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LOWER BOUNDS FOR NONOVERLAPPING
DOMAIN DECOMPOSITION PRECONDITIONERS

IN TWO DIMENSIONS

SUSANNE C. BRENNER AND LI-YENG SUNG

Abstract. Lower bounds for the condition numbers of the preconditioned
systems are obtained for the Bramble-Pasciak-Schatz substructuring precon-
ditioner and the Neumann-Neumann preconditioner in two dimensions. They
show that the known upper bounds are sharp.

1. Introduction

Domain decomposition methods (cf. [5], [16], [22]) provide parallel algorithms
for the numerical solution of partial differential equations. One of the indicators
of the efficiency of a domain decomposition preconditioner is the rate of growth
of the condition number of the preconditioned system, which usually comes in the
form of an upper bound. In this paper we will establish lower bounds for two well-
known nonoverlapping domain decomposition preconditioners in two dimensions:
the substructuring preconditioner of Bramble, Pasciak and Schatz (cf. [3]) and
the Neumann-Neumann preconditioner (cf. [9], [10], [16], [11] and the references
therein). Our results show that the known upper bounds for these algorithms are
sharp.

We will establish the lower bounds within the framework of additive Schwarz
preconditioners, which can be summarized as follows, where all vector spaces are
real and have finite dimensions.

Let V be a vector space, V ′ be the dual space of V , and 〈·, ·〉 be the canonical
bilinear form on V ′ × V , i.e., 〈α, v〉 = α(v) ∀α ∈ V ′ , v ∈ V . We say that a
linear operator A : V −→ V ′ is symmetric positive definite (SPD) if 〈Av1, v2〉 =
〈Av2, v1〉 ∀ v1, v2 ∈ V and 〈Av, v〉 > 0 ∀ 0 6= v ∈ V .

Let Vj , 0 ≤ j ≤ J , be vector spaces and Bj : Vj −→ V ′j be linear SPD operators.
The additive Schwarz preconditioner B : V ′ −→ V for the linear SPD operator
A : V −→ V ′ is defined in terms of the Bj ’s by the formula

B =
J∑
j=0

IjB
−1
j Itj ,(1.1)
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where Ij : Vj −→ V is a linear operator that connects Vj to V , and the operator
Itj : V ′ −→ V ′j is defined by 〈Itjα, v〉 = 〈α, Ijv〉 ∀α ∈ V ′ , v ∈ Vj .

The operator BA : V −→ V is clearly symmetric positive semidefinite with
respect to the inner product 〈A·, ·〉. Under the condition

V =
J∑
j=0

IjVj ,(1.2)

the operator B is invertible and BA is symmetric positive definite. The eigenvalues
of BA are therefore positive, and we have the following characterizations (cf. [19],
[17], [20], [21], [8], [2], [24], [25], [12]) for the minimum and maximum eigenvalues
of BA:

λmin(BA) = min
06=v∈V

〈Av, v〉
min v=

∑J
j=0 Ijvj
vj∈Vj

∑J
j=0〈Bjvj , vj〉

,(1.3)

λmax(BA) = max
06=v∈V

〈Av, v〉
min v=

∑J
j=0 Ijvj
vj∈Vj

∑J
j=0〈Bjvj , vj〉

.(1.4)

In order to obtain a lower bound for the condition number κ(BA) = λmax(BA)
λmin(BA) , we

need to find a lower bound L for λmax(BA) and an upper bound U for λmin(BA). In
view of (1.3) and (1.4), the strategy for establishing the lower bound L of λmax(BA)
is to find one 0 6= v∗ ∈ V and one decomposition v∗ =

∑J
j=0 Ijvj for which we have

〈Av∗, v∗〉 ≥ L
∑J

j=0〈Bjvj , vj〉, and the strategy for establishing the upper bound
U of λmin(BA) is to find one 0 6= v† ∈ V such that 〈Av†, v†〉 ≤ U

∑J
j=0〈Bjvj , vj〉

holds for any decomposition v† =
∑J

j=0 Ijvj .
Based on these strategies we will show that, for a second order model finite ele-

ment problem, the condition number of the preconditioned system is bounded below
by c[1 + ln(H/h)]2 for both the BPS preconditioner and the Neumann-Neumann
preconditioner, where H represents the diameter of a typical subdomain, h is the
mesh size of the triangulation and the constant c is independent of H , h and the
number of subdomains.

The rest of the paper is organized as follows. The descriptions of the model
finite element problem and the preconditioners are given in Section 2. The con-
structions of the functions v∗ and v† in the strategies stated above are based on
the constructions of special one dimensional piecewise linear functions, which are
carried out in Section 3. The lower bounds for the BPS preconditioner and the
Neumann-Neumann preconditioner are then established in Sections 4 and 5, re-
spectively. Section 6 contains the proofs of two technical lemmas from Section 3.

For the convenience of the readers, we state here the definitions of the Sobolev
norms and seminorms that are used throughout this paper.
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Let Ω be a bounded open subset of Rn and |Ω| be the n-dimensional Lebesgue
measure of Ω. We define

‖v‖2L2(Ω) =
1
|Ω|

∫
Ω

|v|2 dx ,(1.5)

|v|2H1(Ω) =
1

|Ω|1−(2/n)

∫
Ω

|∇v|2 dx ,(1.6)

‖v‖2H1(Ω) = ‖v‖2L2(Ω) + |v|2H1(Ω) .(1.7)

For a bounded open interval I ⊆ R, we define

|v|2H1/2(I) =
∫
I

∫
I

|v(x)− v(y)|2
|x− y|2 dxdy ,(1.8)

‖v‖2H1/2(I) = ‖v‖2L2(I) + |v|2H1/2(I) ,(1.9)

and for a bounded open set Ω ⊆ R2 with a C0,1 boundary, we define

‖v‖2L2(∂Ω) =
1
|∂Ω|

∫
∂Ω

|v|2 ds ,(1.10)

|v|2H1/2(∂Ω) =
∫
∂Ω

∫
∂Ω

|v(x) − v(y)|2
|x− y|2 ds(x)ds(y) ,(1.11)

‖v‖2H1/2(∂Ω) = ‖v‖2L2(∂Ω) + |v|2H1/2(∂Ω) ,(1.12)

where |∂Ω| is the arc-length of ∂Ω, and ds is the differential of the arc-length.
Note that the norms and seminorms defined by (1.5)–(1.12) are invariant under

translation and scaling. Also, the inner products (·, ·)L2 , (·, ·)H1 and (·, ·)H1/2 are
defined by the polarization identities of the corresponding norms ‖ ·‖L2, ‖ ·‖H1 and
‖ · ‖H1/2 .

