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ERROR ESTIMATES
FOR THE FINITE ELEMENT APPROXIMATION

OF LINEAR ELASTIC EQUATIONS
IN AN UNBOUNDED DOMAIN

HOUDE HAN AND WEIZHU BAO

Abstract. In this paper we present error estimates for the finite element
approximation of linear elastic equations in an unbounded domain. The finite
element approximation is formulated on a bounded computational domain
using a nonlocal approximate artificial boundary condition or a local one.
In fact there are a family of nonlocal approximate boundary conditions with
increasing accuracy (and computational cost) and a family of local ones for
a given artificial boundary. Our error estimates show how the errors of the
finite element approximations depend on the mesh size, the terms used in the
approximate artificial boundary condition, and the location of the artificial

boundary. A numerical example for Navier equations outside a circle in the
plane is presented. Numerical results demonstrate the performance of our error
estimates.

1. Introduction

Let Γi be a bounded simple closed curve in R2 and Ω be the unbounded do-
main with the boundary Γi (see Figure 1). We consider the following linear elastic
problem:

−µ4 u− (λ+ µ) grad div u = f in Ω,(1.1)
u = 0 on Γi,(1.2)

u is bounded when r =
√
x2

1 + x2
2 → +∞,(1.3)

where x = (x1, x2) is the Cartesian coordinate system and the corresponding polar
coordinate system is (r, θ), u = (u1, u2)T is the displacement, λ, µ > 0 are the Lamé
constants and f = (f1, f2)T is the density of applied body force whose support is
compact.

Since the problem (1.1)-(1.3) is defined in the unbounded domain Ω, in finding
the numerical solution of this problem, it is often difficult to use the classical finite
element method or finite difference method directly. In the last two decades, several
methods were proposed to solve boundary value problems in unbounded domains
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[6]. One of the most popular methods is to introduce an artificial boundary and
set up artificial boundary conditions on it. Then the original problem is reduced to
a boundary value problem in a bounded computational domain. Thus a numerical
approximation of the original problem can be obtained by solving the reduced
problem. In recent years many authors have worked on this subject for various
problems by different techniques, see Engquist and Majda [3], Goldstein [11], Feng
[4], Han and Wu [20, 21], Hagstrom and Keller [12, 13], Halpern and Schatzman
[14], Han et al. [18, 19], Han and Bao [15, 16, 17], Givoli et al. [7, 8, 9], and the
references therein.

In the above works, several authors also gave error estimates for the numerical
solution, see [20, 21, 10]. But their error estimates only depend on the mesh size
and the approximate artificial boundary condition. How the error depends on the
location of the artificial boundary is unknown. But this is a very interesting problem
for engineers. In this paper, we will discuss high-order local artificial boundary
conditions and provide error estimates for the finite element approximation of the
exterior problem (1.1)-(1.3). Our error estimates depend on not only the mesh
size and the approximate artificial boundary condition but also the location of the
artificial boundary.

The layout of this paper is as follows. In Section 2 we derive high-order local arti-
ficial boundary conditions at a given artificial boundary for the problem (1.1)-(1.3).
In Section 3 we introduce the finite element formulation of the problem (1.1)-(1.3) in
a bounded computational domain using an approximate nonlocal artificial bound-
ary condition and prove an error estimate for the finite element approximation. In
Section 4 we propose the finite element formulation of the problem (1.1)-(1.3) in a
bounded computational domain using a high-order local artificial boundary condi-
tion and establish an error estimate for the finite element approximation. Finally
in Section 5 we report on some numerical experiments.

2. High-order local artificial boundary conditions

In order to derive high-order local artificial boundary conditions, we recall here
the derivation of the exact boundary condition at a given artificial boundary for
the linear elastic problem (1.1)-(1.3) as described in [7, 21].

Introducing a circle Γe with radius R such that supp f ⊂ BR(0) := {x ∈ R2 :
|x| < R}, then Ω is divided into two parts: the unbounded part Ωe := Ω \ BR(0)

Figure 1.
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and the bounded part Ωi := Ω \ Ω̄e (see Figure 1). The restriction of a solution u
of the problem (1.1)-(1.3) to the unbounded domain Ωe is then a solution of the
following problem:

−µ4 u− (λ+ µ) grad div u = 0 in Ωe,(2.1)
u|Γe = u(R, θ),(2.2)

u is bounded when r =
√
x2

1 + x2
2 → +∞.(2.3)

We know that the general solution of (2.1)-(2.3) is (see [21] for detail)

ui(r, θ) = (r2 −R2)Wi(r, θ) +Gi(r, θ) R ≤ r < +∞ 0 ≤ θ ≤ 2π i = 1, 2,
(2.4)

where G1, G2, W1 and W2 are harmonic functions which satisfy

Gi(r, θ) =
ai0
2

+
∞∑
n=1

(ain cosnθ + bin sinnθ)
Rn

rn

R ≤ r < +∞ 0 ≤ θ ≤ 2π i = 1, 2,

(2.5)

Wi(r, θ) =
∞∑
n=3

(pin cosnθ + qin sinnθ)
Rn−2

rn

R ≤ r < +∞ 0 ≤ θ ≤ 2π i = 1, 2;

(2.6)

with κ = µ
λ+µ and

ain =
1
π

∫ 2π

0

Gi(R, θ) cosnθ dθ =
1
π

∫ 2π

0

ui(R, θ) cosnθ dθ i = 1, 2 n ≥ 0,

(2.7)

bin =
1
π

∫ 2π

0

Gi(R, θ) sinnθ dθ =
1
π

∫ 2π

0

ui(R, θ) sinnθ dθ i = 1, 2 n ≥ 1;

(2.8)

p1
n = q2

n =
n− 2
2 + 4κ

(
a1
n−2 − b2n−2

)
, q1

n = −p2
n =

n− 2
2 + 4κ

(
b1n−2 + a2

n−2

)
n ≥ 3.

(2.9)

Let ε(u) = (εij(u))2×2 and σ(u) = (σij(u))2×2 be the strain and stress tensors,
respectively, which satisfy

εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, σij(u) = λ div u δij + 2µεij(u) 1 ≤ i, j ≤ 2.

(2.10)

Furthermore let σn(u) = (σn1(u), σn2(u))T be the normal stress corresponding to
the displacement u at the artificial boundary Γe, say

σni(u) = σi1(u) cos θ + σi2(u) sin θ|Γe i = 1, 2.(2.11)
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Combining (2.4) with r = R, (2.10) and (2.11), a computation shows (see details
in [21])

σn(u) =
(
σn1(u)
σn2(u)

)
=


µ(2 + 2κ)

1 + 2κ
∂G1

∂r

∣∣∣∣
r=R

− 2µκ
(1 + 2κ)R

∂G2

∂θ

∣∣∣∣
r=R

µ(2 + 2κ)
1 + 2κ

∂G2

∂r

∣∣∣∣
r=R

+
2µκ

(1 + 2κ)R
∂G1

∂θ

∣∣∣∣
r=R

 .

