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11[70F25, 34A09, 65L80]—Nonholonomic motion of rigid mechanical systems
from a DAE viewpoint, by Patrick J. Rabier and Werner C. Rheinboldt, STAM,
Philadelphia, PA, 2000, viii+140 pp., 25 cm, softcover, $36.00

Over centuries people have been fascinated by the problem of how to determine
the motion of systems of rigid bodies or mass points that are subject to external
forces and constraints. Today the computer aided systematic generation of the
equations of motion and specially adapted numerical solution techniques form the
backbone of modern multibody system simulation tools that are successfully used
in vehicle dynamics, robotics, and biomechanics.

In the book under review the most general case of nonconservative three-dimen-
sional multibody systems with mixed holonomic and nonholonomic constraints is
considered in detail. Generalizing the Gauss principle of least constraint, the equa-
tions of motion may be derived as second-order differential equations that are sup-
plemented by nonlinear constraints (differential-algebraic equations, DAEs). Based
on ideas of modern DAE theory, these equations are studied analytically and a new
approach to the construction of time integration methods is proposed.

The book has nine chapters and starts with an Introduction and short review of
the state-of-the-art in Chapter 1. The theoretical results are developed step by step
in Chapters 2-7. Numerical solution methods and computational examples are the
topics of Chapters 8 and 9.

In Chapter 2 principles of classical mechanics and their application to constrained
systems of mass points are discussed providing, at a rather elementary level, back-
ground for the substantially more complex analysis of rigid bodies. In Chapter 3
the confirmation space Cy of a rigid body is studied to include the rotational de-
grees of freedom. From the numerical point of view, the use of quaternions, i.e.,
Co =R3 x 83 ¢ R? x R* is found to be favourable. In Chapter 4 this representation
of Cy is applied to show that the equations of motion for an unconstrained rigid
body may be written as a second-order ordinary differential equation on R3 x S3.
This is the essential prerequisite for the analysis of constrained systems of rigid
bodies in Chapter 5 since now the generalized Gauss principle may be used to
derive the equations of motion in DAE form.

Because of R? x §2 C R3 x R*, these equations may be considered both as a
classical DAE in R™ and as a DAE on a manifold M C R™. Both approaches are
considered separately in Chapters 6 and 7 to prove for initial value problems the
existence and uniqueness of a solution. This analysis is based on a formulation
I'(t,x,2) = 0 of the constraints that involves position coordinates x as well as
velocities & (the index-2 formulation in DAE terminology [2]). It is assumed that
the Jacobian D;I" has full rank. Therefore, holonomic constraints or more generally
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all geometric constraints I'(¢,z) = 0 do not fit a priori into this framework since
D;T" = 0. For these systems it is proposed to substitute I'(¢,z(t)) = 0 by its
time derivative (index reduction in classical DAE theory). In Sections 6.2 and 7.3
this strategy is carefully extended to general systems with mixed holonomic and
nonholonomic constraints.

As soon as the equations of motion are given in DAE form they may be solved by
DAE methods. An approach that is based on local parametrizations of manifolds is
discussed in more detail in Chapter 8. The successful practical application of this
method is nicely illustrated by numerical tests for typical nonholonomic examples
from the literature (Chapter 9). Finally, an appendix was added to make the
book essentially self-contained. This appendix summarizes shortly some material
on submanifolds of finite-dimensional spaces.

In less than 150 pages this book provides a compact discussion of a very general
class of mechanical problems and gives a strong theoretical justification for a DAE
formulation of the equations of motion. It is very helpful that the clear and detailed
mathematical presentation refers frequently to simple special cases, like systems of
mass points, single unconstrained rigid bodies or planar systems to explain the
ideas and technical problems of this analysis.

The topic of this book is not restricted to the mathematical background of a
classical mechanical problem. The extension of classical DAE theory to DAEs on
manifolds in Chapter 7 has independent value since this analysis covers a much
larger class of constrained problems.

Readers who consider the terms holonomic and nonholonomic constraint in the
classical sense of H. Hertz as antonyms will be surprised to find a complete anal-
ysis of the holonomic case and the mixed holonomic/nonholonomic case in a book
entitled “Nonholonomic motion...”. However, in one of the first paragraphs of
the Introduction, the use of the terms holonomic, nonholonomic, geometric, and
kinematic constraints is clarified.