2. The model problem and the preconditioners

Since our goal is to show that the known condition number estimates for the BPS
preconditioner and the Neumann-Neumann preconditioner are sharp, it suffices to
consider the simplest model problem.

Let Ω = (−1, 1)× (−1, 1). The variational formulation for the Poisson equation
on Ω with homogeneous Dirichlet boundary condition follows.

Find u ∈ H1
0 (Ω) such that

a(u, v) =
∫

Ω

fv dx ∀ v ∈ H1
0 (Ω) ,(2.1)

where f ∈ L2(Ω), and the variational form a(·, ·) is defined by

a(v1, v2) =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ H1
0 (Ω) .(2.2)

Anticipating the use of nonoverlapping preconditioners, we construct a triangu-
lation of Ω in the following way. Let Ω be divided into J = 22k nonoverlapping
squares Ω1, . . . ,ΩJ (cf. Figure 1 where k = 2). By adding a diagonal to each
Ωj we obtain a triangulation TH of Ω (cf. Figure 2). Then we perform a regular
subdivision of TH to obtain the triangulation Th (cf. Figure 3). Here H and h are
the lengths of the horizontal edges in TH and Th, respectively.
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Figure 1. Figure 2. Figure 3.

Let Vh ⊆ H1
0 (Ω) be the P1 finite element space associated with Th. The dis-

cretization of (2.1) is to find uh ∈ Vh such that

a(uh, v) =
∫

Ω

fv dx ∀ v ∈ Vh .(2.3)

In a nonoverlapping domain decomposition method we split the unknown uh in
(2.3) into two components with respect to the skeleton Γ =

⋃J
j=1

(
∂Ωj \ ∂Ω

)
as

follows. Let Vh(Ω \ Γ) = {v ∈ Vh : v vanishes on Γ} and Vh(Γ) ⊆ Vh be the a(·, ·)
orthogonal complement of Vh(Ω \ Γ), i.e.,

Vh(Γ) = {v ∈ Vh : a(v, w) = 0 ∀w ∈ Vh(Ω \ Γ)} .(2.4)

The functions in Vh(Γ) are known as discrete harmonic functions and they are
completely determined by their nodal values along Γ. We can write uh = u̇h + ūh,
where u̇h ∈ Vh(Ω \ Γ) and ūh ∈ Vh(Γ). The two components u̇h and ūh are
determined by

a(u̇h, v) =
∫

Ω

fv dx ∀ v ∈ Vh(Ω \ Γ) ,(2.5)

a(ūh, v) =
∫

Ω

fv dx ∀ v ∈ Vh(Γ) .(2.6)

Since u̇h can be obtained from (2.5) by solving in parallel a Dirichlet problem
in each subdomain, the goal of a nonoverlapping domain decomposition method
is to provide a good preconditioner for the system (2.6) so that it can be solved
efficiently by, for example, the preconditioned conjugate gradient method.

Let Sh : Vh(Γ) −→ Vh(Γ)′ be defined by

〈Shv1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ Vh(Γ) .(2.7)

We can write (2.6) as Shūh = f̄h, where f̄h ∈ [Vh(Γ)]′ is defined by 〈f̄h, v〉 =∫
Ω fv dx. The operator Sh, known as the Schur complement operator, is then the

one that we want to precondition.
Below we will describe the BPS preconditioner and the Neumann-Neumann pre-

conditioner for Sh. In both methods we use the coarse grid space VH ⊆ H1
0 (Ω),

which is the P1 finite element space associated with the triangulation TH . The
space VH is connected to Vh(Γ) by the operator IH : VH −→ Vh(Γ) defined by(

IHv
)∣∣

Γ
= v
∣∣
Γ

∀ v ∈ VH ,(2.8)

and the linear SPD operator AH : VH −→ V ′H is defined by

〈AHv1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ VH .(2.9)
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BPS preconditioner. Let E`, 1 ≤ ` ≤ L, be the common edge of neighboring
subdomains without the endpoints, and let the edge space Vh(E`) be defined by

Vh(E`) = {v ∈ Vh(Γ) : v = 0 on Γ \ E`} .(2.10)

Each Vh(E`) is connected to Vh(Γ) by the natural injection I` : Vh(E`) −→ Vh(Γ),
and there is a linear SPD operator S` : Vh(E`) −→ Vh(E`)′ defined by

〈S`v1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ Vh(E`) .(2.11)

The BPS preconditioner BBPS : Vh(Γ)′ −→ Vh(Γ) is given by

BBPS = IHA
−1
H ItH +

L∑
`=1

I`S
−1
` It` .(2.12)

It is clear that (1.2) is satisfied. In fact, we have the stronger condition

Vh(Γ) = IHVH ⊕ Vh(E1)⊕ · · · ⊕ Vh(EL) .(2.13)

The following condition number estimate (cf. [3]) holds:

κ(BBPSSh) ≤ C
(

1 + ln
H

h

)2

,(2.14)

where the positive constant C is independent of H , h and J .

Remark 2.1. In the original BPS algorithm (cf. [3]) the exact solves S−1
j are re-

placed by spectrally equivalent interface preconditioners that are easier to compute.
But for our purpose we may as well use exact solves.

Remark 2.2. There is numerical evidence (cf. [3]) that the estimate (2.14) is sharp.
A mathematical proof will be given in Section 4.

Neumann-Neumann preconditioner. Let Vj , 1 ≤ j ≤ J , be the restriction of
Vh to Ωj , i.e., Vj is the P1 finite element space on Ωj associated with the trian-
gulation Th whose members vanish on ∂Ω ∩ ∂Ωj . The skeleton ∂Ωj \ ∂Ω of Ωj is
denoted by Γj.

The SPD bilinear form âj(·, ·) is defined by

âj(v1, v2) =
∫

Ωj

∇v1 · ∇v2 dx+H−2

∫
Ωj

v1v2 dx ∀ v1, v2 ∈ H1(Ωj) .(2.15)

Let Vh(Ωj) = {v ∈ Vj : v vanishes on ∂Ωj} and Vh(Γj) ⊆ Vj be the âj(·, ·) orthog-
onal complement of Vh(Ωj), i.e.,

Vh(Γj) = {v ∈ Vj : âj(v, w) = 0 ∀w ∈ Vh(Ωj)} .(2.16)

The functions in Vh(Γj) are discrete harmonic with respect to the bilinear form
âj(·, ·), and are determined by their nodal values on Γj .