(2.12)

We differentiate (2.5) with respect to r on noting (2.4) and (2.12) and set r = R to
obtain

σn1(u) = −2 + 2κ
1 + 2κ

µ

πR

∞∑
n=1

n

∫ 2π

0

u1(R, φ) cosn(θ − φ) dφ− 2κ
1 + 2κ

µ

R

∂u2(R, θ)
∂θ

=
−1

1 + 2κ
µ

πR

∞∑
n=1

n

∫ 2π

0

[(2 + 2κ)u1(R, φ) cosn(θ − φ)

− 2κu2(R, θ) sinn(θ − φ)]dφ

≡ T1(u),

(2.13)

σn2(u) =
2κ

1 + 2κ
µ

R

∂u1(R, θ)
∂θ

− 2 + 2κ
1 + 2κ

µ

πR

∞∑
n=1

n

∫ 2π

0

u2(R, φ) cosn(θ − φ) dφ

=
−1

1 + 2κ
µ

πR

N∑
n=1

n

∫ 2π

0

[2κu1(R, θ) sinn(θ − φ)

+(2 + 2κ)u2(R, φ) cosn(θ − φ)] dφ

≡ T2(u).

(2.14)

This is the desired exact boundary condition at Γe for the problem (1.1)-(1.3). Thus
the restriction of the solution u of the problem (1.1)-(1.3) to the bounded domain
Ωi is a solution of the following problem.
(P) Find u such that

−µ4 u− (λ+ µ) grad div u = f in Ωi,(2.15)
u = 0 on Γi,(2.16)

σn(u) = (T1(u), T2(u))T on Γe.(2.17)

Let

TN1 (u) =
−1

1 + 2κ
µ

πR

N∑
n=1

n

∫ 2π

0

[(2 + 2κ)u1(R, φ) cosn(θ − φ)

− 2κu2(R, θ) sinn(θ − φ)]dφ,

(2.18)

TN2 (u) =
−1

1 + 2κ
µ

πR

N∑
n=1

n

∫ 2π

0

[2κu1(R, θ) sinn(θ − φ)

+ (2 + 2κ)u2(R, φ) cosn(θ − φ)]dφ.

(2.19)
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Then we obtain a series of approximate artificial boundary conditions at Γe

σn(u) = TN(u) ≡
(
TN1 (u), TN2 (u)

)T
on Γe N = 0, 1, 2, . . . ,

(2.20)

where T 0(u) = (0, 0)T is the stress free boundary condition which is often used
in engineering literature. Then the original problem (1.1)-(1.3) can be reduced
to the following problem defined on the bounded domain Ωi approximately for
N = 0, 1, 2, . . . .
(PN) Find u

N
such that

−µ4 u
N
− (λ+ µ) grad div u

N
= f in Ωi,(2.21)

u
N

= 0 on Γi,(2.22)

σn(u
N

) = TN(u
N

) on Γe.(2.23)

Now we discuss high-order local artificial boundary conditions at Γe for the
problem (1.1)-(1.3). We consider a solution u of the problem (1.1)-(1.3), which
consists of the first N harmonics at Γe. Thus we assume

ui(R, θ) =
ai0
2

+
N∑
n=1

(
ain cosnθ + bin sinnθ

)
i = 1, 2,(2.24)

where the a1
n, b1n, a2

n and b2n are constants (Fourier coefficients, see (2.7) and (2.8)).
Substituting (2.24) into (2.13) and (2.14), we get


σn1(u) = −2 + 2κ

1 + 2κ
µ

R

N∑
n=1

n
(
a1
n cosnθ + b1n sinnθ

)
− 2κ

1 + 2κ
µ

R

∂u2(R, θ)
∂θ

,

σn2(u) =
2κ

1 + 2κ
µ

R

∂u1(R, θ)
∂θ

− 2 + 2κ
1 + 2κ

µ

R

N∑
n=1

n
(
a2
n cosnθ + b2n sinnθ

)
.

(2.25)

It is desired to find a linear differential operator LN which does not depend on n,
such that

LN [1] = 0 LN [cosnθ] = n cosnθ LN [sinnθ] = n sinnθ n = 1, 2, . . . , N.
(2.26)

With such an operator at hand, noting (2.24), then (2.25) can be written


σn1(u) = −2 + 2κ

1 + 2κ
µ

R
LN [u1(R, θ)]− 2κ

1 + 2κ
µ

R

∂u2(R, θ)
∂θ

,

σn2(u) =
2κ

1 + 2κ
µ

R

∂u1(R, θ)
∂θ

− 2 + 2κ
1 + 2κ

µ

R
LN [u2(R, θ)].

(2.27)

The equality (2.27) is a local boundary condition at Γe which is exact for all solu-
tions consisting of at most the first N harmonics at Γe. Noting the fact that

d2m

dθ2m
cosnθ = (−1)mn2m cosnθ,

d2m

dθ2m
sinnθ = (−1)mn2m sinnθ

m ≥ 0 n ≥ 0,

(2.28)
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Table 1. The coefficients α
(N)
m in the first five local artificial

boundary conditions

α
(N)
1 α

(N)
2 α

(N)
3 α

(N)
4 α

(N)
5

N = 1 1
N = 2 7/6 −1/6
N = 3 74/60 −15/60 1/60
N = 4 533/420 −43/144 11/360 −1/1008
N = 5 3881/3780 −214/643 71/1728 −13/6048 1/25920

we can assume the operator LN has the following form:

LN [u(R, θ)] =
N∑
m=1

(−1)mα(N)
m

∂2m

∂θ2m
u(R, θ).(2.29)

Inserting (2.29) into (2.27), noting (2.25) and (2.24), we obtain

N∑
m=1

n2mα(N)
m = n n = 1, 2, . . . , N.(2.30)

It is straightforward to check that the linear system (2.30) has a unique solution
for any n ∈ N. Table 1 shows the coefficients α(N)

m in the first five local artificial
boundary conditions. In the paper [25] by A. Sidi, a similar linear system was
discussed. Combining (2.27) and (2.29), we get high-order local artificial boundary
conditions at Γe for the problem (1.1)-(1.3):

σn(u) = T̃N(u) ≡
(
T̃N1 (u), T̃N2 (u)

)T
N = 1, 2, . . . ,(2.31)

where


T̃N1 (u) = −2 + 2κ

1 + 2κ
µ

R

N∑
m=1

(−1)mα(N)
m

∂2mu1(R, θ)
∂θ2m

− 2κ
1 + 2κ

µ

R

∂u2(R, θ)
∂θ

,

T̃N2 (u) =
2κ

1 + 2κ
µ

R

∂u1(R, θ)
∂θ

− 2 + 2κ
1 + 2κ

µ

R

N∑
m=1

(−1)mα(N)
m

∂2mu2(R, θ)
∂θ2m

.