The publisher claims that “mechanical engineers and robotics engineers will find
this book valuable”, but the potential reader should be aware that this is a book
written by mathematicians in a way that is typical of mathematical presentations.
References to the work of E. J. Haug [3] create a link to computational mechanics.

Besides the theoretical results, the book contributes also to two central practical
problems in multibody dynamics: the choice of coordinates and the efficient numer-
ical solution of the equations of motion. There is a vast literature on both topics
and several different strategies have been developed and implemented successfully
over the last two decades (“... nothing can really be new that addresses the motion
of rigid bodies ..., page vii). In view of the state-of-the-art, it is questionable to
present one specific choice of coordinates (quaternions) as the “correct” one (pages
vii, 2 and Chapter 3).

Furthermore, the efficiency of the new numerical methods of Chapter 8 should
have been compared with standard DAE methods for multibody systems like BDF
[T, Section 6.2] or implicit Runge-Kutta methods [2, Chapter VII]. The initial state-
ment of Section 8.3, “Standard DAE software, such as the widely used code DASSL

. are certainly not useable for the production solution of the DAEs (6.1)”, is
wrong. DASSL has been used very successfully in academic research and industrial
multibody software for more than a decade (see, e.g., [4]).
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Despite these critical remarks there is no doubt that the book will help to de-
crease the gap between abstract differential geometry and its applications in com-
putational mechanics. It may be recommended to all mathematicians and engineers
who are interested in the theoretical analysis of constrained mechanical systems and
in practical applications of differential geometry.

REFERENCES

1. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-value problems
in differential-algebraic equations. SIAM, Philadelphia, 2nd edition, 1996. MR [96h:65083

2. E. Hairer and G. Wanner, Solving ordinary differential equations II. Stiff and differential-
algebraic problems. Springer-Verlag, Berlin, Heidelberg, New York, 2nd edition, 1996. MR
97m:65007

3. E. J. Haug. Computer aided kinematics and dynamics of mechanical systems, volume 1. Allyn
and Bacon, Boston, MA, 1989.

4. W. Rulka. SIMPACK-—A computer program for simulation of large-motion multibody systems.
In W. O. Schiehlen, editor, Multibody Systems Handbook. Springer-Verlag, Berlin, Heidelberg,
New York, 1990.

MARTIN ARNOLD

DLR GERMAN AEROSPACE CENTER
VEHICLE SYSTEM DyNAMICS GROUP
D-82230 WESSLING, GERMANY

E-mail address: martin.arnold@dlr.de

12[90C30, 90C25, 65K 05]— Trust-region methods, by Andrew R. Conn, Nicholas
I. M. Gould, and Philippe L. Toint, STAM, Philadelphia, PA, 2000, xix+959 pp.,
26 cm, softcover, $119.00

This giant monograph is the first book (until now, it is also the only one) pub-
lished on trust-region methods. Trust-region methods are a class of numerical meth-
ods for solving nonlinear optimization problems. These methods are reliable and
robust, they can be applied to ill-conditioned problems, and they have very strong
convergence properties. The authors are three distinguished researchers having long
been involved in the development and implementation of algorithms for large-scale
numerical optimization. They were corecipients of the 1994 Beale—Orchard—Hays
prize for their work on the LANCELOT optimization package.

The aims of the book are best stated by the authors in the Preface:

Three major aims are, firstly, a detailed description
of the basic theory of trust-region methods and the
resulting algorithms for unconstrained, linearly con-
strained, and generally constrained optimization; sec-
ondly, the inclusion of implementation and computa-
tional details; and finally, substantive material on less
well-known advanced topics, including structured trust
regions, derivative-free methods, approximate methods
(including noise), nonmonotone algorithms, and non-
smooth problems.

Chapter 1 is a brief introduction, which gives a description of fundamental trust-
region ideas, overviews the history of trust-region methods, and tables some refer-
ences of applications of trust-region methods in science and engineering. Chapters
2 to 5 are some background mathematics, including vector spaces, matrix analysis,
optimality conditions, and methods for solving linear systems and eigenproblems.
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Chapters 6 to 11 are about trust-region methods for unconstrained optimization.
The formal description of a Basic Trust Region (BTR) algorithm is given and
convergence analysis is presented. One whole chapter is devoted to the trust-region
subproblem, including its theoretical properties and the numerical methods for
solving it. The final chapter of this part of the book is about trust-region methods
for nonsmooth problems.

