13)

Accordingly, by Proposition 2.1, we are sure that

∀U ∈ ∂O : Φα,fU 6= 0.(14)

To be allowed to speak about the degree of Φα,f with respect to O and 0, we
must show that Fα,f : Ō → X is completely continuous [16, p. 184]. As the Riesz
isomorphism from X ′ into X is continuous, it suffices to show that the mapping
Ō → X ′ : U → (Fα,fU, · ) is completely continuous. Now from (12), (Fα,fU, ·)
extends naturally to a continuous linear form on

◦
H1(Ω) × H1

? (Ω). Denoting this
extension by (Fα,fU, · )˜, it is clear that it suffices to show that the mapping: Ō →
(
◦
H1(Ω)×H1

? (Ω))′ = H−1(Ω) ×H1
? (Ω)′ : U → (Fα,fU, ·)˜ is completely continuous.

This is easily shown by using the same arguments as in the proof of Proposition
2.5 of [1] based on the compact imbedding of H1(Ω) into L4(Ω). This fact and
(14) show that the (Leray-Schauder) degree of Φα,f with respect to O and 0 is
well defined. In conformity with [16, p. 184], we denote it by d[Φα,f ,O, 0]. By the
existence theorem of Kronecker [16, pp. 176, 184], to prove that there exists U ∈ O
solution of Φα,fU = 0, it suffices to show that d[Φα,f ,O, 0] 6= 0.

Proposition 2.2. If the bounded open set O is taken sufficiently large, then
d[Φ0,0,O, 0] ∈ {1,−1}.

Proof. The ideas of the proof follow those of Proposition 2.5 of [1] because here
f = 0 with even the simplification that we only consider homogeneous Neumann
boundary conditions.

Theorem 2.3. Under the assumptions of Proposition 2.2, we also have
d[Φα,f ,O, 0] ∈ {1,−1} and consequently problem (5) has at least one solution.
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Proof. We modify the homotopy introduced in Theorem 2.7 of [1] in order to take
into account the nonzero datum f . Here we take

ψ : Ō × [0, 1]→ X : (U, t)→ Φtα,tfU.

By (13) and Proposition 2.1, we have Φtα,tfU 6= 0, for every t ∈ [0, 1] and every
U ∈ ∂O.

Clearly ψ(U, t) = U + F tα,tfU . Let us then define the mapping

F : Ō × [0, 1]→ X : (U, t)→ F tα,tfU.

If we show that F is completely continuous, then it will follow from the invariance
of the degree by such homotopy [16, p. 185] and from Proposition 2.2 that

d[Φα,f ,O, 0] = d[Φ0,0,O, 0] ∈ {1,−1}

and the theorem will be proved.
By the continuity of the Riesz isomorphism, it suffices to show that the mapping

Ō × [0, 1] → X ′ : (U, t) → (F tα,tfU, ·) is completely continuous. As before denote
by F̃ the natural extension of F to H−1(Ω)×H1

? (Ω)′ defined by

F̃ : Ō × [0, 1]→ H−1(Ω)×H1
? (Ω)′ : (U, t)→ (F tα,tfU, ·)˜.

The restriction mapping from
◦
H1(Ω)×H1

? (Ω) to X being continuous, it suffices to
prove that F̃ is completely continous. Now from (12), we have

(F tα,tf (u, θ), (v, η))˜ =
1
ν

∫
Ω

(u∇)u · v dx+
1
k

∫
Ω

(u∇)θη dx

− 1
k

∫
Ω

gη dx+ t

[
1
ν

∫
Ω

αθ · v dx− 1
ν

∫
Ω

f · v dx

]
.

We already know that the first three terms of this right-hand side define a com-
pletely continuous operator from Ō × [0, 1] to H−1(Ω) ×H1

? (Ω)′. The last term is
t times a constant term so that it trivially defines a completely continuous oper-
ator (as a consequence of the compactness of [0, 1] in R). The last but one term
t 1
ν

∫
Ω
αθ · v dx defines also a completely continuous operator due to the compact

imbedding of H1
? (Ω) into L2(Ω). This shows that F̃ is completely continuous, and

thus F too.

Now we are going to state and prove a sufficient condition for the uniqueness.
This condition involved the data f , g as well as the physical constants ν, k and α.
Let us first prove some technical estimates.

Lemma 2.4. Let U1 = (u1, θ1), U2 = (u2, θ2) ∈ X be two solutions of (5). Then
they satisfy

ν‖u1 − u2‖2 = −
∫

Ω

[((u1 − u2) · ∇)u2] · (u1 − u2) dx

−
∫

Ω

α(θ1 − θ2) · (u1 − u2) dx,
(15)

k‖θ1 − θ2‖2 = −
∫

Ω

[(u1 − u2) · ∇]θ2(θ1 − θ2) dx.(16)
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Proof. Applying successively the first identity of (5) with u = u1, θ = θ1, v =
u1 − u2 and u = u2, θ = θ2, v = u1 − u2 and subtracting the two obtained
identities, we get

ν‖u1 − u2‖2 +
∫

Ω

[(u1∇)u1 − (u2∇)u2] · (u1 − u2) dx

+
∫

Ω

α(θ1 − θ2) · (u1 − u2) dx = 0.
(17)

By Green’s theorem and the condition div u1 = 0 in Ω, it follows that∫
Ω

(u1∇)(u1 − u2) · (u1 − u2) dx = 0.

Using this identity into (17), we obtain (15).
The identity (16) is proved similarly using the second identity of (5).

Lemma 2.5. Under the assumptions of Lemma 2.4, we have

‖θ1 − θ2‖ ≤
SS?
k2
‖g‖H1

?(Ω)′‖u1 − u2‖,

where S and S? denote the Sobolev constants

S = sup
η∈
◦
H

1
(Ω)\{0}

‖η‖0,4,Ω
‖η‖ ,

S? = sup
η∈H1

?(Ω)\{0}

‖η‖0,4,Ω
‖η‖ .

Proof. Applying successively Hölder’s inequality, the definition of S and S? and
Proposition 2.1, we obtain∣∣∣∣∫

Ω

[(u1 − u2) · ∇]θ2(θ1 − θ2) dx
∣∣∣∣

≤
∑
j=1,2

‖(u1 − u2)j‖0,4,Ω‖
∂θ2

∂xj
‖0,Ω‖θ1 − θ2‖0,4,Ω.