(2.32)

Then the original problem (1.1)-(1.3) can be reduced to the following problem
defined on the bounded domain Ωi approximately for N = 1, 2, . . . .
(P̃N) Find ũN such that

−µ4 ũ
N
− (λ+ µ) grad div ũ

N
= f in Ωi,(2.33)

ũN = 0 on Γi,(2.34)

σn(ũ
N

) = T̃N(ũ
N

) on Γe.(2.35)
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3. The error estimates for the case

of using nonlocal artificial boundary conditions

In the work [21], the authors have already given error estimates for the finite
element approximation of the problem (PN ). But from their estimates, we don’t
know how the errors depend on the location of the artificial boundary. In this
section, we will present new error estimates for the finite element approximation
of problems (PN ). These error estimates depend not only the mesh size and the
approximate artificial boundary condition but also the location of the artificial
boundary. This kind of error estimate is very useful in engineering applications.

Let Hm(Ωi) and Hs(Γe) be the usual Sobolev spaces on the domain Ωi and the
boundary Γe with integer m and real number s. Suppose

V = {v = (v1, v2)T ∈ H1(Ωi)×H1(Ωi) | v|Γi = 0}.

Then the boundary value problem (P) is equivalent to the following variational
problem.
(VP) Find u ∈ V such that

a(u, v) + b(u, v) = f(v) ∀v ∈ V,(3.1)

where

a(u, v) =
∫

Ωi

λ div u div v + 2µ
2∑

i,j=1

εij(u)εij(v)

 dx
≡
∫

Ωi

[λ div u div v + 2µε(u) : ε(v)] dx ∀u, v ∈ V,

(3.2)

b(u, v) =
2 + 2κ
1 + 2κ

µ

π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

[u1(R, φ)v1(R, θ)

+ u2(R, φ)v2(R, θ)] cosn(θ − φ)dθ dφ

+
2κ

1 + 2κ
µ

π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

[u1(R, φ)v2(R, θ)

− u2(R, φ)v1(R, θ)] sinn(θ − φ)dθ dφ

=
2 + 2κ
1 + 2κ

µ

π

∞∑
n=1

∫ 2π

0

∫ 2π

0

[
∂u1(R, φ)

∂φ

∂v1(R, θ)
∂θ

+
∂u2(R, φ)

∂φ

∂v2(R, θ)
∂θ

]
· cosn(θ − φ)

n
dθ dφ

+
2κ

1 + 2κ
µ

π

∞∑
n=1

∫ 2π

0

∫ 2π

0

[
∂u1(R, φ)

∂φ

∂v2(R, θ)
∂θ

− ∂u2(R, φ)
∂φ

∂v1(R, θ)
∂θ

]
· sinn(θ − φ)

n
dθ dφ ∀u, v ∈ V,

(3.3)

f(v) =
∫

Ωi

f · v dx ∀v ∈ V.

(3.4)
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Furthermore let

b
N

(u, v) =
2 + 2κ
1 + 2κ

µ

π

N∑
n=1

n

∫ 2π

0

∫ 2π

0

[u1(R, φ)v1(R, θ)

+ u2(R, φ)v2(R, θ)] cosn(θ − φ)dθ dφ

+
2κ

1 + 2κ
µ

π

N∑
n+1

n

∫ 2π

0

∫ 2π

0

[u1(R, φ)v2(R, θ)

− u2(R, φ)v1(R, θ)] sinn(θ − φ)dθ dφ
∀u, v ∈ V.

(3.5)

Then the boundary value problem (PN ) is equivalent to the following variational
problem.
(VPN ) Find u

N
∈ V such that

a(uN , v) + bN (uN , v) = f(v) ∀v ∈ V.(3.6)

If we replace V by its finite element subspace V h in which h represents the mesh
size [11], then the finite element approximation of the problem (VPN ) is as follows.
(VPhN ) Find uh

N
∈ V h such that

a(uh
N
, vh) + b

N
(uh

N
, vh) = f(vh) ∀vh ∈ V h.(3.7)

We note that the symmetric bilinear form a(·, ·) is bounded and coercive on
V × V from the Körn inequality [23] and Poincaré inequality [1], i.e., there exist
positive constants M1, M2 such that

|a(u, v)| ≤M1‖u‖V · ‖v‖V ∀u, v ∈ V,(3.8)
M2‖v‖2V ≤ a(v, v) ∀v ∈ V.(3.9)

Thus we can define an equivalent norm on the space V :

‖v‖∗ = [a(v, v)]1/2 ∀v ∈ V.(3.10)

Therefore we have that

|a(u, v)| ≤ ‖u‖∗ · ‖v‖∗ ∀u, v ∈ V,(3.11)
‖v‖2∗ ≤ a(v, v) ∀v ∈ V.(3.12)

For the symmetric bilinear forms b(·, ·) and b
N

(·, ·), we have that

Lemma 3.1. The following inequality holds:

0 ≤ bN (v, v) ≤ b(v, v) ≤ a(v, v) ≡ ‖v‖2∗ ∀v ∈ V N ≥ 0,(3.13)
|b(u, v)| ≤ ‖u‖∗ · ‖v‖∗, |b

N
(u, v)| ≤ ‖u‖∗ · ‖v‖∗ ∀u, v ∈ V N ≥ 0.(3.14)

where b(u, v) and b
N

(u, v) are defined in (3.3) and (3.5), respectively.

Proof. For any given u, v ∈ V , we formally expand u|Γe = u(R, θ) and v|Γe =
v(R, θ) in Fourier series, i.e.,

ui(R, θ) = ai0
2 +

∞∑
n=1

(ain cosnθ + bin sinnθ) i = 1, 2,(3.15)

vi(R, θ) = ci0
2 +

∞∑
n=1

(cin cosnθ + din sinnθ) i = 1, 2,(3.16)
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where ain, b
i
n are defined in (2.7) and (2.8), and

cin=
1
π

∫ 2π

0

vi(R, θ) cosnθ dθ, din=
1
π

∫ 2π

0

vi(R, θ) sinnθ dθ, i=1, 2 n≥0.

(3.17)

Inserting (3.15) and (3.16) into (3.3) and (3.5), we get

b(u, v) =
2µπ

1 + 2κ

∞∑
n=1

n

[
2∑
i=1

(ainc
i
n + bind

i
n) + κ(a1

n + b2n)(c1n + d2
n)

+ κ(b1n − a2
n)(d1

n − c2n)

]
,

(3.18)

b
N

(u, v) =
2µπ

1 + 2κ

N∑
n=1

n

[
2∑
i=1

(ainc
i
n + bind

i
n) + κ(a1

n + b2n)(c1n + d2
n)

+ κ(b1n − a2
n)(d1

n − c2n)

]
.

