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ANALYSIS OF A BILINEAR FINITE ELEMENT
FOR SHALLOW SHELLS I:

APPROXIMATION OF INEXTENSIONAL DEFORMATIONS

VILLE HAVU AND JUHANI PITKÄRANTA

Abstract. We consider a bilinear reduced-strain finite element formulation
for a shallow shell model of Reissner–Naghdi type. The formulation is closely
related to the facet models used in engineering practice. We estimate the error
of this scheme when approximating an inextensional displacement field. We
make the strong assumptions that the domain and the finite element mesh
are rectangular and that the boundary conditions are periodic and the mesh
uniform in one of the coordinate directions. We prove then that for sufficiently
smooth fields, the convergence rate in the energy norm is of optimal order uni-
formly with respect to the shell thickness. In case of elliptic shell geometry the
error bound is furthermore quasioptimal, whereas in parabolic and hyperbolic
geometries slightly enhanced smoothness is required, except for the degenerate
cases where the characteristic lines are parallel with the mesh lines. The error
bound is shown to be sharp.

1. Introduction

In this paper, which is the first one in a series, we begin the convergence study
of a special bilinear finite element for shells. This element has strong engineering
roots, and apparently is among the best bilinear finite element formulations known
for shells. The element is aimed to be a general “shell element” in the sense that it
should handle all characteristic shell deformation types, such as bending-dominated
or membrane-dominated deformations or boundary layers, without further problem-
specific tuneups. To what extent this (rather ambitious) goal is truly achievable, is
our goal to find out.

By now it is well known that reliable numerical modeling of shells by traditional
low-order finite element formulations is not an easy task. The most dramatic failure
occurs when approximating nearly inextensional (or bending-dominated) deforma-
tions by standard low-order elements. In this case an asymptotic approximation
failure, known as shear-membrane locking, occurs at the limit of zero shell thickness.
Due to the asymptotic locking effect, standard lowest-order elements cannot work
in practice unless the mesh spacing is made much smaller than the shell thickness—
a rather heavy requirement. Similar numerical difficulties are expected in general
when approximating a deformation state with a significant component of bending
energy. In particular, the characteristic shell boundary layers belong to such a
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locking-sensitive category of deformations. For more information on shell defor-
mation states and on the associated finite element locking problems, the reader is
referred to [10, 8, 2] and the references therein.

To avoid the locking in parameter dependent problems, the tradition in finite
element engineering has been to search for “simple and efficient” low(est) order
elements that are based on some nonstandard variational formulation of the prob-
lem. For example, one may use mixed or hybrid formulations, or assume purely
numerical modifications such as reduced strains, or selective reduced integration
and stabilization, within the usual energy formulation. In shell problems, one of
the most popular approaches is the so-called facet model based on bilinear elements
and crude approximation of shell geometry. In this model, the shell midsurface is
approximated elementwise by isoparametric bilinear maps, so that the shell is effec-
tively represented by an assembly of membrane elements in the numerical model [4].
Among the (apparently many) possible technical variations within this approach,
we choose to consider in our work a formulation by Bathe et al. [1] named MITC4.
It seems likely that certain other well-known formulations, like the QUAD4 of Mac-
Neal [4], hide similar ideas.

Our error analysis of MITC4 is based on the recent result [6] showing that a
nearly equivalent bilinear element formulation is achievable from a classical shell
model of Reissner–Naghdi type. This alternative approach may be characterized as
a reduced-strain formulation where the expressions of both membrane and trans-
verse shear strains are numerically modified, while no approximation of shell ge-
ometry is made. This approach, which is more transparent mathematically than
the original MITC4 formulation, was in fact already taken in [9] in the context of
cylindrical shell geometry. The analysis in [6] assumes cylindrical shell geometry
as well, but we may easily extrapolate the strain reduction ideas to more general
geometries. It appears that the scheme obtained in this way actually extracts the
key ideas of the MITC4 elements (and perhaps other facet elements) that relate to
the treatment of locking effects. Numerical experiments also support this conjec-
ture [6]. In what follows, we take the simplified scheme as the target of our error
analysis.

Regarding both the shell geometry and the finite element mesh, we make very
strong assumptions in this paper and also in the later parts. First, we assume
that the curvature parameters can be taken constants (so that the shell can be
e.g., shallow); see [8] for the justification of models of this kind. Secondly, we
assume that the shell midsurface (or the approximate midsurface; see [8]) occupies
a rectangular domain in the chosen coordinates and that the finite element mesh
on this domain is rectangular. Finally, we assume that the boundary conditions
are periodic in one of the coordinate directions, and that the finite element mesh
in this direction is actually uniform. Under these hypotheses, we focus on the
most fundamental question concerning bilinear shell elements: Does there exist a
formulation that is able to effectively capture all characteristic features of shell
deformations simultaneously?