Trust-region methods for convex constrained problems are the focus of Chapters
12 and 13. One chapter is about projection methods and the other is about barrier
methods.

Chapters 14 to 16 are dedicated to general nonlinear constrained problems. Var-
ious penalty function methods are described in Chapter 14, and in this chapter,
trust-region methods are not mentioned except that they are used for minimizing
the penalty functions. Trust-region methods based on Sequential Quadratic Pro-
gramming (SQP) type approaches are discussed extensively in Chapter 15, which
is the longest chapter in the book. Chapter 16 is about methods for nonlinear
equations, nonlinear least squares, and nonlinear complementarity problems.

The last chapter of the boo, Chapter 17, is devoted to software and implementa-
tion issues. Questions, such as how to choose algorithmic parameters, how to choose
initial trust-region radius, and how to compute Cauchy points, are addressed in this
chapter.

The book gives a detailed, systematic, and comprehensive description of trust-
region methods. It is a very good summary of works having been done. In some
sense, it can be regarded as an encyclopedia of trust-region methods, and I believe
that it will be an important reference in this area for many years. I like very much
the comments under the title “Notes and References” at the end of each section.
These discussions are not only good supplements to the main text but also give nice
guidance for further research ideas. The long list of annotated bibliography entries
is very helpful to researchers and graduate students who want to explore the field
in depth.

The thickness (consequently the price) might be a burden if the book is used as
a graduate text book. Also, for graduate students, it would be better if exercises
were added at the end of each chapter.

YA-XIANG YUAN

SCHOOL OF MATHEMATICS
CHINESE ACADEMY OF SCIENCE
BELING

P.R. CHINA

13[65F05, 65F25, 65F35|—Fust reliable algorithms for matrices with structure,
T. Kailath and A. H. Sayed (Editors), STAM, Philadelphia, PA, 1999, xvi+342
pp-, 25 1/2cm, softcover, $59.50

The topic of these unusual proceedings is the design of fast and reliable
algorithms for large scale matrix problems with structure. Here structure is mostly
understood as “displacement structure” and encompasses Toeplitz-, Hankel-,
Loewner-, Cauchy-matrices and others. As the standard stable matrix algorithms
usually destroy the structure and are thus not fast, it is a problem to construct fast
and reliable ones. Three recent meetings in Santa Barbara, USA, Cortona, Italy,



REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 1755

and St. Emilion, France, in 1996/97 were devoted to this problem, and the chapters
of this book are a selection of works presented there.

The chapters contain in the beginning ample background material to put the
new results into the right perspective. Notation, style, and presentation in the
different chapters, though written by different authors, show a high uniformity.
Also cross-references between the chapters have been introduced.

In this respect the editors have done a good job, also by adding two chapters
containing some useful matrix results and some material on unitary and hyperbolic
transformations. Thus the book gives a very good overview of an exciting field.

The first four chapters deal with fast direct methods for linear systems, and
Chapters 5—7 with iterative methods. The last three chapters deal with further
applications and generalizations, such as the block case and the tensor case.

Following is a list of the chapters of the book, with the authors in parentheses.

1. Displacement structure and array algorithms (T. Kailath)

2. Stabilized Schur algorithms (S. Chandrasekaran, A. H. Sayed)

3. Fast stable solvers for structured linear systems (A. H. Sayed, S. Chan-
drasekaran)

4. Stability of fast algorithms for structured linear systems (R. Brent)

5. Iterative methods for linear systems with matrix structure (R. Chan,
M. K. Ng)

6. Asymptotic spectral distribution of Toeplitz related matrices (P. Tilli)

7. Newton’s iteration for structured matrices (V. Pan, S. Branham, R. Rosholt,
A. Zheng)

8. Fast algorithms with applications to Markow chains and queueing models
(D. Bini, B. Meini)

9. Tensor displacement structures and polyspectral matching (V. Grigorascu,
P. Regalia)

10. Minimal complexity realization of structured matrices (P. Dewilde)

L. ELSNER

BIELEFELD
GERMANY

14[94-02, 94A 60, 14H52]—Elliptic curves in cryptography, by Ian Blake, Gadiel
Seroussi, and Nigel Smart, Cambridge University Press, New York, NY, 1999,
xv+204 pp., 23 cm, softcover, $39.95

Elliptic curves have been studied for more than a century from the perspectives of
modular forms, complex analysis, algebraic geometry, and number theory. Schoof’s
discovery [10), 1984], that there is a polynomial time algorithm for establishing
the size of the elliptic curve group over any finite field opened the way to various
computational applications of these groups.