(3.19)

We denote Q the domain enclosed by Γi, and Ω̂ the disk bounded by Γe (i.e., Ω̂ =
Q∪Ωi ∪ Γi) (see Figure 1). Then for any v ∈ V , we define the function v(0) which
satisfies

−µ4 v(0) − (λ+ µ) grad div v(0) = 0 in Ωi,(3.20)

v(0) = v on Γe ∪ Γi.(3.21)

v(0) ≡ 0 in Q.(3.22)

Then we know v(0) ∈
[
H1(Ω̂)

]2
. We also define the function v(1) ∈

[
H1(Ω̂)

]2

which
satisfies

−µ4 v(1) − (λ+ µ) grad div v(1) = 0 in Ω̂,(3.23)

v(1) = v on Γe.(3.24)

Then v(0)|Ωi minimizes the functional
∫

Ωi

[
λ(divw)2 + 2µ|ε(w)|2

]
dx among all

functions w ∈ [H1(Ωi)]2 which are equal to v on Γe ∪ Γi. Similarly, v(1) minimizes

the functional
∫

Ω̂

[
λ(divw)2 +2µ|ε(w)|2

]
dx among all functions w ∈

[
H1(Ω̂)

]2
which are equal to v on Γe. Therefore we have that

a(v, v) =
∫

Ωi

[
λ(div v)2 + 2µ|ε(v)|2

]
dx ≥ a(v(0), v(0))

=
∫

Ω̂

[
λ(div v(0))2 + 2µ|ε(v(0))|2

]
dx

≥
∫

Ω̂

[
λ(div v(1))2 + 2µ|ε(v(1))|2

]
dx.

(3.25)
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Recalling that v(1) is a solution of the problem (3.23)-(3.24), using separation of
variables and noting v(1)|Γe = v(1)(R, θ) = v(R, θ), we obtain

v
(1)
1 (r, θ) =

R2 − r2

2 + 4κ

∞∑
n=0

(n+ 2)[(c1n+2 − d2
n+2) cosnθ

+ (d1
n+2 + c2n+2) sinnθ]

rn

Rn+2

+
c10
2

+
∞∑
n=1

rn

Rn
(c1n cosnθ + d1

n sinnθ) 0 ≤ r ≤ R 0 ≤ θ ≤ 2π,

(3.26)

v
(1)
2 (r, θ) =

R2 − r2

2 + 4κ

∞∑
n=0

(n+ 2)[−(d1
n+2 + c2n+2) cosnθ

+ (c1n+2 − d2
n+2) sinnθ]

rn

Rn+2

+
c20
2

+
∞∑
n=1

rn

Rn
(c2n cosnθ + d2

n sinnθ) 0 ≤ r ≤ R 0 ≤ θ ≤ 2π,

(3.27)

where

cin =
1
π

∫ 2π

0

v
(1)
i (R, θ) cosnθ dθ =

1
π

∫ 2π

0

vi(R, θ) cosnθ dθ i = 1, 2 n ≥ 0,

(3.28)

din =
1
π

∫ 2π

0

v
(1)
i (R, θ) sinnθ dθ =

1
π

∫ 2π

0

vi(R, θ) sinnθ dθ i = 1, 2 n ≥ 1.

(3.29)

Combining (3.25), (3.26) and (3.27) with r = R, (3.28), (3.29), (2.10) and (2.11)
with u = v(1), (3.18) and (3.19) with u = v, and integration by parts, we obtain

a(v, v) ≥
∫

Ω̂

[
λ(div v(1))2 + 2µ|ε(v(1))|2

]
dx =

∫
Γe

σn(v(1)) · v(1) ds

=
2 + 2κ
1 + 2κ

µ

π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

[v(1)
1 (R, φ)v(1)

1 (R, θ)

+ v
(1)
2 (R, φ)v(1)

2 (R, θ)] cosn(θ − φ)dθ dφ

+
2κ

1 + 2κ
µ

π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

[v(1)
1 (R, φ)v(1)

2 (R, θ)

− v(1)
2 (R, φ)v(1)

1 (R, θ)] sinn(θ − φ)dθ dφ

= b(v(1), v(1)) = b(v, v)

=
2µπ

1 + 2κ

∞∑
n=1

n
[
(c1n)2 + (d1

n)2 + (c2n)2 + (d2
n)2 + κ(c1n + d2

n)2 + κ(d1
n − c2n)2

]
≥ 2µπ

1 + 2κ

N∑
n=1

n
[
(c1n)2 + (d1

n)2 + (c2n)2 + (d2
n)2 + κ(c1n + d2

n)2 + κ(d1
n − c2n)2

]
= b

N
(v, v) ≥ 0.

(3.30)
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Then the desired inequality (3.13) is proved. Thus the inequality (3.14) follows
from (3.13) and the Schwarz inequality immediately.

It follows immediately from (3.11), (3.12) (3.14) and (3.13) that the variational
problems (VP), (VPN ) and (VPhN ) are well posed; that is, for f ∈ V ′, the dual of
V , there exists a unique u ∈ V solving (VP), a unique u

N
∈ V solving (VPN ), a

unique uh
N
∈ V h solving (VPhN ), and

‖u‖∗ + ‖u
N
‖∗ + ‖uh

N
‖∗ ≤ 3‖f‖V ′ .(3.31)

Note that the well-posedness of (VP) implies immediately the well-posedness of the
original problem (1.1)-(1.3).

Let R0 = max{|x| : x ∈ supp f ∪ Γi}, Γ0 = {(R0, θ) : 0 ≤ θ ≤ 2π} and
Ω0 = {x ∈ Ωi : |x| < R0} and Γr = {(r, θ) : 0 ≤ θ ≤ 2π}. We recall an equivalent
definition of Sobolev space Hs(Γr) for any real number s [22]:

w ∈ Hs(Γr)⇐⇒ w(r, θ) =
p0

2
+
∞∑
m=1

(pm cosmθ + qm sinmθ)

and
πp2

0

2
+
∞∑
m=1

π(1 +m2)s(p2
m + q2

m) <∞.

Thus we use

|w|s,Γr =

[ ∞∑
m=1

πm2s(p2
m + q2

m)

]1/2

(3.32)

as a semi-norm of the space Hs(Γr). Then we have the following estimate.

Lemma 3.2. Suppose u ∈ V is a solution of the exterior problem (1.1)-(1.3) and
there exists an integer k ≥ 1 such that u|Γ0 ∈ [Hk+ 1

2 (Γ0)]2. Then we have that

|b(u, v)− b
N

(u, v)| ≤ C0

(N + 1)k−1

(
R0

R

)max{1,N−1}
|u|k+ 1

2 ,Γ0
· ‖v‖∗ ∀v ∈ V,

(3.33)

where C0 is a generic constant independent of u, N , h and R.