Each Vh(Γj) is connected to Vh(Γ) by Îj : Vh(Γj) −→ Vh(Γ) defined by(
Îjv
)
(p) =

{
0 if the node p is not on Γj ,
v(p)/n(p) if the node p is on Γj ,

(2.17)

where n(p) is the number of subdomains sharing the node p. There is also an SPD
linear operator Ŝj : Vh(Γj) −→ Vh(Γj)′ defined by

〈Ŝjv1, v2〉 = âj(v1, v2) ∀ v1, v2 ∈ Vh(Γj) .(2.18)
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The Neumann-Neumann preconditioner BNN : Vh(Γ) −→ Vh(Γ)′ is given by

BNN = IHA
−1
H ItH +

J∑
j=1

Îj Ŝ
−1
j Îtj .(2.19)

It is easy to check that (1.2) holds.
The following condition number estimate (cf. [9], [10], [11]) holds:

κ(BNNSh) ≤ C
(

1 + ln
H

h

)2

,(2.20)

where the positive constant C is independent of H , h and J .

Remark 2.3. For a subdomain Ωj that has at least one side on ∂Ω, we can define
âj(·, ·) by

âj(v1, v2) =
∫

Ωj

∇v1 · ∇v2 dx ∀ v1, v2 ∈ H1(Ωj) ,

and then define the space Vh(Γj) accordingly. The results in Section 5 for the
Neumann-Neumann preconditioner also hold for this choice of âj(·, ·).

Remark 2.4. Numerical results for the Neumann-Neumann preconditioner without
a coarse grid space can be found in [15].

For future reference, we collect some well-known facts concerning discrete har-
monic functions and the space H1/2 in the following lemma . The proofs of these
facts can be found either in [3], [7], or by straightforward calculations using (1.10)–
(1.12).

Lemma 2.5. Let D be a square with a uniform triangulation Th, and Vh ⊆ H1(D)
be the P1 finite element space associated with Th. Suppose that v ∈ Vh is discrete
harmonic with respect to the bilinear form d(·, ·) defined by

d(v1, v2) =
∫
D

∇v1 · ∇v2 dx ,

i.e., d(v, w) = 0 for all w ∈ Vh which vanishes on ∂D. Then we have |v|H1(D) ≈
|v|H1/2(∂D). On the other hand, if v ∈ Vh is discrete harmonic with respect to the
bilinear form d̂(·, ·) defined by

d̂(v1, v2) =
∫
D

∇v1 · ∇v2 dx+
1
|D|

∫
D

v1v2 dx ,

i.e., d̂(v, w) = 0 for all w ∈ Vh which vanishes on ∂D, then we have ‖v‖H1(D) ≈
‖v‖H1/2(∂D). Moreover, for any function v ∈ H1(D) which vanishes on one side of
∂D, we have ‖v‖H1/2(∂D) ≈ |v|H1/2(∂D).

3. Special one dimensional piecewise linear functions

Let (a, b) be a finite open interval. The space H1/2
00 (a, b) plays an important role

in the theory of nonoverlapping domain decomposition methods in two dimensions,
and it is defined by

H
1/2
00 (a, b) = {v ∈ L2(a, b) : ṽ ∈ H1/2(R)} ,(3.1)
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where ṽ is the trivial extension of v to R, i.e., ṽ(x) = { v(x) x∈(a,b)
0 x∈R\(a,b) . We define the

norm of v ∈ H1/2
00 (a, b) to be |ṽ|H1/2(R), i.e.,

|v|2
H

1/2
00 (a,b)

=
∫
R

∫
R

|ṽ(x)− ṽ(y)|2
|x− y|2 dxdy

=
∫ b

a

∫ b

a

|v(x) − v(y)|2
|x− y|2 dxdy + 2

∫ b

a

|v(x)|2
(

1
x− a +

1
b− x

)
dx(3.2)

= |v|2H1/2(a,b) + 2
∫ b

a

|v(x)|2
(

1
x− a +

1
b− x

)
dx .

Note that the norm defined by (3.2) is invariant with respect to translation and
scaling.

It is well known (cf. [18], [23]) that

H
1/2
00 (a, b) = [L2(a, b), H1

0 (a, b)]1/2(3.3)

with an equivalent norm, where [L2(a, b), H1
0 (a, b)]1/2 is the interpolation space

halfway between L2(a, b) and H1
0 (a, b) obtained by the complex method (cf. [1],

[23], [14]).
Let φ be a continuous function defined on (a, b) which is piecewise linear with

respect to the uniform subdivision of mesh size ρ, and φ(a) = φ(b) = 0. The
following estimate (cf. [3], [7]) is crucial to the condition number estimates for
nonoverlapping domain decomposition methods in two dimensions:

‖φ‖L∞(a,b) ≤ C(1 + | ln ρ|)1/2|φ|
H

1/2
00 (a,b)

.(3.4)

Therefore the first step towards proving the sharpness of (2.14) and (2.20) is to
produce a piecewise linear function for which the estimate (3.4) is sharp. This
will be achieved through the interpolation of finite sine series by piecewise linear
functions.

In order to avoid the proliferation of constants, we will henceforth use the nota-
tion A <∼ B (or B >∼ A) to represent the statement that A ≤ constant× B, where
the constant is a universal constant (i.e., independent of any parameters). The
notation A ≈ B means that A <∼ B and A >∼ B.

Let v =
∑∞

n=1 vn sin
(
(nπ/`)x

)
be an arbitrary function in L2(0, `). By Parseval’s

identity, we have

‖v‖2L2(0,`) ≈
∞∑
n=1

|vn|2 ,(3.5)

where the scaling invariant norm ‖ · ‖L2(0,`) is defined in (1.5). Similarly, v belongs
to H1

0 (0, `) if and only if
∑∞

n=1 n
2|vn|2 <∞, and we have

‖v‖2H1(0,`) ≈
∞∑
n=1

n2|vn|2 ,(3.6)

where the scaling invariant norm ‖ · ‖H1(0,`) is defined in (1.7).
Let the space Fs be defined by

Fs = {v ∈ L2(0, `) : v =
∞∑
n=1

vn sin
(
(nπ/`)x

)
and

∞∑
n=1

n2s|vn|2 <∞} ,(3.7)
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with the norm ||| · |||s defined by

|||v|||2s =
∞∑
n=1

n2s|vn|2 .(3.8)

Then the spaces Fs form a Hilbert scale (cf. [14]) and we have

F1/2 = [F0,F1]1/2 .(3.9)

Since F0 = L2(0, `) and F1 = H1
0 (0, `), the following lemma is an immediate

consequence of (3.3), (3.5)–(3.9) and interpolation.

Lemma 3.1. A function v =
∑∞

n=1vn sin
(
(nπ/`)x) ∈ L2(0, `) belongs to H1/2

00 (0, `)
if and only if

∑∞
n=1 n|vn|2 <∞, and we have |v|2

H
1/2
00 (0,`)

≈
∑∞
n=1 n|vn|2.