One by one, most applications which were customary in the multiplicative group
of finite fields were adapted to the elliptic curve group. In the space of a few
years, elliptic curves emerged in primality proving [5], integer factoring [6], and
cryptography [8]. The first two applications take advantage of the large variety of
available groups of the chosen order of magnitude, while the interest of the latter
is based on the fact that in general no subexponential algorithm for computing the
discrete logarithm in the elliptic curve group is known or likely to be found. Such
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algorithms had been known for some time in the multiplicative groups. However,
many practical questions were still asking for improvements and clarity, so the last
15 years have seen intense research in this domain of applications.

The book at hand is a welcome, in-depth treatment of the various research and
improvements up to 1999. It offers a comprehensive presentation of both the deeper
theoretical background of algorithmic developments and the implementational bot-
tlenecks. Whoever wants to deal with algorithmal aspects of elliptic curves will find
here an excellent and, in most cases, sufficient starting point. The book is therefore
not intended either as primary didactical material (proofs are scarcely given) nor
as a compendium of the various short or long lived cryprographical mechanisms
related to elliptic curves. For the first, books such as [7] for the practical and [3] for
the mathematical aspects, are recommendable. For the latter, the technical IEEE
standard P1363, which has been meanwhile released, is the relevant source for those
mechanisms which are likely to be spread in practice.

The first two chapters offer a succinct introduction to general ideas of public
key cryptography and the underlying arithmetic in finite fields. The important
third chapter introduces the arithmetic of elliptic curves together with the various
connections to division polynomials, Weil pairing, and modular functions, which
have found explicit use in applications. The fourth chapter gives an overview of
efficient implementations of elliptic curves arithmetic for the practitioner, and the
fifth treats the discrete logarithm problem on elliptic curves. From the sixth to
the eighth chapters the authors discuss the determination of the group order, by
Schoof’s algorithm and its later improvements and by an a priori choice of the
complex multiplication fields of the target curve. The book closes with an overview
of primality proving and integer factoring using elliptic curves in the ninth chapter,
and with generalizations of cryptosystems to abelian varieties of higher genus in
the tenth chapter.

Let F, be a finite field with ¢ elements. An elliptic curve E over I, is defined
by a long Weierstrass equation

FE: y2+a1xy+a3y::c3 +a2x2+a4x+a6,

where a1, a2,a3,a4,a6 € F, are such that the equation is nonsingular. This is
equivalent to saying that the discriminant

A = —b2bg — 8b3 — 27b3 + 90bybysbg # 0,

where by = a% + 4ag, by = araz + 2a4,bg = a% + 4ag, bg = a%ag + dasag — arasaqs +
aza? — a?. From the definition of the discriminant, it follows that it has special
behavior in fields of characteristic 2 or 3. In fact, most applications in finite fields
are treated differently in characteristic p < 3 and p > 3. In the book the clear choice
to deal only with the cases of characteristics 2 and prime fields F,, with p > 3 was
made. It is customary to indicate by E(F,) the set of points on F of the equation
defining E together with an extra point O at infinity, which one may think of as
lying on the top of the y-axis. For two points, Py = (x1,91), Pa(x2,y2) € E(F,),
the sum is P, @ Py = (3,y3) = (A2 + a1\ — ag — 1 — 22, —(\ + a1)x3 — pp — az),
where

Y2—Y1 y1$2—y2$1) if 1 7& Ta,

(/\ M) _ To—x1’ XT2—T1
’ - 3z242azz1+as—a —z34asr1+2a6—a .
1t2a2x1+a4—a1ys 1 taqsxi+2a6—azys if T, = 7.

2y1+azzi+as ) 2y1+azz1+as
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This composition rule makes (E(F,),®) into a commutative group with O as its
neutral element and E(F,) = (Z/d1Z) x (Z/d2Z), where d; divides both dy and
q — 1. The n-fold addition of P to itself is [n]P and E[n] = (Z/(n - Z))? is the
n-torsion group of E over Fq. The z-coordinates of the n torsion points are ze-
roes of the division polynomials ¥,,. These notions, together with the more subtle
connections to modular functions and complex multiplication, which we shall not
describe here, are introduced in the third chapter, yielding a self-sufficient base
for the understanding of all algorithms treated subsequently. The fourth chapter
is an extensive overview of the main practical aspects which the implementer will
encounter, from arithmetic tricks to point compression—a technical term (in cryp-
tography) for the idea that a point on the curve carries essentially the information
of its = coordinate plus one bit allowing to distinguish a solution of a quadratic
equation.