≤ SS?‖u1 − u2‖‖θ2‖‖θ1 − θ2‖

≤ SS
?

k
‖g‖H1

?(Ω)′‖u1 − u2‖‖θ1 − θ2‖.

The result follows using this last estimate in (16).

Corollary 2.6. Under the assumptions of Lemma 2.4, we have∣∣∣∣∫
Ω

α(θ1 − θ2) · (u1 − u2) dx
∣∣∣∣ ≤ |α|PP?SS?k2

‖g‖H1
?(Ω)′‖u1 − u2‖2.

Proof. This follows from the Cauchy-Schwarz inequality, (9), and the estimate of
Lemma 2.5.

Lemma 2.7. Under the assumptions of Lemma 2.4, we have∣∣∣∣∫
Ω

[((u1 − u2) · ∇)u2] · (u1 − u2) dx
∣∣∣∣

≤ S
2

ν
‖u1 − u2‖2

[
|α|PP

?

k
‖g‖H1

?(Ω)′ + ‖f‖V′
]
.
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Proof. As (7), one can show that

‖u2‖ ≤ |α|
PP?
ν
‖θ2‖+

1
ν
‖f‖V′ .

The desired estimate follows from the Cauchy-Schwarz inequality, the above
inequality, the definition of S, and the estimate (6) with (8).

We are now ready to prove our uniqueness result (compare with the condition
(2.25) of [1]).

Theorem 2.8. If κ := S2

ν2 ‖f‖V′ + |α|SPP?[ Sν2k + S?
k2ν ]‖g‖H1

?(Ω)′ < 1, then problem
(5) has a unique solution.

Proof. Let (u1, θ1) and (u2, θ2) be two solutions of problem (5). Then by (15),
Corollary 2.6 and Lemma 2.7, one gets

‖u1 − u2‖2 ≤ κ‖u1 − u2‖2.
If u1 6= u2, we may divide the two sides of this inequality by ‖u1 − u2‖2, which
contradicts the hypothesis. Consequently, u1 = u2 and by Lemma 2.5, we deduce
that θ1 = θ2.

Corollary 2.9. If κ1 := S2P
ν2 ‖f‖0,Ω+|α|SPP?2[ Sν2k+ S?

k2ν ]‖g‖0,Ω < 1, then problem
(5) has a unique solution.

Proof. By the Cauchy-Schwarz inequality and (9), we have

‖f‖V′ ≤ P‖f‖0,Ω, ‖g‖H1
?(Ω)′ ≤ P?‖g‖0,Ω

Consequently, with the notation from Theorem 2.8, one has κ ≤ κ1 and the result
follows from Theorem 2.8 and the assumption κ1 < 1.

3. Regularity of the solutions

From now on, we suppose that Ω is a plane domain with polygonal boundary.
More precisely, it is assumed that Ω is a simply connected domain and that its
boundary Γ is the union of a finite number of linear segments Γ̄j , 1 ≤ j ≤ ne (it
is more convenient to assume that Γj is an open linear segment [13, p. 182]). We
further fix a partition of {1, . . . , ne} into two subsets N and D. The union of the
Γj with j ∈ D is denoted by ΓD and similarly the union of the Γj with j ∈ N is
denoted by ΓN . As before, we assume that ΓD is not empty.

The aim of this section is to describe the regularity of any solution (u, p, θ) ∈
V×L2

0(Ω)×H1
? (Ω) of problem (5). We shall see that this regularity is related to the

singularities of the solution of the Stokes problem with Dirichlet boundary condition
in Ω and the solution of the Laplace equation with mixed boundary conditions. To
recall the regularity results about these problems obtained in [13, 4, 5], let us
introduce the following notation. Let Sj , j = 1, . . . , ne, denote the set of vertices of
Ω and let ωj denote the interior opening of Ω at Sj . Then the singular exponents
of the Stokes problem near Sj are the roots λ ∈ C \ {0} of

sin2(λωj)− λ2 sin2 ωj = 0(18)

(see [5] for more details). Let us set ξS(ωj) = min{<λ;λ is solution of (18) and
<λ > 0}. It is well known [5] that{

ξS(ωj) > 1 if ωj < π,
ξS(ωj) > 1

2 if π < ωj < 2π.
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The singular exponents of the Laplace operator near Sj are simpler [13]: they are
equal to (2k+1)π

2ωj
, with k ∈ Z, if mixed boundary conditions occur near Sj (i.e., if

one has a Dirichlet boundary condition on one edge and a Neumann one on the
other edge); otherwise they are equal to kπ

ωj
, with k ∈ Z. The most singular positive

exponent ξ∆(ωj) is then equal to (playing a similar role of ξS(ωj)) π
2ωj

in the first
case and π

ωj
in the second.

Now we are able to state the following regularity result.

Theorem 3.1. Let (u, p, θ) ∈ V × L2
0(Ω)×H1

? (Ω) be a solution of (5). Then

(u, p) ∈ H2(Ω)×H1(Ω), if Ω is convex,(19)
(u, p) ∈ H1+s(Ω)×Hs(Ω), if Ω is not convex,(20)
θ ∈ H1+σ(Ω),(21)

where s = min(1,minj=1,... ,ne ξS(ωj)− ε), σ = min(1,minj=1,... ,ne ξ∆(ωj)− ε), for
any ε > 0 (except if minj=1,... ,ne ξ∆(ωj) = 1, where we take σ = 1).

Proof. As θ ∈ L2(Ω), we may look at (u, p) as solution of the Navier-Stokes equation
with a datum f − αθ ∈ L2(Ω): −ν∆u + (u · ∇)u +∇p = f − α θ in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω.

(22)

For this problem, we use the usual trick which consists in sending the nonlinear
term in the right-hand side. By Theorem 1.4.4.2 of [13], the fact that u ∈ H1(Ω)
implies that

(u · ∇)u ∈ H−ε(Ω) ∀ε > 0.

Consequently, (u, p) is solution of the Stokes problem with a datum f−α θ−(u·∇)u
in H−ε(Ω), and by Theorem 3.6 and Sections 4.1, 4.2 of [5] and the fact that
ξS(ωj) > 1/2, we deduce that

(u, p) ∈ H3/2+ε(Ω)×H1/2+ε(Ω),(23)

for ε > 0 small enough. This additional regularity implies that

(u · ∇)u ∈ L2(Ω).