Let N = 2k (k = 0, 1, 2, 3, . . . ) and the function GN on (0, 1) be defined by

GN (x) =
N∑
n=1

(
1

4n− 3

)
sin
(
(4n− 3)πx

)
.(3.10)

The properties of GN are summarized in the following lemma.

Lemma 3.2. The function GN is symmetric with respect to the midpoint of (0, 1),
where it attains its maximum in absolute value. Moreover, we have

‖GN‖2H1(0,1) ≈ N ,(3.11)

|GN |2H1/2
00 (0,1)

≈ 1 + lnN ,(3.12)

‖GN‖L∞(0,1) = GN (1/2) ≈ 1 + lnN .(3.13)

Proof. The symmetry of GN is straightforward, and (3.13) follows from Lemma 6.1
in Section 6. The estimate (3.11) follows from (3.6), and (3.12) follows from
Lemma 3.1 and Lemma 6.1.

Let Lρ(0, 1) be the space of continuous functions which are piecewise linear with
respect to the uniform subdivision of (0, 1) of mesh size ρ, and Π̂ρ : H1(0, 1) −→
Lρ(0, 1) be the nodal interpolation operator.

Lemma 3.3. Let ρ = 1/N and ĝρ = Π̂ρGN . Then ĝρ is symmetric with respect to
the midpoint of (0, 1) and we have

‖ĝρ‖L∞(0,1) = gh(1/2) ≈ 1 + | ln ρ| ,(3.14)

|ĝρ|2H1/2
00 (0,1)

≈ 1 + | ln ρ| .(3.15)

Proof. The symmetry of ĝρ and (3.14) follows immediately from the symmetry of
GN and (3.13).

We have the following interpolation error estimate (cf. [6], [4]) for the interpo-
lation operator Π̂ρ:

‖ζ − Π̂ρζ‖L2(0,1) + ρ|ζ − Π̂ρζ|H1(0,1) <∼ ρ|ζ|H1(0,1) ∀ ζ ∈ H1(0, 1) .(3.16)

In view of (3.3), we can interpolate (3.16) to obtain

|ζ − Π̂ρζ|H1/2
00 (0,1)

<∼ ρ
1/2|ζ|H1(0,1) ∀ ζ ∈ H1(0, 1) .(3.17)
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By (3.17) and (3.11) we have

|GN − ĝρ|H1/2
00 (0,1)

<∼ 1 .(3.18)

The estimate (3.15) then follows from (3.12) and (3.18).

Combining (3.14) and (3.15), we have

‖ĝρ‖L∞(0,1) ≈ (1 + | ln ρ|)1/2|ĝρ|H1/2
00 (0,1)

.(3.19)

In other words, we have constructed a continuous piecewise linear function for which
(3.4) is sharp.

Remark 3.4. A related estimate is (cf. [3], [7])

‖φ‖L∞(a,b) <∼ (1 + | ln ρ|)1/2‖φ‖H1/2(a,b) ,(3.20)

which holds for any continuous function φ on (a, b) that is piecewise linear with
respect to the uniform subdivision of mesh size ρ. The estimate (3.19) shows that
(3.20) is also sharp, since

‖ĝρ‖L∞(0,1) ≈ (1 + | lnρ|)1/2‖ĝρ‖H1/2
00 (0,1)

≥ (1 + | ln ρ|)1/2‖ĝρ‖H1/2(0,1) .

The sharpness of (3.20) was also investigated numerically in [13].

Remark 3.5. Let v be a discrete harmonic function defined on the unit square D
with vertices (0, 0), (1, 0), (1, 1) and (0, 1) with respect to the uniform triangulation
of mesh size ρ such that v(x, 0) = ĝρ(x) for 0 ≤ x ≤ 1 and v vanishes on the other
three sides. Then it follows from Lemma 2.5 and Lemma 3.3 that

‖v‖L∞(D) >∼ (1 + | ln ρ|)1/2‖v‖H1(D) ,

which implies that the discrete Sobolev inequality (cf. [3]) is sharp.

The following corollary is obtained from Lemma 3.3 by scaling.

Corollary 3.6. Let gh be the function on [−H,H ] defined by

gh(x) = ĝρ

(
x+H

2H

)
for ρ =

(
h

2H

)
.(3.21)

Then gh has the following properties :
(i) gh is piecewise linear with respect to the uniform subdivision of [−H,H ] of

mesh size h, and gh(−H) = gh(H) = 0;
(ii) gh is symmetric with respect to the midpoint 0;
(iii) ‖gh‖L∞(−H,H) and |gh|H1/2

00 (−H,H)
are estimated by

gh(0) = ‖gh‖L∞(−H,H) ≈ 1 + ln
H

h
,(3.22)

|gh|2H1/2
00 (−H,H)

≈ 1 + ln
H

h
.(3.23)

The piecewise linear function gh will play a key role in the constructions in
Sections 4 and 5, and we will also need the estimates for some related piecewise
linear functions. First we state two technical lemmas (Lemma 3.7 and Lemma 3.8)
on the unit interval whose proofs are deferred to Section 6.

Recall that Π̂ 1
2

: H1(0, 1) −→ L 1
2
(0, 1) is the nodal interpolation operator with

respect to the subdivision {0, 1/2, 1}.
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Lemma 3.7. The following estimate holds :

|ĝρ − Π̂ 1
2
ĝρ|2H1/2

00 (0,1/2)
= |ĝρ − Π̂ 1

2
ĝρ|2H1/2

00 (1/2,1)
≈ (1 + | ln ρ|)3 .(3.24)

Let p̂ρ, a continuous function on [0, 1
2 + ρ] which is piecewise linear with respect

to the uniform subdivision of mesh size ρ, be defined by

p̂ρ
∣∣
[0, 12−ρ]

= ĝρ
∣∣
[0, 12−ρ]

, p̂ρ

(
1
2

)
=

1
2
ĝρ

(
1
2

)
and p̂ρ

(
1
2

+ ρ

)
= 0 ,(3.25)

and similarly q̂ρ, a continuous piecewise linear function on [1
2 − ρ, 1], be defined by

q̂ρ
∣∣
[ 1
2 +ρ,1]

= ĝρ
∣∣
[ 1
2 +ρ,1]

, q̂ρ

(
1
2

)
=

1
2
ĝρ

(
1
2

)
and q̂ρ

(
1
2
− ρ
)

= 0 .(3.26)

Lemma 3.8. The following estimate holds :

|p̂ρ|2H1/2
00 (0, 12 +ρ)

= |q̂ρ|2H1/2
00 ( 1

2−ρ,1)
≈ (1 + | ln ρ|)3 .(3.27)

Let ΠH be the nodal piecewise linear interpolation operator with respect to
the subdivision {−H, 0, H} of [−H,H ]. The following corollary is obtained from
Lemma 3.7 by scaling.