From the practical point of view, the most important question left open in our
work is, To what extent can the results obtained under the stated extremely favor-
able conditions possibly extend to more general domains and meshes? Preliminary
numerical experiments seem to indicate mesh dependence [5, 6], but more work in
this direction is needed. From our error analysis it appears anyhow that the prob-
lem on general quadrilateral meshes is similar to that met in [3] in the context of a
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simpler parametric model problem. There it was shown that the convergence of a
simple bilinear reduced-strain scheme depends on the performance of an underly-
ing finite difference scheme that approximates a constraint arising asymptotically
at a parametric limit. On a rectangular mesh the difference scheme was found well
behaving—in fact well known [3]—but on more general meshes the performance
remained unresolved. Here we find similarly that the assumed reduced-strain for-
mulation hides a special finite difference scheme for approximating the asymptotic
constraints that arise in an inextensional deformation state. This difference scheme
we can so far analyze only under the stated specific assumptions.

The assumptions we make are simply to allow sharp error analysis based on the
Fourier transform. The same analysis technique would apply to any shell of revolu-
tion satisfying the assumed periodicity condition in the angular (principal curvature
coordinate) direction. We conjecture that our error analysis could be extended to
cover, e.g., the pinched cylinder and the pinched hemisphere problems often used as
benchmark tests for shell elements [4]. We note that in such benchmark tests, the
mesh is typically chosen uniform in the angular direction, just as we are assuming.

In the present Part I, we begin by studying the mentioned constrained approxi-
mation problem that arises in an inextensional deformation state. This case is the
first and most severe test for any finite element formulation meant to be locking-
free. However, passing the test still does not guarantee equally good performance in
other (in fact, more common) deformation states, such as in membrane-dominated
states or when approximating boundary layers. Therefore, in the later parts of the
work we consider such deformation types as well so as to obtain a complete picture.

Throughout the work we adopt the error analysis philosophy of [3, 7] (see also
the references therein) where the finite element error, evaluated in the energy
(semi)norm with numerically modified strains, is split into two components called
the approximation error and the consistency error. In the present Part I we consider
only the approximation error term which is dominant in case of nearly inextensional
deformations. The consistency error will be analyzed in the next parts in the con-
text of more general deformation states where this error term can become dominant
as well.

The plan of the present paper is as follows. In Section 2 we introduce the
shell model and set up the problem to be studied. The nature of inextensional
deformations in this problem setup is analyzed. In Section 3 we introduce the
reduced-strain bilinear finite element scheme to be studied throughout the work.
We state the main result of the present paper concerning the approximation of
inextensional deformations (Theorem 3.1) and an extension of this result to cover
more general smooth deformations (Theorem 3.2). In the inextensional case the
approximation error bound is found to be of optimal order independently of the
thickness of the shell. In the case of elliptic shell geometry the bound is optimal
even with respect to the regularity required for the displacement field; whereas in
the case of parabolic and hyperbolic shell geometries, slightly enhanced regularity
is needed as a rule to achieve the optimal rate. For more general than inextensional
deformation, the approximation error bound is nonuniform in t, being in general
the better, the higher the regularity of the field to be approximated. Section 4 is
finally devoted to the proof of Theorems 3.1 and 3.2.

Below we denote as usual by C a constant that may take a different value in
different usage. The constants may depend on the curvature parameters to be
introduced in Section 2 but are otherwise independent of the parameters, unless
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indicated explicitly. By ‖·‖k and |·|k we denote the Sobolev norm and seminorm
(for scalar or vector valued functions) on the assumed rectangular plane domain.
Other domains will be indicated by an additional subscript. Further, || · ||L2 = || · ||0
and || · ||∞ denotes the L∞-norm.

2. The shell problem

We consider a dimensionally reduced shell model for a shell of thickness t arising
from linear shell theory with homogeneous and isotropic material. For our model
the deformation energy of the shell is given by

F(u, v, w, θ, ψ) =
Et3

12(1− ν2)

∫
Ω

{ν(κ11 + κ22)2 + (1− ν)
2∑

i,j=1

κ2
ij}dxdy

+
γEt

2(1 + ν)

∫
Ω

{ρ2
1 + ρ2

2}dxdy

+
Et

(1− ν2)

∫
Ω

{ν(β11 + β22)2 + (1− ν)
2∑

i,j=1

β2
ij}dxdy.

Here E and ν are the Young modulus and the Poisson ratio of the material, γ is the
shear (correction) factor and βij , ρi and κij are the membrane, transverse shear
and bending strains that depend on the displacements (u, v, w) and on the rotations
(θ, ψ) as follows:

β11 =
∂u

∂x
+ aw, κ11 =

∂θ

∂x
,

β22 =
∂v

∂y
+ bw, κ22 =

∂ψ

∂y
,

β12 =
1
2

(
∂u

∂y
+
∂v

∂x
) + cw = β21, κ12 =

1
2

(
∂θ

∂y
+
∂ψ

∂x
) = κ21,

and

ρ1 = θ − ∂w

∂x
, ρ2 = ψ − ∂w

∂y
,

where we are assuming that the parameters a, b and c, defining the shell geometry,
can be taken to be constants. This is a simplification of the classical shell model
due to Reissner–Novozhilov–Naghdi (see [8]). If ab − c2 > 0, we call, the shell
elliptic, if ab − c2 = 0, the shell is parabolic and if ab − c2 < 0, it is hyperbolic.
We assume here that a2 + b2 + c2 > 0 so that the case of a flat plate/membrane
(a = b = c = 0) is excluded. We will assume that the computational domain Ω (the
shell midsurface) is of rectangular shape in the assumed coordinate system, so that

Ω = {(x, y) | 0 < x < L, 0 < y < H}

with C−1 ≤ L
H ≤ C for some fixed constant C.