Therefore, (u, p) may now be seen as the solution of the Stokes problem with a
datum f −α θ− (u ·∇)u in L2(Ω) and Theorem 3.6 and Sections 4.1, 4.2 of [5] lead
to the regularities (19)–(20).

Going back to (1), we may see θ ∈ H1
? (Ω) as solution of

−k∆θ = g − (u · ∇)θ in Ω,
θ = 0 on ΓD,
∂θ
∂n = 0 on ΓN .

(24)

By (23) and the Sobolev imbedding theorem, u ∈ (C(Ω̄))2, accordingly (u · ∇)θ
belongs to L2(Ω). Therefore, θ is solution of the Laplace equation with a datum
in L2(Ω) and mixed boundary conditions. By Theorems 4.4.3.7 and 1.4.5.3 of [13],
(21) holds (the case ωj = π/2 with mixed conditions around Sj is treated separately
using a reflection to get the H2-regularity).
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Corollary 3.2. If ωj < π for all j = 1, . . . , ne such that mixed boundary conditions
for θ occur near Sj, then

θ ∈ H3/2+ε(Ω)(25)

for ε > 0 small enough.

Proof. It suffices to notice that the assumption implies that σ > 1/2.

4. A mixed formulation for the Boussinesq equations

To introduce a mixed variational formulation of problem (5), we define the spaces
(compare with [9, p. 118])

X =
{

(τττ , q) ∈ (L4(Ω))4 × L2
0(Ω), (τττ − qδδδ) ∈ H(div,Ω)

}
,

Y = (L4(Ω))2,

Z = {η ∈ (L4(Ω))2 ∩H(div,Ω), η · n = 0 on ΓN},
T = L2(Ω),

equipped with the norms

‖(τττ , q)‖X = ‖τττ‖0,4,Ω + ‖q‖0,Ω + ‖(τττ − qδδδ)‖H(div,Ω) , ‖v‖Y = ‖v‖0,4,Ω,

‖η‖Z = ‖η‖0,4,Ω + ‖η‖H(div,Ω) , ‖ψ‖T = ‖ψ‖0,Ω .

We further introduce the following notations:

(σσσ, τττ) =
∫

Ω

σσσ : τττ dx =
2∑

i,j=1

∫
Ω

σijτij dx, (u,v) =
∫

Ω

u · v dx =
2∑
i=1

∫
Ω

uivi dx.

For a tensor τττ = (τij)1≤i,j≤2, the normal trace τττn is defined by

τττn =

 2∑
j=1

τ1jnj ,

2∑
j=1

τ2jnj

 ,

where τττ i = (τi1, τi2), i = 1, 2, is a vector corresponding to the line i of τττ , and finally
〈., .〉Γ means the duality pairing between H−1/2(Γ) and H1/2(Γ).

Then the mixed formulation of (5) reads as follows. Find (σσσ, p) ∈ X, u ∈ Y,
ξ ∈ Z, and θ ∈ T solutions of (26) to (29) hereafter:

1
ν

(σσσ, τττ ) + (∇ · (τττ − qδδδ),u) = 0 ∀(τττ , q) ∈ X,(26)

(∇ · (σσσ − pδδδ),v) − 1
ν

(σσσ · u,v) − (α θ,v) + (f ,v) = 0 ∀v ∈ Y,(27)

1
k

(ξ, η) + (∇ · η, θ) = 0 ∀η ∈ Z,(28)

(∇ · ξ, ψ)− 1
k

(u · ξ, ψ) + (g, ψ) = 0 ∀ψ ∈ T .(29)

We now check that, under the assumption of Corollary 3.2, (5) is equivalent to
(26)–(29):
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Theorem 4.1. Assume that ωj < π, for all j = 1, . . . , ne, such that mixed bound-
ary conditions occur near Sj. Then (u, θ) ∈ V ×H1

? (Ω) is a solution of (5) if and
only if (σσσ, p) ∈ X, u ∈ Y, ξ ∈ Z, and θ ∈ T are solutions of (26) to (29), with the
next relations:

σσσ = ν∇u = ν

(
∂ui
∂xj

)
1≤i,j≤2

,(30)

ξ = k∇θ.(31)

Proof. ⇒ Let (u, θ) ∈ V ×H1
? (Ω) be a solution of (5). Define σσσ and ξ by (30) and

(31), respectively. By Theorem 3.1 and Corollary 3.2, we have

σσσ ∈ (H1/2+ε(Ω))4, ξ ∈ H1/2+ε(Ω),

for some ε > 0. The Sobolev imbedding theorem yields

H1/2+ε(Ω) ↪→ L4(Ω) ∀ε > 0,

and therefore σ ∈ (L4(Ω))4 and ξ ∈ L4(Ω).
Fix an arbitrary (τττ , q) ∈ X. Multiplying (30) by τττ and integrating over Ω, one

gets
1
ν

(σσσ, τττ) = (∇u, τ) = (∇u, τττ − qδδδ),(32)

because ∇ · u = 0. By the following Green formula, which holds for any v ∈
H(div,Ω) and any w ∈ H1(Ω) (see the identity (I.2.17) in [12])∫

Ω

∇ · vw dx = −
∫

Ω

v · ∇w dx+ 〈v · n, w〉Γ,(33)

the identity (32) becomes
1
ν

(σσσ, τττ ) = −(∇ · (τττ − qδδδ),u) + 〈(τττ − qδδδ)n,u〉Γ.

Since u|Γ = 0, we have obtained (26).
The identity (28) is proved similarly using (31).
Starting from the first identity of (5), replacing ∇u by σσσ

ν and using Lemma I.2.1
of [12], we have

−(σσσ − pδδδ,∇v) − 1
ν

(σσσ · u,v) − (α θ,v) + (f ,v) = 0 ∀v ∈ H1
0(Ω).

By the Green formula (33) and the fact that v ∈ H1
0(Ω), we deduce that

−(σσσ − pδδδ,∇v) = (∇ · (σσσ − pδδδ),v).

Therefore, (27) holds for all v ∈ H1
0(Ω) and then for all v ∈ Y by density.

The identity (29) is established analogously with the help of the second identity
of (5).
⇐ Let us fix (σσσ, p) ∈ X, u ∈ Y, ξ ∈ Z, and θ ∈ T solutions of (26) to (29).