Corollary 3.9. Let gh be the function defined by (3.21). Then we have

|gh −ΠHgh|2H1/2
00 (−H,0)

= |gh −ΠHgh|2H1/2
00 (0,H)

≈
(

1 + ln
H

h

)3

.

Let ph, a continuous function on (−H,h) which is piecewise linear with respect
to the uniform subdivision of mesh size h, be defined by

ph
∣∣
[−H,−h]

= gh
∣∣
[−H,−h]

, ph(0) =
1
2
gh(0) and ph(h) = 0 ,(3.28)

and similarly qh, a continuous piecewise linear function on [−h,H ], be defined by

qh
∣∣
[h,H]

= gh
∣∣
[h,H]

, qh(0) =
1
2
gh(0) and qh(−h) = 0 .(3.29)

The functions ph and qh are scaled analogs of p̂ρ and q̂ρ, and the following corollary
is a scaled version of Lemma 3.8.

Corollary 3.10. The following estimate holds for the functions ph and qh defined
by (3.28) and (3.29):

|ph|2H1/2
00 (−H,h)

= |qh|2H1/2
00 (−h,H)

≈
(

1 + ln
H

h

)3

.

4. Lower bound for the BPS preconditioner

According to (1.3), (1.4), (2.7), (2.9), (2.11) and (2.13), we have the following
characterizations of λmax(BBPSSh) and λmin(BBPSSh):

λmin(BBPSSh) = min
06=v∈Vh(Γ)

a(v, v)

a(vH , vH) +
∑L

`=1 a(v`, v`)
,(4.1)

λmax(BBPSSh) = max
06=v∈Vh(Γ)

a(v, v)

a(vH , vH) +
∑L

`=1 a(v`, v`)
,(4.2)

where vH ∈ VH and v` ∈ Vh(E`) (1 ≤ ` ≤ L) form the unique decomposition
v = IHvH +

∑L
`=1 v`.
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Figure 4.

Lemma 4.1. We have λmax(BBPSSh) ≥ 1.

Proof. Let 0 6= v∗ belong to one of the edge spaces, say, v∗ ∈ Vh(E1). The decom-
position of v∗ is given by vH = 0, v1 = v∗ and 0 = v2 = · · · = vL = 0. Hence we
have

a(v∗, v∗)

a(vH , vH) +
∑L

`=1 a(v`, v`)
=
a(v∗, v∗)
a(v∗, v∗)

= 1 ,

and the lemma follows from (4.2).

Lemma 4.2. We have λmin(BBPSSh) <∼
[
1 + ln(H/h)

]−2.

Proof. We need to construct 0 6= v† ∈ Vh(Γ) such that

a(v†, v†) <∼

[
1 + ln

H

h

]−2
[
a(vH , vH) +

L∑
`=1

a(v`, v`)

]
(4.3)

holds for the unique decomposition v = IHvH +
∑L

`=1 v`, where vH ∈ VH and
v` ∈ Vh(E`) for 1 ≤ ` ≤ L. The lemma then follows from (4.1) and (4.3).

The definition of v† involves the four subdomains Ω1, Ω2, Ω3 and Ω4 neighboring
the center of Ω, whose vertices are given by (0, 0), (0,±H), (±H, 0) and (±H,±H)
(cf. Figure 4).

Let gh be the function defined by (3.21). The function v† ∈ Vh(Γ) is defined to
be 0 on Γ except on the line segments AB and CD, where it is given by

v†(x, 0) = gh(x) for −H ≤ x ≤ H ,(4.4)

v†(0, y) = gh(y) for −H ≤ y ≤ H .(4.5)

It is clear that v† vanishes outside Ω1∪Ω2∪Ω3∪Ω4. In the unique decomposition
of v†, the coarse grid function vH is just the nodal interpolant of v† in the coarse
grid space VH , and the only nontrivial edge space functions are associated with the
four edges E1 = OA, E2 = OB, E3 = OC, and E4 = OD.

By Lemma 2.5, we have

a(v†, v†) =
4∑
j=1

|v†|2H1(Ωj)
≈

4∑
j=1

|v†|2H1/2(∂Ωj)
,(4.6)

and from (1.11), (3.2), (4.4), (4.5), and the symmetry of gh we find

|v†|2H1/2(∂Ωj)
≈ |gh|2H1/2

00 (−H,H)
for 1 ≤ j ≤ 4 .(4.7)
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Combining (3.23), (4.6) and (4.7), we conclude that

a(v†, v†) ≈ 1 + ln
H

h
.(4.8)

Since vH ∈ VH vanishes at all the vertices of TH except the origin, where
vH(0, 0) = gh(0), a simple calculation shows that a(vH , vH) ≈ |v(0)|2 = |gh(0)|2,
and then it follows from (3.22) that

a(vH , vH) ≈
(

1 + ln
H

h

)2

.(4.9)

Finally we estimate a(v`, v`) for the edge functions v` (1 ≤ ` ≤ 4). Since v† =
IHvH +

∑4
`=1 v`, on the edge E` the function v` equals the difference between v†

and its coarse grid interpolant, and v` vanishes on Γ \ E`.
Let Ω`1 and Ω`2 be the two subdomains neighboringE`. We have, by Lemma 2.5,

(1.11) and (3.2),

a(v`, v`) = |v`|2H1(Ω`1 ) + |v`|2H1(Ω`2) ≈ |v`|2H1/2
00 (E`)

,

and then Corollary 3.9 and (4.4)–(4.5) imply that

a(v`, v`) ≈
(

1 + ln
H

h

)3

for 1 ≤ ` ≤ 4 .(4.10)

The estimate (4.3) (and hence the lemma) follows from (4.8)–(4.10).

Combining Lemmas 4.1 and 4.2, we have the following theorem on the lower bound
of κ(BBPSSh).

Theorem 4.3. For the model problem described in Section 2, we have

κ(BBPSSh) ≥ c
(

1 + ln
H

h

)2

,

where c is independent of h, H and J .

Remark 4.4. The proof of Lemma 4.2 (and hence Theorem 4.3) requires at least
one cross point, which is satisfied by the model problem in Section 2. It also agrees
with the fact that κ(BBPSSh) <∼ 1 when there are no cross points (cf. [3]).