The problem of taking the discrete logarithm on elliptic curves is the door to
cryptographic applications of these groups. The known general techniques are
treated comprehensively in chapter five. In the following special cases, described in
this chapter, more performant algorithms than the generic ones are possible: First,
the supersingular curves for which the Weil pairing yields an isomorphism to the
roots of unity of the ground field or a small extension thereof, where subexponential
index calculus methods can be applied. Second, the recent algorithm of Smart for
computing the discrete logarithms on curves with the number of points equal to
the (prime) characteristic of the field over which they are defined.

Unsurprisingly, the problem of determining the number of points in the elliptic
curve group, which brought curves into computational algebra, is covered in three
extensive chapters. The first short one gives an overview of naive approaches and
problems related to subgroups of the elliptic curve group.

The sixth and seventh chapters cover the generic algorithm of Schoof and its
ulterior improvements and adaptations to tricky characteristics (i.e., p = 2,3, with
special behavior of the discriminant). The basic algorithm of Schoof for computing
#E(F,) (that we briefly outline being the first step in the journey of which the
book is telling the story) is based on the fact that from Hasse’s Theorem, namely
#E(Fy) = g+ 1 —t with [t| < 2,/g, it is enough to determine ¢ modulo I for suffi-
ciently many small primes [. More precisely, it suffices to take primes | < [« with
[[;<;,.. ! > 4y/q. One uses the fact that the Frobenius endomorphism ¢ satisfies
the equation ¢? — t¢ + ¢ = 0. Considering a nontrivial point P = (x,y) € E[l],
one lets ¢ = gmodl. Then (xqz,yqz) + [g](z,y) = [7](z9,y?) must be satisfied
exactly for 7 = tmod (. The value of 7 can be found by computing symbolically
(mq2 , qu) + [@](z, y) modulo the I-division polynomials ¥; and comparing with the
possible values of [7](z%,y?), (t = 1,...,1). The computations are polynomially

bounded by O(log g) and the degree 12771 of the [-division polynomials. This degree

grows in practice quite fast, which makes the arithmetic modulo division polyno-

mials the essential bottleneck in the original version of Schoof’s algorithm.
However, the division polynomials are in general not irreducible and one can

sensibly reduce the complexity by replacing ¥; by some smaller—not necessar-

~

ily irreducible—factors. Since E[l] = (Z/(l - Z))?, there is a representation of

Gal(F,/F,) in GL2(FF;), which yields information on the factorization patterns of
U,;. This fact was basically exploited in the subsequent contributions due to Atkin,
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Elkies and worked out and implemented by F. Morain, some of his students, and
V. Miiller.

The applications of elliptic curves to factoring and primality proving are briefly
outlined, for the sake of completeness, in the ninth chapter. The last chapter
summarizes the main ideas about cryptographic use of hyperelliptic curves at the
time the was book printed.

For the interested reader, it may be important to mention some of the outstand-
ing results of the last few years, which are ulterior to the conception of this book
and thus not covered by it.

Counting points on curves over fields of small characteristics p have been sensibly
simplified by an algorithm of Satoh [9], based on p-adic logarithms. The algorithm
has been implemented, and curves over the field Fysooo can be currently treated;
without Satoh’s approach, the best methods could calculate the curve orders in
extensions of Fy of degree up to 2000.

In the domain of implementation, a beautiful paper of H. Cohen, A. Miyaji,
and T. Ono [2] studies a variety of curve representations, with the aim of optimiz-
ing the performance of group operations; this can certainly be of great help for
implementors. Fields of odd characteristic which are adapted to machine world
length—medium Galois fields or simply extension fields, according to different
terminologies—receive some attention. A run time study, [I2] by Smart, of im-
plementations of elliptic curve operations over fields of characteristics of various
sizes suggests that these fields may have interesting practical properties.

Finally, Weil descents have been proposed by G. Frey [4] as a possible method
for solving special instances of the discrete logarithms problem. This has already
motivated a series of important research with pro and con arguments, and is likely
to become an important research topic.
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