Take first as test functions in (26): q = 0 and τττ ∈ (D(Ω))4. Then one has
1
ν

(σσσ, τττ) = −(∇ · τττ ,u) ∀τττ ∈ (D(Ω))4,

or equivalently

∇u =
1
ν
σσσ in (D′(Ω))4,
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which proves (30). Since u ∈ L2(Ω) and σσσ ∈ (L2(Ω))4, we deduce that u ∈ H1(Ω).
Going back to (26) with test functions q = 0 and τττ ∈ (C∞(Ω̄))4, by the Green
formula, we get ∫

Γ

(τττn) · u dσ = 0 ∀τττ ∈ (C∞(Ω̄))4,

which implies that u|Γ = 0.
Taking now in (26) τττ = 0 and q ∈ D(Ω) ∩ L2

0(Ω), we have

〈∇u, qδδδ〉 = 0 ∀q ∈ D(Ω) ∩ L2
0(Ω).

Consequently, u satisfies

∇ · u = c ∈ C.

Applying the Green formula and the fact that u = 0 on Γ, we deduce that ∇·u = 0.
This means that u ∈ V .

Similarly, taking appropriate test functions in (28), we show that θ ∈ H1(Ω),
θ|ΓD = 0, ∂θ

∂n |ΓN = 0 and the identity (31).
Since V is a subspace of Y, (27) implies that

(∇ · (σσσ − pδδδ),v) − 1
ν

(σσσ · u,v)− (α θ,v) + (f ,v) = 0 ∀v ∈ V .

Using (30) and the Green formula (33), we arrive at the first identity of (5). Remark
that considering v ∈ (D(Ω))2, we also get−ν∆u+(u·∇)u+αθ+∇p = f in (D′(Ω))2.

The second identity of (5) follows using the trivial inclusion H1
? (Ω) ⊂ L2(Ω) and

from the identity (29) combined with (31), applying Green’s formula.

The Boussinesq equations (cf. [1] and Section 2) have in general more than
one solution, unless the data satisfy very restrictive requirements. We propose
here to analyze an approximation of nonsingular solutions of the Boussinesq mixed
formulation (26)–(29) (cf. [9] and [12, pp. 298–300]). For this purpose, we define
two linear operators S and L. The operator S associates to any function f̃ ∈
(L2(Ω))2 the solution ((σ̃σσ, p̃); ũ) ∈ X×Y of the problem

1
ν (σ̃σσ, τττ ) + (∇ · (τττ − qδδδ), ũ) = 0 ∀(τττ , q) ∈ X,

(∇ · (σ̃σσ − p̃δδδ),v) + (f̃ ,v) = 0 ∀v ∈ Y.
(34)

The operator L associates to any function g̃ ∈ L2(Ω) the solution (ξ̃, θ̃) ∈ Z× T
of the problem 

1
k (ξ̃, η) + (∇ · η, θ̃) = 0 ∀η ∈ Z,

(∇ · ξ̃, ψ) + (g̃, ψ) = 0 ∀ψ ∈ T .
(35)

Problem (34), respectively problem (35), is nothing else than a mixed formulation
of the Stokes problem (cf. [7]), respectively the Dirichlet problem, with mixed
boundary conditions. Thus, using the same techniques as in [2, 7, 12] and the
regularity results of Section 3, problem (34), respectively problem (35), has a unique
solution in X ×Y, respectively in Z × T . Furthermore, under the assumption of
Corollary 3.2, the a priori estimates

‖S f̃‖X̂×Ŷ ≤ C ‖f̃‖0,Ω , ‖Lg̃‖Ẑ×T ≤ C ‖g̃‖0,Ω
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hold with a constant C > 0 which only depends on Ω and where

X̂ = (Lr(Ω))4 × L2
0(Ω) , Ŷ = Ẑ = (Lr(Ω))2 , 2 < r < 4

and

‖((τττ , q); u)‖X̂×Ŷ = ‖τττ‖0,r,Ω + ‖q‖0,Ω + ‖u‖0,r,Ω ,
‖(η, ψ)‖Ẑ×T = ‖η‖0,r,Ω + ‖ψ‖0,Ω .

Note that we have the following continuous injections:

X ↪→ X̂, Y ↪→ Ŷ, Z ↪→ Ẑ.

Next we define the mapping H from X
∼
× Z
∼

into itself by

H(τττ
∼
, η
∼

) =

(
τττ
∼

η
∼

)
−
(
S 0
0 L

)(
f − 1

ν (τττ · v) − αψ
g − 1

k (v · η)

)
,(36)

where X
∼

= X×Y, Z
∼

= Z× T, τττ
∼

= ((τττ , q); v), and η
∼

= (η, ψ).

With these notations the Boussinesq equations (26)–(29) take the form

Find (σσσ
∼
, ξ
∼

) ∈ X
∼
× Z
∼

such that H(σσσ
∼
, ξ
∼

) = 0(37)

where σσσ
∼

= ((σσσ, p); u) and ξ
∼

= (ξ, θ).

In the sequel, we shall be concerned with the nonsingular solution of (37). A
solution (σσσ

∼
, ξ
∼

) ∈ X
∼
× Z
∼

of (37) is said to be nonsingular if the Frechet derivative

of H at the point (σσσ
∼
, ξ
∼

): H ′(σσσ
∼
, ξ
∼

) : X
∼
× Z
∼
−→ X

∼
× Z
∼

H ′(σσσ
∼
, ξ
∼

)(τττ
∼
, η
∼

) =

(
τττ
∼

η
∼

)
+
(
S 0
0 L

)(
1
ν (σσσ · v + τττ · u) + αψ

1
k (u · η + v · ξ)

)
,(38)

is an isomorphism
Hence, (σσσ

∼
, ξ
∼

) is a nonsingular solution of (37) if and only if, for each f∗ ∈

(L2(Ω))2 and g∗ ∈ L2(Ω), the linearized Boussinesq problem

Find (
∗
σσσ
∼
, ξ
∼
∗) ∈ X

∼
× Z
∼

such that H ′(σσσ
∼
, ξ
∼

)(
∗
σσσ
∼
, ξ
∼
∗) =

(
S 0
0 L

)(
f∗

g∗

)
(39)

is well posed.
Now in order to study the nonsingular solution of (37) we introduce the bounded

linear operator 
K ∈ L(X

∼
× Z
∼
,X
∼
× Z
∼

)

K(τττ
∼
, η
∼

) =
(
S 0
0 L

)(
1
ν (σσσ · v + τττ · u) + αψ

1
k (u · η + v · ξ)

)
,

(40)

and we state the following result.