5. Lower bound for the Neumann-Neumann preconditioner

According to (1.3), (1.4), (2.7), (2.9), and (2.18), we have the following charac-
terizations of λmax(BNNSh) and λmin(BNNSh):

λmin(BNNSh) = min
06=v∈Vh(Γ)

a(v, v)

min
v=IHvH+

∑J
j=1 Îjvj

vH∈VH,vj∈Vh(Γj )

a(vH , vH) +
J∑
j=1

âj(vj , vj)

 ,(5.1)

λmax(BNNSh) = max
06=v∈Vh(Γ)

a(v, v)

min
v=IHvH+

∑J
j=1 Îjvj

vH∈VH,vj∈Vh(Γj )

a(vH , vH) +
J∑
j=1

âj(v`, v`)

 .(5.2)

This time we will first establish an upper bound for λmin(BNNSh). We begin
with the construction of a piecewise linear function on (0, H).
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Lemma 5.1. There exists a continuous function ψ on (0, H), not identically zero,
which is piecewise linear with respect to the uniform subdivision S of mesh size H/8,
and has the following properties:

(i) ψ(x) = 0 for x 6∈ (H4 ,
3H
4 ),

(ii) (ψ,w)H1/2(H/8,7H/8) = 0 for any linear polynomial w on (H/8, 7H/8).

Proof. Let V be the space of continuous piecewise linear functions associated with
S that satisfy (i). Then dimV equals three, while there are only two linearly
independent conditions in (ii).

Lemma 5.2. We have λmin(BNNSh) <∼ 1.

Proof. For H/h ≤ 4, this is a consequence of the estimate (cf. [9], [10], [11])
λmax(BNNSh) <∼

(
1 + ln H

h

)2
.

For H/h ≥ 8, we construct a function v† ∈ Vh(Γ) as follows. Let AB be the line
segment connecting (0, 0) to (0, H), and denote by Ω1 and Ω2 the two neighboring
subdomains (cf. Figure 5). We define v† to be 0 on Γ except on the line segment
AB, and on AB we have

v†(0, y) = ψ(y) for 0 ≤ y ≤ H ,(5.3)

where ψ is the function from Lemma 5.1. Clearly v† vanishes outside Ω1 ∪Ω2, and
we have, by Lemma 2.5 and Lemma 5.1 (i),

a(v†, v†) = |v†|2H1(Ω1) + |v†|2H1(Ω2) ≈ ‖v†‖2H1/2(CD) ,(5.4)

where C = (0, H/8) and D = (0, 7H/8) (cf. Figure 5).
Consider now an arbitrary decomposition v† = IHvH +

∑J
j=1 Îjvj , where vH ∈

VH and vj ∈ Vh(Γj). On the line segment CD, by (2.8) and (2.17), IHvH = vH is
a linear polynomial, and

(v† − vH)
∣∣
CD

=
(
v1 + v2

2

)∣∣∣∣
CD

.(5.5)

It follows from Lemma 5.1 (ii), (5.3) and (5.5) that

‖v†‖2H1/2(CD) ≤ ‖v† − vH‖
2
H1/2(CD)

<∼ ‖v1‖2H1/2(CD) + ‖v2‖2H1/2(CD) .(5.6)

Since âj(·, ·) = ‖ · ‖2H1(Ωj)
(cf. (1.7) and (2.15)), it follows from (5.6) and the trace

theorem (cf. [23]) that

‖v†‖2H1/2(CD)
<∼ â1(v1, v1) + â2(v2, v2) .(5.7)

Combining (5.4) and (5.7), we find a(v†, v†) <∼ a(vH , vH) +
∑J
j=1 âj(vj , vj). Since

this last estimate holds for any decomposition of v†, the lemma follows from (5.1).

Now we prove a lower bound for λmax(BNNSh).
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Lemma 5.3. We have λmax(BNNSh) >∼
[
1 + ln(H/h)

]2.

Proof. We need to construct 0 6= v∗ ∈ Vh(Γ) such that, for one decomposition
v∗ = IHvH +

∑J
j=1 Îjvj , where vH ∈ VH and vj ∈ Vh(Γj), we have

a(v∗, v∗) >∼

(
1 + ln

H

h

)2
a(vH , vH) +

J∑
j=1

âj(vj , vj)

 .(5.8)

The lemma then follows from (5.2) and (5.8).
The construction of v∗ again involves the four subdomains neighboring the center

of Ω (cf. Figure 4). We define w ∈ Vh(Γ1) to be 0 on Γ1 except on the two line
segments OA and OD, where we define

w(x, 0) = gh(x) for −H ≤ x ≤ 0 ,(5.9)

w(0, y) = gh(y) for 0 ≤ y ≤ H .

The function v∗ is then defined to be Î1w, and we choose the decomposition

0 = vH = v2 = v3 = · · · = vJ and v1 = w .(5.10)

By Lemma 2.5 and Corollary 3.6, we have

â1(v1, v1) ≈ |w|2H1/2(∂Ω1) ≈ |gh|
2

H
1/2
00 (−H,H)

≈ 1 + ln
H

h
.(5.11)

From the definition of Î1 (cf. (2.17)) and (5.9), it is clear that v∗ vanishes outside
Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. It follows that

a(v∗, v∗) =
4∑
j=1

|v∗|2H1(Ωj)
.(5.12)

Using (2.17), (3.28), Corollary 3.10, (5.9), and Lemma 2.5, we have

|v∗|2H1(Ω2) ≈ |v∗|2H1/2(∂Ω2) ≈ |ph|
2

H
1/2
00 (−H,h)

≈
(

1 + ln
H

h

)3

.(5.13)

It follows from (5.11)–(5.13) that a(v∗, v∗) >∼
(
1 + ln H

h

)2
â1(v1, v1), which implies

(5.8) for the decomposition in (5.10) and hence the lemma.

Combining Lemmas 5.2 and 5.3, we have the following theorem on the lower bound
of κ(BNNSh).

Theorem 5.4. For the model problem described in Section 2, we have

κ(BNNSh) ≥ c
(

1 + ln
H

h

)2

,

where c is independent of h, H and J .
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6. Proofs of the two technical lemmas

We will present the proofs of Lemma 3.7 and Lemma 3.8 in this section. We
begin with an elementary lemma from calculus.

Lemma 6.1. Let ψ be a positive, continuous and decreasing function defined on
(0,∞). Then we have

K∑
k=1

f(k) ≈ f(1) +
∫ K

1

f(x) dx .

Proof. Using Riemann sums and the sign and monotonicity of f(x), we have
K∑
k=1

f(k) ≤ f(1) +
∫ K

1

f(x) dx and
∫ K

1

f(x) dx ≤
K−1∑
k=1

f(k) .