Proof. Assume that

ui(R0, θ) = pi0
2 +

∞∑
n=1

(pin cosnθ + qin sinnθ) i = 1, 2,(3.34)

vi(R, θ) = ci0
2 +

∞∑
n=1

(cin cosnθ + din sinnθ) i = 1, 2,(3.35)

where cin and din are defined in (3.28) and (3.29), respectively, and

pin =
1
π

∫ 2π

0

ui(R0, θ) cosnθ dθ, qin =
1
π

∫ 2π

0

ui(R0, θ) sinnθ dθ,

i = 1, 2 n ≥ 0.

(3.36)
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Note that u satisfies the homogeneous Navier equations (say (1.1) with f = 0) in
the domain {x : |x| > R0}. By separation of variables, we get

u1(r, θ) =
r2 −R2

0

2 + 4κ

∞∑
n=3

(n− 2)[(p1
n−2 − q2

n−2) cosnθ

+ (q1
n−2 + p2

n−2) sinnθ]
Rn−2

0

rn

+
p1

0

2
+
∞∑
n=1

(p1
n cosnθ + q1

n sinnθ)
Rn0
rn

R0 ≤ r 0 ≤ θ ≤ 2π,

(3.37)

u2(r, θ) =
r2 −R2

0

2 + 4κ

∞∑
n=3

(n− 2)[−(q1
n−2 + p2

n−2) cosnθ

+ (p1
n−2 − q2

n−2) sinnθ]
Rn−2

0

rn

+
p2

0

2
+
∞∑
n=1

(p2
n cosnθ + q2

n sinnθ)
Rn0
rn

R0 ≤ r 0 ≤ θ ≤ 2π.

(3.38)

Setting r = R in (3.37) and (3.38), we obtain

ui(R, θ) =
ai0
2

+
∞∑
n=1

(ain cosnθ + bin sinnθ), i = 1, 2,(3.39)

where

a1
n =

(
R0

R

)n{ p1
n n = 0, 1, 2,
p1
n + (n−2)(R2−R2

0)

(2+4κ)R2
0

(p1
n−2 − q2

n−2) n ≥ 3;

(3.40)

b1n =
(
R0

R

)n{ q1
n n = 1, 2,
q1
n + (n−2)(R2−R2

0)

(2+4κ)R2
0

(q1
n−2 + p2

n−2) n ≥ 3;

(3.41)

a2
n =

(
R0

R

)n{ p2
n n = 0, 1, 2,
p2
n −

(n−2)(R2−R2
0)

(2+4κ)R2
0

(q1
n−2 + p2

n−2) n ≥ 3;

(3.42)

b2n =
(
R0

R

)n{ q2
n n = 1, 2,
q2
n + (n−2)(R2−R2

0)

(2+4κ)R2
0

(p1
n−2 − q2

n−2) n ≥ 3.

(3.43)
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From (3.39), (3.35), (3.18) and (3.19), noting (3.40)-(3.43), (3.36), (3.14) and (3.13),
we obtain

|b(u, v)− b
N

(u, v)|

=
2µπ

1 + 2κ

∣∣∣∣∣
∞∑

n=N+1

n

[
2∑
i=1

(ainc
i
n + bind

i
n) + κ(a1

n + b2n)(c1n + d2
n)

+ κ(b1n − a2
n)(d1

n − c2n)

]∣∣∣∣∣
≤ 2µπ

1 + 2κ

[ ∞∑
n=N+1

n((a1
n)2 + (b1n)2 + (a2

n)2 + (b2n)2

+ κ(a1
n + b2n)2 + κ(b1n − a2

n)2)

]1/2

·
[ ∞∑
n=N+1

n
(
(c1n)2+(d1

n)2+(c2n)2+(d2
n)2+κ(c1n+d2

n)2+κ(c1n − d2
n)2
)]1/2

≤ C0

[ ∞∑
n=N+1

n

2∑
i=1

(
(pin)2 + (qin)2

) R2n
0

R2n

+
∞∑

n=max{1,N−1}
n3

2∑
i=1

(
(pin)2 + (qin)2

) R2n
0

R2n

1/2

· ‖v‖∗

≤ C0

(N + 1)k−1

(
R0

R

)max{1,N−1}
|u|k+ 1

2 ,Γ0
· ‖v‖∗.

(3.44)

Combining Lemmas 3.1 and 3.2, we get the following error estimate.

Theorem 3.1. Suppose u is the solution of the problem (1.1)-(1.3) and uh
N

is the
solution of the problem (VPhN ). Suppose f ∈ [L2(Ωi)]2 and u|Γ0 ∈ [Hk+ 1

2 (Γ0)]2

(k ≥ 1). Then we have the following error estimate:

‖u− uh
N
‖∗ ≤ C0

[
inf

vh∈V h
‖u− vh‖∗ +

1
(N + 1)k−1

(
R0

R

)max{1,N−1}
|u|k+ 1

2 ,Γ0

]
.

(3.45)

Proof. Let e := u − uh
N

, ev := vh − u and eh := vh − uh
N

. Subtracting (3.7) from
(3.1), we have that

a(e, vh) + b
N

(e, vh) = b(u, vh)− b
N

(u, vh) ∀ vh ∈ V h.
(3.46)
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From (3.12), (3.11), (3.14), (3.13), (3.46) with vh = eh and (3.33), we have that

‖eh‖2∗ = a(eh, eh) ≤ a(eh, eh) + b
N

(eh, eh)

= a(ev, eh) + b
N

(ev, eh) + a(e, eh) + b
N

(e, eh)

= a(ev, eh) + b
N

(ev, eh) + b
N

(u, eh)− b(u, eh)

≤ 2‖ev‖∗ · ‖eh‖∗ +
C0

(N + 1)k−1

(
R0

R

)max{1,N−1}
|u|k+ 1

2 ,Γ0
· ‖eh‖∗.

(3.47)

Thus

‖eh‖∗ ≤ C0

[
‖ev‖∗ +

1
(N + 1)k−1

(
R0

R

)max{1,N−1}
|u|k+ 1

2 ,Γ0

]
∀vh ∈ V h.

(3.48)

Then the desired result (3.45) follows from (3.48) and the triangle inequality.
If we suppose u ∈ [Hp+1(Ωi)]2, u|Γ0 ∈ [Hp+ 1

2 (Γ0)]2, and the interpolation error
of V h approximate to V is [2]

inf
vh∈V h

‖u− vh‖V ≤ C0h
p|u|p+1,Ωi ,(3.49)

then combining (3.49) and (3.45), noting the Körn inequality and Poincaré inequal-
ity, we get

‖u− uh
N
‖1,Ω0 ≤ C0|u− uhN |1,Ω0 ≤ C0

∫
Ω0

[
λ|div(u− uh

N
)|2 + 2µ|ε(u− uh

N
)|2
]
dx

≤ C0 a(u− uh
N
, u− uh

N
)

≤ C0

[
hp|u|p+1,Ωi +

1
(N + 1)p−1

(
R0

R

)max{1,N−1}
|u|p+ 1

2 ,Γ0

]
.