Lemma 4.2. Assume that (σσσ
∼
, ξ
∼

) ∈ X
∼
× Z
∼

is a nonsingular solution of (37) such

that u ∈ H2(Ω) and θ ∈ H2(Ω). Then the operator (I +K) is invertible and has a
continuous inverse in L(X̂

∼
× Ẑ
∼
, X̂
∼
× Ẑ
∼

), where X̂
∼

= X̂× Ŷ and Ẑ
∼

= Ẑ× T.

The proof of this lemma is similar to the one of Lemma 2.1 in [9].
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5. The discrete problem and error estimates

Let us now introduce the discrete version of (37) by using mixed finite element
methods.

Let (Th)h>0 be a uniformly regular (or quasi-uniform) family of triangulations
of Ω (see [3] or [12, p. 98]), in the sense that there exist two positive constants σ, τ
such that

τh ≤ hK ≤ σρK ∀K ∈ Th∀h > 0,

where hK (resp. ρK) denotes the exterior (resp. interior) diameter of K. For
K ⊂ R2, let Pk, k ≥ 0 denote the restrictions of polynomials of total degree ≤ k to
K.

For any K ∈ Th and x = (x1, x2), let

RT0 = (P0)2 ⊕ xP0 = {(a, b) + c (x1, x2); a, b, c ∈ R}

and set

Xh =
{

(τττh, qh) ∈ X; τττh|K ∈ (RT0)2, qh|K ∈ P0 ∀K ∈ Th
}
,

Yh =
{
vh ∈ Y; vh|K ∈ (P0)2 ∀K ∈ Th

}
,

Zh =
{
ηh ∈ Z; ηh|K ∈ RT0 ∀K ∈ Th

}
,

Th =
{
ψh ∈ T ; ψh|K ∈ P0 ∀K ∈ Th

}
.

Observe that the definition of Zh is possible if the partition into elements is made
in such a way that there is no element across the interface between ΓD and ΓN on
Γ.

We have the following approximation results (cf. [3, 12, 15]):

i) Owing to Theorem III.4.4 of [12], there exist two interpolant operators Πh ∈
L(X ∩ ((H1(Ω))2 ×H1(Ω)),Xh) and Π0

h ∈ L(Z ∩ (H1(Ω))2,Zh) such that

‖(Πh − I)(τττ , q)‖0,s,Ω ≤ Ch2/s | (τττ , q) |1,Ω ∀s ≥ 2,(41)

‖Π0
hη − η‖0,s,Ω ≤ Ch2/s | η |1,Ω ∀s ≥ 2,(42)

where | (τττ , q) |1,Ω=| τττ |1,Ω + | q |1,Ω and C is a positive constant independent
of h;

ii) Owing to Theorem 3.1.5 of [3], there exist two projection operators Ph ∈
L(H1(Ω),Yh) and P0

h ∈ L(H1(Ω), Th) such that

‖Phv − v‖0,s,Ω ≤ Ch2/s | v |1,Ω ∀s ≥ 2,(43)

‖P0
hψ − ψ‖0,s,Ω ≤ Ch2/s | ψ |1,Ω ∀s ≥ 2.(44)

Now, in order to write the discrete problem in the same form as the continuous
problem, we introduce the discrete operators Sh and Lh of S and L. For f̃ ∈
(L2(Ω))2, Shf̃ = ((σ̃σσh, p̃h); ũh) ∈ Xh ×Yh is the solution of the problem

1
ν (σ̃σσh, τττh) + (∇ · (τττh − qhδδδ), ũh) = 0 ∀(τττh, qh) ∈ Xh

(∇ · (σ̃σσh − p̃hδδδ),vh) + (f̃ ,vh) = 0 ∀vh ∈ Yh .
(45)
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On the other hand, for any g̃ ∈ L2(Ω), Lhg̃ = (ξ̃h, θ̃h) ∈ Zh × Th is the solution
of the problem 

1
k (ξ̃h, ηh) + (∇ · ηh, θ̃h) = 0 ∀ηh ∈ Zh

(∇ · ξ̃h, ψh) + (g̃, ψh) = 0 ∀ψh ∈ Th .
(46)

Next we define the mapping Hh from Xh
∼
× Zh
∼

into itself by

Hh(τ h
∼
, ηh
∼

) =

τh∼
ηh
∼

− (Sh 0
0 Lh

)(
f − 1

ν (τττh · vh)− αψh
g − 1

k (vh · ηh)

)
,(47)

where Xh
∼

= Xh ×Yh, Zh
∼

= Zh × Th, τh
∼

= ((τττh, qh); vh), and ηh
∼

= (ηh, ψh).

Then, the discrete problem of (37) reads as follows:
Find (σh

∼
, ξh
∼

) ∈ Xh
∼
× Zh
∼

such that

Hh(σh
∼
, ξh
∼

) = 0,
(48)

where σh
∼

= ((σσσh, ph); uh) and ξh
∼

= (ξh, θh).

Finally, we introduce the discrete operator Kh of K. Let ((σσσ, p);u) ∈ X × Y,
(ξ, θ) ∈ Z× T and set ((σσσ∗h, p

∗
h); u∗h) = (Πh(σσσ, p);Phu), (ξ∗h, θ

∗
h) = (Π0

hξ,P0
hθ). The

operator Kh ∈ L(Xh
∼
× Zh
∼
,Xh
∼
× Zh
∼

) is defined by

Kh(τ h
∼
, ηh
∼

) =
(
Sh 0
0 Lh

)(
1
ν (σσσ∗h · vh + τττh · u∗h) + αψh

1
k (u∗h · ηh + vh · ξ∗h)

)
,(49)

where τh
∼

= ((τττh, qh); vh) ∈ Xh
∼

and ηh
∼

= (ηh, ψh) ∈ Zh
∼

.

We now prove some technical lemmas.

Lemma 5.1. For all r such that 2 < r < 4, we have

sup
(τττh,qh)∈Xh

(∇ · (τττh − qhδδδ),vh)
‖(τττh, qh)‖X̂

≥ C‖vh‖0,r,Ω ∀vh ∈ Yh,(50)

sup
ηh∈Zh

(∇ · ηh, ψh)
‖ηh‖Ẑ

≥ C‖ψh‖0,Ω ∀ψh ∈ Th,(51)

where ‖(τττ, q)‖X̂ = ‖τττ‖0,r,Ω + ‖q‖0,Ω, ‖η‖Ẑ = ‖η‖0,r,Ω and C is a positive constant
independent of h.