The coefficients of the sine series
∑∞

n=1 αn sin(2nπx) of the function GN−Π̂ 1
2
GN

on the interval (0, 1/2) are given by

αn = 4
∫ 1/2

0

[
GN − Π̂ 1

2
GN
]

sin(2nπx) dx

=
2
nπ

∫ 1/2

0

[
GN − Π̂ 1

2
GN
]′ cos(2nπx) dx .

Note that
(
Π̂ 1

2
GN
)
(x) =

[
2GN (1/2)

]
x on (0, 1/2). Hence we have, by (3.10),

[
GN − Π̂ 1

2
GN
]′(x) = π

[
N∑
m=1

cos
(
(4m− 3)πx

)]
− 2GN (1/2)(6.1)

for 0 < x < 1
2 .

We can therefore write

αn =
(−1)n

π

1
n

N∑
m=1

am,n ,(6.2)

where

am,n =
1

2n+ 4m− 3
− 1

2n− 4m+ 3
.(6.3)

Lemma 6.2. It holds that
∞∑

n=3N+1

1
n

(
N∑
m=1

am,n

)2

<∼ 1.

Proof. From (6.3) we have, for n > 3N ,
∣∣∣∑N

m=1 am,n

∣∣∣ <∼ ∣∣∣∑N
m=1

1
n

∣∣∣ <∼ N
n . Then

Lemma 6.1 implies that

∞∑
n=3N+1

1
n

(
N∑
m=1

am,n

)2

<∼ N
2

∞∑
n=3N+1

1
n3
≈ 1 .

Lemma 6.3. It holds that
3N∑
n=N

1
n

(
N∑
m=1

am,n

)2

<∼ (1 + lnN)2.
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Proof. For N ≤ n ≤ 3N , we have, by Lemma 6.1,
N∑
m=1

1
2n+ 4m− 3

≈ 1
2n+ 1

+
1
4

ln
(

2n+ 4N − 3
2n+ 1

)
≈ 1

and

N∑
m=1

∣∣∣∣ 1
2n− 4m+ 3

∣∣∣∣ <∼ 6N−1∑
j=1

1
j
≈ 1 + lnN .

It follows from these two estimates, (6.3) and Lemma 6.1 that

3N∑
n=N

1
n

(
N∑
m=1

am,n

)2

<∼ (1 + lnN)2
3N∑
n=N

1
n
≈ (1 + lnN)2 .

Lemma 6.4. It holds that
N−1∑
n=1

1
n

(
N∑
m=1

am,n

)2

≈ (1 + lnN)3.

Proof. For 1 ≤ n ≤ N − 1, we can write, by (6.3),

N∑
m=1

am,n = cn − bn ,(6.4)

where

bn =
n∑

m=1

1
2n− 4m+ 3

and

cn =

[
N∑
m=1

1
2n+ 4m− 3

]
−
[

N∑
m=n+1

1
2n− 4m+ 3

]
.

We claim that

|bn| <∼ 1 for 1 ≤ n ≤ N .(6.5)

Assume first that n is even. Then we have, for n = 2`,

|bn| =
∣∣∣∣∣∑̀
m=1

(
1

2n− 4m+ 3
+

1
2n− 4(m+ `) + 3

)∣∣∣∣∣
=

∣∣∣∣∣∑̀
m=1

(
1

2n− 4(`−m+ 1) + 3
+

1
2n− 4(m+ `) + 3

)∣∣∣∣∣
=

∣∣∣∣∣∑̀
m=1

(
1

4m− 1
− 1

4m− 3

)∣∣∣∣∣ <∼ 1 .

On the other hand, when n = 2`− 1, we also find by using the previous case that

|bn| =
∣∣∣∣∣
(
n+1∑
m=1

1
2n− 4m+ 3

)
+

1
2n+ 1

∣∣∣∣∣ <∼ 1 .
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Next we estimate |cn|. Observe that −
∑N
m=n+1

1
2n−4m+3 =

∑N−n
m=1

1
2n+4m−3 ,

and hence
N∑
m=1

1
2n+ 4m− 3

≤ cn ≤ 2
N∑
m=1

1
2n+ 4m− 3

.(6.6)

Therefore, we obtain by Lemma 6.1

cn ≈
N∑
m=1

1
2n+ 4m− 3

≈ 1
2n+ 1

+
1
4

ln
(

2n+ 4N − 3
2n+ 1

)
.(6.7)

From (6.4) we have[
1
2

N−1∑
n=1

1
n
c2n

]
−
[
N−1∑
n=1

1
n
b2n

]
≤

N−1∑
n=1

1
n

(
N∑
m=1

am,n

)2

(6.8)

≤ 2

[
N−1∑
n=1

1
n
c2n

]
+ 2

[
N−1∑
n=1

1
n
b2n

]
.

The estimates (6.5), (6.7) and Lemma 6.1 imply that
N−1∑
n=1

1
n
b2n <∼

N−1∑
n=1

1
n
<∼ 1 + lnN ,(6.9)

N−1∑
n=1

1
n
c2n ≈

[
N−1∑
n=1

1
n3

]
+

[
N−1∑
n=1

1
n

ln2

(
2n+ 4N − 3

2n+ 1

)]
(6.10)

≈ 1 +
N−1∑
n=1

1
n

ln2

(
2n+ 1

2n+ 4N − 3

)
.

So it only remains to estimate
∑N−1

n=1 (1/n) ln2
[
(2n + 1)/(2n + 4N − 3)

]
. By

Lemma 6.1 we have
N−1∑
n=1

1
n

ln2

(
2n+ 1

2n+ 4N − 3

)

≈
N−1∑
n=1

24(N − 1)
(2n+ 1)(2n+ 4N − 3)

ln2

(
2n+ 1

2n+ 4N − 3

)

≈ (1 + lnN)2 +
∫ N−1

1

24(N − 1)
(2x+ 1)(2x+ 4N − 3)

ln2

(
2x+ 1

2x+ 4N − 3

)
dx(6.11)

= (1 + lnN)2 +
[
ln3

(
2x+ 1

2x+ 4N − 3

)]N−1

1

≈ (1 + lnN)3 .

The lemma follows from (6.8)–(6.11).

Proof of Lemma 3.7. By the symmetry of ĝρ, it suffices to estimate the first term
|ĝρ − Π̂ 1

2
ĝρ|H1/2

00 (0,1/2)
. According to Lemma 3.1 and (6.2), we have

|GN − Π̂ 1
2
GN |2H1/2

00 (0,1/2)
≈
∞∑
n=1

1
n

(
N∑
m=1

am,n

)2

.
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Hence it follows from Lemmas 6.2–6.4 that

|GN − Π̂ 1
2
GN |2H1/2

00 (0,1/2)
≈ (1 + lnN)3 = (1 + | ln ρ|)3 .(6.12)

On the other hand, as in the proof of Lemma 3.3, standard interpolation error
estimates and (3.11) imply that

|GN − ĝρ|H1/2
00 (0,1/2)

<∼ 1 .(6.13)

Since Π̂ 1
2
GN = Π̂ 1

2
ĝρ, the estimate (3.24) follows from (6.12) and (6.13).