(3.50)

4. The error estimates for the case

of using high-order local artificial boundary conditions

In this section, we will present the finite element formulation of the problem
(P̃N) and provide an error estimate for the finite element approximation. To cope
with the high-order local artificial boundary condition (2.31), we define

Ṽ = {v ∈ [H1(Ωi)]2 | v|Γe ∈ [HN (Γe)]2 v|Γi = 0}.
Let

b̃
N

(u, v) =−
∫

Γe

v · T̃N(u) ds

=
µ(2 + 2κ)

1 + 2κ

∫ 2π

0

N∑
m=1

α(N)
m

[
∂mu1(R, θ)

∂θm
∂mv1(R, θ)

∂θm

+
∂mu2(R, θ)

∂θm
∂mv2(R, θ)

∂θm

]
dθ

+
2µκ

1 + 2κ

∫ 2π

0

[
∂u2(R, θ)

∂θ
v1(R, θ)− ∂u1(R, θ)

∂θ
v2(R, θ)

]
dθ ∀u, v ∈ Ṽ .

(4.1)
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Then the weak form of the problem (P̃N ) is as follows.
(ṼPN ) Find ũN ∈ Ṽ such that

a(ũ
N
, v) + b̃

N
(ũ

N
, v) = f(v) ∀v ∈ Ṽ .(4.2)

If we replace Ṽ by its finite dimensional subspace, Ṽ h ⊂ Ṽ in which h is the mesh
size [2] (a family of such subspaces were introduced by Givoli et al. [10]), then the
finite element approximation of the problem (ṼPN ) is as follows.
(ṼPhN ) Find ũh

N
∈ Ṽ h such that

a(ũh
N
, vh) + b̃

N
(ũh

N
, vh) = f(vh) ∀vh ∈ Ṽ h.(4.3)

From (3.11) and (3.12), the well-posedness of the problems (ṼPN ) and (ṼPhN )
depend on the property of the symmetric bilinear form b̃N (u, v). For any u, v ∈ Ṽ ,
we can also expand u|Γe = u(R, θ) and v|Γe = v(R, θ) in Fourier series (see (3.15)
and (3.16)). Substituting (3.15) and (3.16) into (4.1) and using the orthogonality
of the cosines and sines, we obtain

b̃
N

(u, v) =
2µ

1 + 2κ

∞∑
n=1

[γ(N)
n

(
a1
nc

1
n + b1nd

1
n + a2

nc
2
n + b2nd

2
n

)
+ κn(a1

n + b2n)(c1n + d2
n) + κn(b1n − a2

n)(d1
n − c2n)

]
∀u, v ∈ Ṽ ,

(4.4)

b̃
N

(v, v) =
2µ

1 + 2κ

∞∑
n=1

[
γ(N)
n

2∑
i=1

((cin)2 + (din)2)

+ κn(c1n + d2
n)2 + κn(d1

n − c2n)2

]
∀v ∈ Ṽ ,

(4.5)

where

γ(N)
n = (1 + κ)

N∑
m=1

n2mα(N)
m − κn ≡ (1 + κ)β(N)

n − κn ∀n ∈ N.

(4.6)

Thus the property of b̃
N

(u, v) depends on the property of γ(N)
n (or β(N)

n ).
Table 3 shows α(N)

m is positive for odd m, and is negative for even m > 0 for
1 ≤ N ≤ 5. This property can be demonstrated numerically for 1 ≤ N ≤ 20 (in
fact this property can be proved for any positive integer N using the method given
by Sidi in [25]). Thus we have that

α
(N)
1 > 0, α

(N)
N =

{
> 0 N is odd,
< 0 N is even, 1 ≤ N ≤ 20.

(4.7)

From the engineering application point of view, the parameter N in (2.31) is always
less than 10. Therefore in this paper we assume N ≤ 20 in (2.31).

Then for the β(N)
n we have

Lemma 4.1. If 1 ≤ N ≤ 20 is odd, then

β(N)
n ≥ n ∀n ≥ 1 lim

n→+∞

β
(N)
n

n2N
= α

(N)
N > 0.(4.8)
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If 1 ≤ N ≤ 20 is even, then

β(N)
n < 0 when n is sufficiently large lim

n→+∞

β
(N)
n

n2N
= α

(N)
N < 0.

(4.9)

Proof. We set a polynomial function whose degree is 2N , say

η
N

(t) =
N∑
m=1

α(N)
m t2m − t.(4.10)

Since η′′N (t) is an even polynomial function whose degree is 2N − 2 and η′′
N

(0) =
2α(N)

1 > 0 for 1 ≤ N ≤ 20 by noting (4.7), we know that η′′
N

(t) = 0 has at most
N − 1 nonnegative roots. Thus η

N
(t) = 0 has at most N + 1 nonnegative roots.

From (4.10) and (2.30), we know that t = 0, 1, 2, . . . , N are roots of η
N

(t) = 0.
Thus for 1 ≤ N ≤ 20, we have that

η
N

(t) 6= 0 ∀t > N lim
t→+∞

η
N

(t)
t2N

= α
(N)
N .(4.11)

Then the desired inequalities (4.8) and (4.9) follow immediately from (4.11) and
(4.7).

From the above discussion we have

Lemma 4.2. For odd 1 ≤ N ≤ 20, there exist two generic positive constants C(1)
N

and C(2)
N

depending only on N such that

|b̃N (u, v)| ≤ C(2)
N
|u|N,ΓR · |v|N,ΓR ∀u, v ∈ Ṽ ,(4.12)

C(1)
N
|v|2N,ΓR ≤ b̃N (v, v) ∀v ∈ Ṽ .(4.13)

Proof. For any odd 1 ≤ N ≤ 20, noting (4.6) and (4.8), we know that there exist
positive constants C(1)

N
and C(2)

N
such that

C
(1)
N n2N ≤ γ(N)

n ≤ C(2)
N n2N n = 1, 2, 3, . . . .(4.14)

From (4.14) and (4.4), noting (3.32) with r = R, (3.15) and (3.16), we have that

∣∣∣b̃N (u, v)
∣∣∣ ≤ C(2)

N

∞∑
n=1

n2N
[∣∣a1

nc
1
n + b1nd

1
n + a2

nc
2
n + b2nd

2
n

∣∣
+
∣∣a1
nd

2
n − b1nc2n − a2

nd
1
n + b2nc

1
n

∣∣]
≤ C(2)

N

[ ∞∑
n=1

n2N
2∑
i=1

[
(ain)2 + (bin)2

]]1/2

·
[ ∞∑
n=1

n2N
2∑
i=1

[
(din)2 + (cin)2

]]1/2

≤ C(2)
N |u|N,Γe · |v|N,Γe ∀u, v ∈ Ṽ .