Proof. Let us sketch the proof of (50). For any vh ∈ Yh, there exists (cf. [12, p.
255]) τττh ∈ {τττ ∈ H(div,Ω), τττ |K ∈ (RT0)2∀K ∈ Th} such that (∇· τττh,vh) = ‖vh‖20,Ω
and ‖τττh‖0,s,Ω + ‖∇ · τττh‖0,Ω ≤ C‖vh‖0,Ω ∀s ≥ 2. Now (τττh, 0) ∈ Xh and from the
direct and inverse estimates

‖τττh‖0,r,Ω ≤ Ch
2
r−

2
s ‖τττh‖0,s,Ω , ‖vh‖0,r,Ω ≤ Ch

2
r−1‖vh‖0,Ω ,

we have

(∇ · τττh,vh)
‖(τττh, 0)‖X̂

=
‖vh‖20,Ω
‖τττh‖0,r,Ω

≥ Ch1+ 2
s−

4
r ‖vh‖0,r,Ω.
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Therefore, taking s = 2r/(4− r) (s > 2 since 2 < r < 4), we obtain

(∇ · τττh,vh)
‖(τττh, 0)‖X̂

≥ C‖vh‖0,r,Ω

and (50) follows immediately.

Lemma 5.2. Assume that Ω is convex and that ωj ≤ π
2 , for all j = 1, . . . , ne,

such that mixed boundary conditions for θ occur near Sj. Let f̃ ∈ (L2(Ω))2 and
g̃ ∈ L2(Ω). Then each of the problems (45) and (46) has a unique solution and

‖(Sh − S)f̃‖X̂×Ŷ ≤ Ch
2/r‖S f̃‖1,Ω,(52)

‖(Lh − L)g̃‖Ẑ×T ≤ Ch
2/r‖Lg̃‖1,Ω.(53)

Proof. Owing to the inf-sup conditions (50) and (51), it is a routine matter to show
that each of the problems (45) and (46) has a unique solution.

To prove the estimate (52), let ((σ̃σσ, p̃); ũ) = S f̃ , ((σ̃σσh, p̃h); ũh) = Shf̃ and set
((σ̃σσ∗h, p̃

∗
h); ũ∗h) = (Πh(σ̃σσ, p̃);Phũ). Now, similarly to Theorem 3.2 of [8], using the

theory of mixed finite element methods (cf. [2]) and the fact that (cf. [7])
1
ν
‖τττh‖20,Ω ≥ C‖(τττh, qh)‖20,Ω

∀(τττh, qh) ∈ {(τττ , q) ∈ Xh; (∇ · (τττ − qδδδ),v) = 0 ∀v ∈ Yh},
we have

‖σ̃σσ∗h − σ̃σσh‖0,Ω + ‖p̃∗h − p̃h‖0,Ω + ‖ũ∗h − ũh‖0,Ω ≤ Ch (| σ̃σσ |1,Ω + | p̃ |1,Ω + | ũ |1,Ω) .
(54)

On the other hand, since (cf. [3, 6])

‖σ̃σσ∗h − σ̃σσh‖0,r,Ω ≤ Ch2/r−1‖σ̃σσ∗h − σ̃σσh‖0,Ω;

‖ũ∗h − ũh‖0,r,Ω ≤ Ch2/r−1‖ũ∗h − ũh‖0,Ω,
and r > 2, the estimate (54) leads to

‖σ̃σσ∗h − σ̃σσh‖0,r,Ω + ‖p̃∗h − p̃h‖0,Ω + ‖ũ∗h − ũh‖0,r,Ω
≤ Ch2/r (| σ̃σσ |1,Ω + | p̃ |1,Ω + | ũ |1,Ω) .

This last inequality, with (41) and (43), gives us

‖σ̃σσ − σ̃σσh‖0,r,Ω + ‖p̃− p̃h‖0,Ω + ‖ũ− ũh‖0,r,Ω
≤ Ch2/r (| σ̃σσ |1,Ω + | p̃ |1,Ω + | ũ |1,Ω) ,

which is nothing else than (52).
The proof of (53) is similar to the one above.

Remark 5.3. From (52) and (53) one can deduce the following estimates

‖(Sh − S)f̃‖X̂×Ŷ ≤ Ch
2/r‖f̃‖0,Ω ∀f̃ ∈ (L2(Ω))2,(55)

‖(Lh − L)g̃‖Ẑ×T ≤ Ch
2/r‖g̃‖0,Ω ∀g̃ ∈ L2(Ω).(56)

Lemma 5.4. Under the assumptions on Ω of Lemma 5.2, assume that (σσσ
∼
, ξ
∼

) is a

nonsingular solution of (37). Then we have

lim
h→0
‖K − Kh‖L(X̂

∼
×Ẑ
∼
,X̂
∼
×Ẑ
∼

) = 0.(57)
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Proof. Remark first that the assumptions on Ω of Lemma 5.2 yield with Theorem
3.1 u ∈ H2(Ω) and θ ∈ H2(Ω).

Let (τττ
∼
, η
∼

) ∈ X
∼
× Z
∼

, ((σσσ∗h, p
∗
h); u∗h) = (Πh(σσσ, p);Phu) and (ξ∗h, θ

∗
h) = (Π0

hξ,P0
hθ).

We have

(K −Kh)(τττ
∼
, η
∼

) =
(

1
ν (S(σσσ · v + τττ · u)− Sh(σσσ∗h · v + τττ · u∗h))
1
k (L(u · η + v · ξ)− Lh(u∗h · η + v · ξ∗h))

)
+
(

(S − Sh)(αψ)
0

)
.

(58)

In order to estimate (K−Kh)(τττ
∼
, η
∼

), we shall estimate each term of the right-hand

side of (58). First, owing to (55), we have

‖(S − Sh)(αψ)‖X̂×Ŷ ≤ Ch
2/r‖αψ‖0,Ω ≤ C(α)h2/r‖ψ‖0,Ω.(59)

The term S(σσσ · v + τττ · u)− Sh(σσσ∗h · v + τττ · u∗h) can be written as follows

S(σσσ · v + τττ · u)− Sh(σσσ∗h · v + τττ · u∗h)

= S((σσσ − σσσ∗h) · v) + S(τττ · (u− u∗h)) + (S − Sh)(σσσ∗h · v) + (S − Sh)(τττ · u∗h).