We now turn to the proof of Lemma 3.8. First we consider, for N ≥ 4, the
function HN on [0, 1/2] defined by

HN (x) =

{
GN (x) 0 ≤ x ≤ 1

2 −
1
N ,[

N
2 GN

(
1
2 −

1
N

)]
(1− 2x) 1

2 −
1
N ≤ x ≤

1
2 .

(6.14)

Let
∑∞

n=1 βn sin(2nπx) be the sine series of HN on the interval (0, 1/2). Using
(3.10) and (6.14), we find

βn = 4
∫ 1/2

0

HN (x) sin(2nπx) dx

=
2
nπ

∫ 1/2

0

H ′N (x) cos(2nπx) dx

=
2
nπ

[
π

N∑
m=1

∫ 1
2−

1
N

0

cos
(
(4m− 3)πx

)
cos(2nπx) dx

−NGN
(

1
2 −

1
N

) ∫ 1/2

1
2−

1
N

cos(2nπx) dx

]
.

Note that∫ 1
2−

1
N

0

cos
(
(4m− 3)πx

)
cos(2nπx) dx

=
1

2π

[
sin
(
(2n+ 4m− 3)πx

)
2n+ 4m− 3

+
sin
(
(2n− 4m+ 3)πx

)
2n− 4m+ 3

](1/2)−(1/N)

0

(6.15)

=
(−1)n

2π
(am,n − bm,n) ,

where am,n is defined by (6.3) and

bm,n =
1− cos

(
(2n+ 4m− 3)π/N

)
2n+ 4m− 3

−
1− cos

(
(2n− 4m+ 3)π/N

)
2n− 4m+ 3

.(6.16)

Therefore βn can be written as

βn = (−1)n
2
nπ

[
1
2

N∑
m=1

(am,n − bm,n)− dn,N

]
,(6.17)

where

dn,N = NGN
(

1
2 −

1
N

) sin(2nπ/N)
2nπ

.(6.18)
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It is clear from (3.13) and (6.18) that

1
n

∞∑
n=N

d2
n,N <∼ N

2GN
(

1
2 −

1
N

)2 ∞∑
n=N

1
n3

<∼ (lnN)2 .(6.19)

On the other hand, using (3.10) and Lemma 6.1 we find

GN
(

1
2 −

1
N

)
=

N∑
n=1

1
4n− 3

cos
(

4n− 3
N

π

)
=

1
4

ln(4N − 3) +O(1) for n < N ,

and hence we obtain from (6.18)

dn,N =
1
4

ln(4N − 3) +
lnN
N2

O(n2) +O(1) for n < N .(6.20)

Lemma 6.5. It holds that
∞∑
n=1

1
n

(
N∑
m=1

bm,n

)2

<∼ lnN for N ≥ 4.

Proof. As in the proof of Lemma 6.2, we have
∑∞
n=3N+1

1
n

(∑N
m=1 bm,n

)2
<∼ 1.

On the other hand, in view of

|1− cos
(
(2n+ 4m− 3)π/N

)
| <∼

(
2n+ 4m− 3

N

)2

,

|1− cos
(
(2n− 4m+ 3)π/N

)
| <∼

(
2n− 4m+ 3

N

)2

,

which hold for 1 ≤ n ≤ 3N , we have
∣∣∣∑N

m=1 bm,n

∣∣∣ <∼ 1 for 1 ≤ n ≤ 3N , and
therefore Lemma 6.1 implies that

3N∑
n=1

1
n

(
N∑
m=1

bm,n

)2

<∼
3N∑
n=1

1
n
<∼ lnN .

Lemma 6.6. It holds that |HN |2H1/2
00 (0,1/2)

≈ (lnN)3 for N ≥ 4.

Proof. According to Lemma 3.1, we have |HN |2
H

1/2
00 (0,1/2)

≈
∑∞

n=1 nβ
2
n. We deduce

immediately from (6.17), (6.19), (6.20) and Lemmas 6.2–6.5 that
∞∑
n=1

nβ2
n <∼ (lnN)3 .

To prove the reverse estimate, we observe from (6.6) and Lemma 6.1 that

cn ≤
1
2

ln
(

2n+ 4N − 3
2n+ 1

)
+O

(
1
n

)
for n < N ,

which together with (6.4), (6.5), (6.17) and (6.20) imply that

βn = (−1)n
2
nπ

(γn + δn + ρn) ,

where

γn ≥
1
4

ln(2n+ 1) , δn =
lnN
N2

O(n2) and ρn = O(1) .
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Hence we have, by Lemma 6.1,
∞∑
n=1

nβ2
n ≥

N−1∑
n=1

nβ2
n ≥

N−1∑
n=1

4
nπ2

[
γ2
n

2
− (δn + ρn)2

]
>∼ (lnN)3 .

Lemma 6.7. It holds that |Π̂ρHN |2H1/2
00 (0,1/2)

≈ (lnN)3 for N ≥ 4.

Proof. We have, by (6.14),

(
HN − Π̂ρHN

)
(x) =

{(
GN − Π̂ρGN

)
(x) 0 ≤ x ≤ 1

2 −
1
N ,

0 1
2 −

1
N ≤ x ≤

1
2 .

Therefore, as in the proof of Lemma 3.3, standard interpolation error estimates and
(3.11) imply that

|HN − Π̂ρHN |H1/2
00 (0,1/2)

<∼ 1 .(6.21)

The lemma follows from (6.21) and Lemma 6.6.

Proof of Lemma 3.8. By the symmetry of ĝρ, it suffices to estimate |p̂ρ|H1/2
00 (0, 12 +ρ)

.
For N = 2, the estimate (3.27) is trivial. Let N be greater than or equal to 4,

and p̂ρ (resp. Π̂ρHN ) be extended to be zero outside (0, 1
2 + ρ) (resp. (0, 1/2)).

By (3.25), (6.14) and recall ĝρ = Π̂ρGN , we see that p̂ρ − Π̂ρHN is a continuous
function that vanishes outside (1

2 − ρ,
1
2 + ρ). Moreover, it is linear on (1

2 − ρ,
1
2 )

and (1
2 ,

1
2 + ρ), and equals 1

2GN (1/2) at x = 1/2. For such a function, a scaling
argument yields

|p̂ρ − Π̂ρHN |H1/2(R) ≈ GN (1/2) .(6.22)

The estimate (3.27) for N ≥ 4 follows from (3.2), (3.13), (6.22), and Lemma 6.7.
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