(4.15)
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Furthermore from (4.14) and (4.5), noting (3.32) with r = R and (3.16), we obtain

b̃
N

(v, v) ≥ 2µ
1 + 2κ

∞∑
n=1

γ(N)
n

(
(c1n)2 + (d1

n)2 + (c2n)2 + (d2
n)2
)

≥ C(1)
N

∞∑
n=1

n2N
(
(c1n)2 + (d1

n)2 + (c2n)2 + (d2
n)2
)

= C
(1)
N |v|2N,Γe ∀v ∈ Ṽ .

(4.16)

Thus the desired inequalities (4.12) and (4.13) are proved.

From the discussion above, noting the Körn inequality and Poincaré inequality,
we assign the following norm on Ṽ:

‖v‖4 :=
[
a(v, v) + |v|2N,Γe

]1/2 ≡ [‖v‖2∗ + |v|2N,Γe
]1/2 ∀v ∈ Ṽ .

(4.17)

It follows immediately from (3.11), (3.12), (4.12), (4.13), (4.6), (4.8) and (4.9)
that the variational problems (ṼPN ) and (ṼPhN ) are well posed in the case of odd
1 ≤ N ≤ 20 or N = 0 and they are not well posed in the case of even 0 < N ≤ 20;
that is, for f ∈ Ṽ ′, the dual of Ṽ , there exists a unique ũN ∈ Ṽ solving (ṼPN ), a
unique ũh

N
∈ Ṽ h solving (ṼPhN ), and

‖ũ
N
‖4 + ‖ũh

N
‖4 ≤MN‖f‖Ṽ ′ ∀ odd 1 ≤ N ≤ 20,(4.18)

where MN is a constant.
Then we have the following estimate.

Lemma 4.3. Suppose u ∈ Ṽ is a solution of the exterior problem (1.1)-(1.3) and
u|Γ0 ∈ [HN+1(Γ0)]2. Then we have the following estimate for odd 1 ≤ N ≤ 20:

|b(u, v)− b̃
N

(u, v)| ≤ C(N)

(
R0

R

)max{1,N−1}
|u|N+1,Γ0 · |v|N,Γe ∀v ∈ Ṽ ,

(4.19)

where C(N) is a constant independent of u, R and h.
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Proof. Subtracting (3.18) from (4.4), noting (4.6), (4.8) (3.40)-(3.43) and (3.32),
we obtain for odd 1 ≤ N ≤ 20

∣∣∣b(u, v)− b̃
N

(u, v)
∣∣∣

=
2µπ

1 + 2κ

∣∣∣∣∣
∞∑

n=N+1

(1 + κ)

(
N∑
m=1

n2mα(N)
m − n

)(
a1
nc

1
n + b1nd

1
n + a2

nc
2
n + b2nd

2
n

)∣∣∣∣∣
≤ C(N)

∞∑
n=N+1

n2N
∣∣a1
nc

1
n + b1nd

1
n + a2

nc
2
n + b2nd

2
n

∣∣
≤ C(N)

[ ∞∑
n=N+1

n2N
2∑
i=1

(
(ain)2 + (bin)2

)]1/2

·
[ ∞∑
n=N+1

n2N
2∑
i=1

(
(cin)2 + (din)2

)]1/2

≤ C(N)

 ∞∑
n=max{1,N−1}

n2N+2
(
(p1
n)2 + (q1

n)2 + (p2
n)2 + (q2

n)2
) R2n

0

R2n

1/2

· |v|N,Γe

≤ C(N)

(
R0

R

)max{1,N−1}
|u|N+1,Γ0 · |v|N,Γe ∀v ∈ Ṽ .

(4.20)

Combining Lemmas 4.2 and 4.3, we get the following error estimate.

Theorem 4.1. Let u be the solution of the problem (1.1)-(1.3) and ũh
N

the solution
of the problem (ṼPhN ). Suppose f ∈ [L2(Ωi)]2 and u|Γ0 ∈ [HN+1(Γ0)]2. Then we
have the following error estimate for odd 1 ≤ N ≤ 20:

‖u− ũh
N
‖4 ≤ C(N)

[
inf

vh∈Ṽ h
‖u− vh‖4 +

(
R0

R

)max{1,N−1}
|u|N+1,Γ0

](4.21)

with constant C(N) independent of u,R and h.

Proof. The proof of this theorem is similarly to the proof of Theorem 3.1. It is
omitted here.

If we suppose u ∈ [Hp+1(Ωi)]2, u|Γe ∈ [Hp+N (Γe)]2 and the interpolation error
of Ṽ h approximate to Ṽ is

inf
vh∈Ṽ h

‖u− vh‖4 ≤ C0h
p [|u|p+1,Ωi + |u|p+N,Γe ](4.22)

(a family of this kind of finite element subspaces was proposed in [10]), then com-
bining (4.22) and (4.21), noting the Körn inequality and Poincaré inequality, we
get for odd 1 ≤ N ≤ 20

‖u− ũh
N
‖1,Ω0 ≤ C0|u− ũhN |1,Ω0 ≤ C0‖u− ũhN‖4

≤ C(N)

[
hp (|u|p+1,Ωi + |u|p+N,Γe) +

(
R0

R

)max{1,N−1}
|u|N+1,Γ0

]
.

(4.23)
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5. Numerical implementation and results

In this section we present the numerical results which demonstrate the perfor-
mance of the error estimates (3.50) and (4.23). In our example, we take µ = 1,
x+ = (0, 0.25), and x− = (0,−0.25), and the unbounded domain Ω = {x ∈ R2 :
0.5 < |x|} is the exterior domain outside a circle Γi = {x ∈ R2 : |x| = 0.5}. In our
computation, when dealing with nonlocal approximate artificial boundary condi-
tions (2.20), continuous piecewise linear elements were used throughout the domain
Ωi. When dealing with high-order local artificial boundary conditions (2.31), con-
tinuous piecewise bilinear elements were used throughout the domain Ωi, except
in the single layer elements adjacent to the artificial boundary Γe. There, special
finite elements, C2,1

Γe
(which were introduced by Givoli et al., [10] and has C2(Γe)

regularity at Γe), were used. That is to say, p = 1 in the interpolation errors (3.49)
and (4.22) [2, 10].