(60)

Using the fact that ‖S f̃‖X̂×Ŷ ≤ C‖f̃‖0,Ω for all f̃ ∈ (L2(Ω))2, (41), (43) and
(55), we get

‖S((σσσ − σσσ∗h) · v)‖X̂×Ŷ ≤ C‖(σσσ − σσσ∗h) · v‖0,Ω

≤ C‖σσσ − σσσ∗h‖0,s,Ω‖v‖0,r,Ω

≤ Ch2/s | (σσσ, p) |1,Ω ‖v‖0,r,Ω,
where s = 2r/(r − 2) > 2 since r > 2,

‖S(τττ · (u− u∗h))‖X̂×Ŷ ≤ C‖τττ · (u− u∗h)‖0,Ω

≤ C‖τττ‖0,r,Ω‖u− u∗h‖0,s,Ω

≤ Ch2/s | u |1,Ω ‖τττ‖0,r,Ω,

‖(S − Sh)(σσσ∗h · v)‖X̂×Ŷ ≤ Ch2/r‖σσσ∗h · v‖0,Ω

≤ Ch2/r‖σσσ∗h‖0,s,Ω‖v‖0,r,Ω

≤ Ch2/r‖(σσσ, p)‖1,Ω‖v‖0,r,Ω,

‖(S − Sh)(τττ · u∗h)‖X̂×Ŷ ≤ Ch2/r‖τττ · u∗h‖0,Ω

≤ Ch2/r‖τττ‖0,r,Ω‖u∗h‖0,s,Ω

≤ Ch2/r‖u‖1,Ω‖τττ‖0,r,Ω.
Therefore, using these estimates and (60), we have

‖S(σσσ · v + τττ · u)− Sh(σσσ∗h · v + τττ · u∗h)‖X̂×Ŷ ≤ Ch
min(2/r,2/s) (‖τττ‖0,r,Ω + ‖v‖0,r,Ω) .

(61)
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A similar procedure leads to

‖L(u · η + v · ξ)− Lh(u∗h · η + v · ξ∗h)‖Ẑ×T ≤ Ch
min(2/r,2/s) (‖η‖0,r,Ω + ‖v‖0,r,Ω) .

(62)

We then get, from (58), (59), (61) and (62),

‖ (K −Kh) (τττ
∼
, η
∼

)‖X̂
∼
×Ẑ
∼
≤ Chmin(2/r,2/s)‖(τττ

∼
, η
∼

)‖X̂
∼
×Ẑ
∼
,

so that

‖K − Kh‖L(X̂
∼
×Ẑ
∼
,X̂
∼
×Ẑ
∼

) ≤ Ch
2/s,

and this ends the proof.

Therefore, Lemmas 4.2, 5.4 and a classical perturbation argument (cf. [12]) lead
to the following result:

Lemma 5.5. Under the assumptions on Ω of Lemma 5.2, for h small enough, the
operator (I +Kh) is an isomorphism from X̂

∼
× Ẑ
∼

into itself. Moreover (I +Kh)−1

maps Xh
∼
× Zh
∼

into itself.

Lemma 5.6. Assume that the assumptions on Ω of Lemma 5.2 are satisfied. If
(σσσ
∼
, ξ
∼

) is a nonsingular solution of (37), then there exists a constant C > 0 such

that

‖Hh(
∗
σh
∼
, ξ
h
∼

∗)‖X̂
∼
×Ẑ
∼
≤ Ch2/r,(63)

where
∗
σh
∼

= ((σσσ∗h, p
∗
h); u∗h) = (Πh(σσσ, p);Phu) and ξh

∼

∗ = (ξ∗h, θ
∗
h) =

(
Π0
hξ,P0

hθ
)
.

Proof. Since (σσσ
∼
, ξ
∼

) is a solution of (37), we may write

Hh(
∗
σh
∼
, ξ
h
∼

∗) =

( ∗
σh
∼
−σσσ
∼

ξh
∼

∗ − ξ
∼

)
+
(
S − Sh 0

0 L− Lh

)(
f − 1

ν (σσσ · u)− αθ
g − 1

k (u · ξ)

)

+
(
Sh 0
0 Lh

)(
1
ν (σσσ∗h · u∗h − σσσ · u) + α(θ∗h − θ)

1
k (u∗h · ξ∗h − u · ξ)

)
.

(64)

From (41), (42), (43), (44), (52) and (53), we have

‖ ∗σh
∼
− σσσ
∼
‖X̂×Ŷ ≤ Ch

2/r , ‖ξ
h
∼

∗ − ξ
∼
‖Ẑ×T ≤ Ch

2/r ,(65)

‖(S − Sh)(f − 1
ν

(σσσ · u)− αθ)‖X̂×Ŷ ≤ Ch
2/r ,

‖(L− Lh)(g − 1
k

(u · ξ))‖Ẑ×T ≤ Ch
2/r.

(66)

The term Sh(σσσ∗h · u∗h − σσσ · u) may be written as

Sh(σσσ∗h · u∗h − σσσ · u) = Sh(σσσ∗h · (u∗h − u)) + Sh((σσσ∗h − σσσ) · u).(67)
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Using the fact that ‖Shf̃‖X̂×Ŷ ≤ C‖f̃‖0,Ω for all f̃ ∈ (L2(Ω))2, (41) and (43), we
get

‖Sh(σσσ∗h · (u∗h − u))‖X̂×Ŷ ≤ C‖σσσ∗h · (u∗h − u)‖0,Ω

≤ C‖σσσ∗h‖0,s,Ω‖u∗h − u‖0,r,Ω (s = 2r/(r − 2))

≤ Ch2/r‖(σσσ, p)‖1,Ω | u |1,Ω,

‖Sh((σσσ∗h − σσσ) · u)‖X̂×Ŷ ≤ C‖(σσσ∗h − σσσ) · u‖0,Ω

≤ C‖σσσ∗h − σσσ‖0,r,Ω‖u‖0,s,Ω

≤ Ch2/r | (σσσ, p) |1,Ω ‖u‖1,Ω,

and

‖Sh(α(θ∗h − θ))‖X̂×Ŷ ≤ C(α)‖θ∗h − θ‖0,Ω ≤ C(α)h‖θ‖1,Ω.