Example. An exterior problem for Navier equations.
We consider the Navier equations in the planar domain outside a circular obstacle

of radius a = 0.5 (see Figure 1). The problem is governed by the following boundary
value problem:

−µ4 u− (λ+ µ) grad div u = f = (f1, f2)T in Ω = {x : 0.5 < |x|},(5.1)

u(0.5, θ) = g(θ) = (g1, g2)T on Γi = ∂Ω,(5.2)

u is bounded when r =
√
x2

1 + x2
2 → +∞,(5.3)

where

f1(x) =


−8x2[(3λ+ 6µ)x2

1 + (λ+ 4µ)x2
2 − (λ+ 3µ)] 0.5 ≤ |x| < 1.0,

0 1.0 ≤ |x|,

f2(x) =

 −8x1[(λ+ 4µ)x2
1 + (3λ+ 6µ)x2

2 − (λ+ 3µ)] 0.5 ≤ |x| < 1.0,

0 1.0 ≤ |x|;

g1(θ) =
λ+ 3µ

2µ(λ+ 2µ)
ln

1.25 + sin θ
1.25− sin θ

+
λ+ µ

µ(λ + 2µ)
2 cos3 θ sin θ

1.5625− sin2 θ

+ 0.28125 sinθ 0 ≤ θ < 2π,

g2(θ) =
(λ+ µ) cos θ
µ(λ+ 2µ)

[
sin θ − 0.5)
1.25− sin θ

− sin θ + 0.5
1.25 + sin θ

]
+ 0.28125 cosθ 0 ≤ θ < 2π.

This problem has an exact solution:

u1(x) =



λ+3µ
µ(λ+2µ) ln |x−x

−|
|x−x+| + λ+µ

µ(λ+µ)

[
x2

1
|x−x+|2 −

x2
1

|x−x−|2

]
+ x2(|x|2 − 1)2 0.5 ≤ |x| < 1.0,

λ+3µ
µ(λ+2µ) ln |x−x

−|
|x−x+| + λ+µ

µ(λ+µ)

[
x2

1
|x−x+|2 −

x2
1

|x−x−|2
]

1.0 ≤ |x|;
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Figure 2. The effect of N using nonlocal artificial boundary conditions

Table 2. The effect of the mesh size h using nonlocal artificial
boundary conditions

Mesh h = 0.31416 h = 0.15708 h = 0.07854 h = 0.03927

max |u− uh
N
| 1.5631E-2 4.1784E-3 1.0707E-3 2.6869E-4

‖u− uh
N
‖0,Ω0 4.4819E-2 1.2438E-2 3.1956E-3 8.0471E-4

|u− uh
N
|1,Ω0 0.7745 0.4067 0.2060 0.1034

u2(x) =



λ+µ
µ(λ+2µ)

[
x1(x2−x+

2 )
|x−x+|2 −

x1(x2−x−2 )
|x−x−|2

]
+ x1(|x|2 − 1)2 0.5 ≤ |x| < 1.0,

λ+µ
µ(λ+2µ)

[
x1(x2−x+

2 )
|x−x+|2 −

x1(x2−x−2 )
|x−x−|2

]
1.0 ≤ |x|.

First we test the effect of the mesh size h in the error estimates (3.50). We
introduce a circular artificial boundary Γe = Γ0 of radius R = R0 = 1.0. On Γ0

we apply the nonlocal artificial boundary condition (2.20) with N = 0, 1, 2, . . . or
high-order local artificial boundary condition (2.31). In the annular computational
domain Ω0, we use four meshes. The first mesh consists of 2 radial layers of ele-
ments, with 20 quadrilateral elements in each layer. We denote it as 2 × 20. The
other three meshes are 4 × 40, 8 × 80 and 16 × 160. Table 2 shows the maximum
errors of u − uh

N
over the mesh points, ‖u − uh

N
‖0,Ω0 and |u − uh

N
|1,Ω0 for large N

(say N = 51).
The results show that the convergent rates of |u − uhN |1,Ω0 and ‖u − uhN‖0,Ω0

with respect to h are 1 and 2 when using nonlocal artificial boundary conditions,
respectively. Second we test the effect of N in the error estimate (3.50). Let uh∞
denote the finite element approximation of the problem on the domain Ω0 with
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Figure 3. The effect of R using nonlocal artificial boundary conditions

Table 3. The effect of the location of ΓR using a local artificial
boundary condition (N = 1)

Location R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0

max |u− ũh
N
| 9.5675E-2 6.0485E-2 4.3960E-2 3.4578E-2 2.8531E-2

‖u− ũh
N
‖0,Ω0 5.9929E-2 2.2710E-2 1.5862E-2 1.0996E-2 7.8054E-3

|u− ũh
N
|1,Ω0 0.6290 0.3570 0.3096 0.2740 0.2483

the mesh size h when N is very large (say N = 51). In this case R0 = R, so the
effect of R in the error estimate (3.50) disappears. Figure 2 shows the errors E

N
:=

‖uh∞ − uhN‖k,Ω0 (k = 0, 1) on the mesh 16× 160 for different N . Third we test the
effect of the location of the artificial boundary Γe. Let ΩR = {x : 0.5 < |x| < R}
denotes the bounded computational domain with the artificial boundary ΓR. We
choose R = 1.0, 1.5, 2.0, 2.5, 3.0. The corresponding meshes we used were 8× 40,
16×40, 24×40, 32×40 and 40×40, respectively. That is to say, each computational
domain has a mesh with the fixed mesh size h = 0.07854. Let uR

N
denote the finite

element approximation of the problem on the domain ΩR with the corresponding
mesh by using the nonlocal artificial boundary condition (2.20) on the artificial
boundary ΓR. uR∞ corresponds to the solution when N is very large (say N = 51)
and ũR

N
corresponds to the solution using the high-order local artificial boundary

condition (2.31) at ΓR. Tables 3 and 4 shows the maximum errors of u − ũR
N

over
the mesh points, ‖u − ũR

N
‖0,Ω0 and |u − ũR

N
|1,Ω0 for N = 1, 3. Further, Figure 3

shows the errors ER := ‖uR∞ − uRN‖1,Ω0 for different R, and Figure 4 shows the
errors ER := ‖uR∞ − ũRN‖1,Ω0 for different R.

Tables 2–4 and Figures 2–4 demonstrate the performance of the error estimate
(3.50) and (4.23). In practice, if one wants to use a local artificial boundary condi-
tion, we advise using the one corresponding to N = 1. This condition is very simple
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Figure 4. The effect of R using local artificial boundary conditions

Table 4. The effect of the location of ΓR using a local artificial
boundary condition (N = 3)

Location R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0

max |u− ũh
N
| 0.2552 0.1910 0.1489 0.1212 0.1019

‖u− ũh
N
‖0,Ω0 0.2020 0.1136 7.0255E-2 4.6411E-2 3.2470E-2

|u− ũh
N
|1,Ω0 1.3323 0.7880 0.6025 0.4889 0.4142

and easy to deal with by using the standard finite elements. From our numerical
results, the local artificial boundary condition corresponding to N = 3 is not better
than the one corresponding to N = 1. One reason is the constant C(1) � C(3) in
(4.13) and errors in the numerical integration for the part b̃N (u, v). Thus in pratical
computation, the cases N ≥ 3 need further study. The analogous numerical results
for the Laplacian equation can be found in [10].
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