Therefore, these last estimates, with (67), give us

‖Sh(
1
ν

(σσσ∗h · u∗h − σσσ · u) + α(θ∗h − θ))‖X̂×Ŷ ≤ Ch
2/r.(68)

Finally, a similar procedure leads to

‖Lh(u∗h · ξ∗h − u · ξ)‖Ẑ×T ≤ Ch
2/r,

and from (64), (65), (66), (68) and the last estimate, we obtain (63).

We are now able to prove the error estimate for nonsingular solutions of (37).

Theorem 5.7. Under the assumptions on Ω of Lemma 5.2, if (σσσ
∼
, ξ
∼

) is a nonsingu-

lar solution of (37), then for h small enough, problem (48) has at least one solution
(σh
∼
, ξh
∼

) such that

‖(σσσ
∼
, ξ
∼

)− (σh
∼
, ξ
h
∼

)‖X̂
∼
×Ẑ
∼
≤ Ch 4−r

r ,(69)

where 2 < r < 4.

Proof. We define the following map S from Xh
∼
× Zh
∼

into itself

S(τ h
∼
, η
h
∼

) =

τh∼
ηh
∼

− (I +Kh)−1Hh(τ h
∼
, η
h
∼

)

and prove that it has a fixed point in a neighborhood of (
∗
σh
∼
, ξh
∼

∗), where
∗
σh
∼

=

((σσσ∗h, p
∗
h); u∗h) = (Πh(σσσ, p);Phu) and ξh

∼

∗ = (ξ∗h, θ
∗
h) = (Π0

hξ,P0
hθ). To

this end, we start by estimating ‖S(τ h
∼
, ηh
∼

) − (
∗
σh
∼
, ξh
∼

∗)t‖X̂
∼
×Ẑ
∼

in terms of
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‖(τh
∼
, ηh
∼

)− (
∗
σh
∼
, ξh
∼

∗)‖X̂
∼
×Ẑ
∼

. We use the notations

(τττ
∼
, η
∼

)t =

(
τττ
∼

η
∼

)
and ‖(τττ

∼
, η
∼

)t‖X̂
∼
×Ẑ
∼

= ‖(τττ
∼
, η
∼

)‖X̂
∼
×Ẑ
∼
.

We have

S(τ h
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t = (I +Kh)−1(I +Kh)(S(τ h
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t)

so that

‖S(τh
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t‖X̂
∼
×Ẑ
∼
≤ C‖(I +Kh)(S(τ h

∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t)‖X̂
∼
×Ẑ
∼
.(70)

On the other hand,

(I +Kh)(S(τ h
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t)

= (I +Kh)((τ h
∼
, η
h
∼

)t − (
∗
σh
∼
, ξ
h
∼

∗)t)−Hh(τ h
∼
, η
h
∼

)

= Hh(
∗
σh
∼
, ξ
h
∼

∗)−Hh(τh
∼
, η
h
∼

) + (I +Kh)((τ h
∼
, η
h
∼

)t − (
∗
σh
∼
, ξ
h
∼

∗)t)

−Hh(
∗
σh
∼
, ξ
h
∼

∗)

= −
(
Sh 0
0 Lh

)(
1
ν (σσσ∗h − τττh) · (u∗h − vh)
1
k (u∗h − vh) · (ξ∗h − ηh)

)
−Hh(

∗
σh
∼
, ξ
h
∼

∗) .

(71)

Now, using the fact that ‖Shf̃‖X̂×Ŷ ≤ C‖f̃‖0,Ω for all f̃ ∈ (L2(Ω))2,
‖Lhg‖Ẑ×T ≤ C‖g‖0,Ω for all g ∈ L2(Ω), and the inverse inequality (cf. [3])
‖vh‖0,s,Ω ≤ Ch2/s−2/r‖vh‖0,r,Ω, we have

‖Sh((σσσ∗h − τττh) · (u∗h − vh))‖X̂×Ŷ ≤ C‖(σσσ
∗
h − τττh) · (u∗h − vh)‖0,Ω

≤ C‖σσσ∗h − τττh‖0,r,Ω‖u∗h − vh‖0,s,Ω

≤ Ch 2
s−

2
r ‖σσσ∗h − τττh‖0,r,Ω‖u∗h − vh‖0,r,Ω

≤ Ch 2
s−

2
r (‖σσσ∗h − τττh‖0,r,Ω + ‖u∗h − vh‖0,r,Ω)2,

‖Lh((u∗h − vh) · (ξ∗h − ηh))‖Ẑ×T ≤ Ch
2
s−

2
r (‖ξ∗h − ηh‖0,r,Ω + ‖u∗h − vh‖0,r,Ω)2,

where s = 2r/(r − 2).
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Therefore, by (70), (71) and (63), we have

‖S(τ h
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t‖X̂
∼
×Ẑ
∼
≤ C1h

r−4
r ‖(τ h

∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)‖2
X̂
∼
×Ẑ
∼

+ C2h
2
r .

Thus, if

‖(τh
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)‖X̂
∼
×Ẑ
∼
≤ ρ(h)

with ρ(h) satisfying

C1h
r−4
r ρ2(h) + C2h

2
r ≤ ρ(h), 2 < r < 4,(72)

we have

‖S(τh
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)t‖X̂
∼
×Ẑ
∼
≤ ρ(h).(73)

If h is small enough, the greatest root ρ0(h) of the equation

C1h
r−4
r ρ2 − ρ+ C2h

2
r = 0

satisfies

ρ0(h) ≤ C−1
1 h

4−r
r ,

where 2 < r < 4.
Therefore S has at least a fixed point (σh

∼
, ξh
∼

) in the ball

Bh =

(τ h
∼
, η
h
∼

) ∈ X
h
∼

× Z
h
∼

, ‖(τh
∼
, η
h
∼

)− (
∗
σh
∼
, ξ
h
∼

∗)‖X̂
∼
×Ẑ
∼
≤ ρ0(h)


and such a fixed point is a solution of

Hh(σh
∼
, ξ
h
∼

) = 0.

Since (σh
∼
, ξh
∼

) ∈ Bh, ρ0(h) ≤ Ch 4−r
r and using (65), we have the desired result.
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