For our purposes it is convenient to define the vector field u = (u, v, w, θ, ψ), to
scale the energy by a factor K = Et3

6(1−ν2) , and to express the scaled total energy as

F(u) =
1
2
A(u, u)−Q(u),
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where Q is the load potential and the bilinear form A is further split as

A(u, v) = Ab(u, v) +
1
t2
Am(u, v),(2.1)

where

Ab(u, v) =
∫

Ω

{ν(κ11 + κ22)(u)(κ11 + κ22)(v) + (1 − ν)
2∑

i,j=1

κij(u)κij(v)}dxdy

and

Am(u, v) = 6γ(1− ν)
∫

Ω

{ρ1(u)ρ1(v) + ρ2(u)ρ2(v)}dxdy

+12
∫

Ω

{ν(β11 + β22)(u)(β11 + β22)(v)

+ (1 − ν)
2∑

i,j=1

βij(u)βij(v)}dxdy,

where overbars denote complex conjugation.
We will assume that the boundary conditions at y = 0, H are periodic and that

no kinematic constraints are imposed at x = 0, L. The energy space is then

U = {u ∈ [H1(Ω)]5 |u(·, 0) = u(·, H)}
and the shell problem can be formulated as, Find u ∈ U such that

A(u, v) = Q(v) ∀v ∈ U .(2.2)

The problem is solvable if Q is a bounded linear functional on U , and if Q(u) = 0
for all zero energy modes satisfying A(u, u) = 0. Below we do not need to refer
to any stability properties of the problem, so we simply assume that a solution to
(2.2) (with some regularity properties to be postulated) exists. We then consider
the finite element approximation of such a solution u.

In the present paper we are mainly interested in the approximation of inexten-
sional displacement fields satisfying Am(u, u) = 0, i.e.,

β11(u) = β12(u) = β22(u) = 0,

ρ1(u) = ρ2(u) = 0.
(2.3)

The subspace of inextensional displacements will be denoted by U0. We note that
unless Q(u) = 0 ∀u ∈ U0, the solution to (2.2) becomes inextensional at the limit
when t→ 0 and Q is fixed (see [9, 10]). Here we may resolve the possible inexten-
sional modes by the Fourier expansion

u =
∑
λ∈Λ

ϕλ(y)φ
λ
(x), ϕλ(y) = eiλy, Λ = {λ =

2πν
H

, ν ∈ Z},(2.4)

where, in view of (2.3), φ
λ

= (uλ, vλ, wλ, θλ, ψλ) satisfies

u′λ + awλ = 0,
iλvλ + bwλ = 0,
iλuλ + v′λ + 2cwλ = 0,
θλ − w′λ = 0,
ψλ − iλwλ = 0.

(2.5)

Let us characterize the general solution to this system in different geometries.
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First, in the elliptic case where ab− c2 > 0, or in the nondegenerate hyperbolic
case where ab− c2 < 0 and b 6= 0, the general solution to (2.5) takes the form

φ
λ
(x) = Aλζλ,1(x) +Bλζλ,2(x),(2.6)

where Aλ, Bλ are arbitrary complex coefficients and ζ
λ,k

are defined by{
ζ
λ,1

(x) = (2c+ iλ−1µ1b, b,−iλ,−iλµ1, λ
2)eµ1x

ζ
λ,2

(x) = (2c+ iλ−1µ2b, b,−iλ,−iλµ2, λ
2)eµ2(x−L)

when λ 6= 0,

or

ζ
λ,1

= (1, 0, 0, 0, 0), ζ
λ,2

= (0, 1, 0, 0, 0), when λ = 0,(2.7)

where further µk are defined by{
µ1 = (ic−

√
ab− c2)b−1λ, µ2 = (ic+

√
ab− c2)b−1λ, when b−1λ ≥ 0,

µ1 = (ic+
√
ab− c2)b−1λ, µ2 = (ic−

√
ab− c2)b−1λ, when b−1λ < 0.

Here we have chosen µ1, µ2 so that Reµ1 < 0 and Reµ2 > 0 in the elliptic case
when λ 6= 0. In the hyperbolic case we obviously have Reµk = 0. Note also that
when λ = 0, (2.6) and (2.7) actually define a zero energy mode.

Consider next the (hyperbolic) case where b = 0 and c 6= 0. Then if a 6= 0 and
λ 6= 0, the general solution to (2.5) is

φ
λ
(x) = Aλζλ(x)(2.8)

with Aλ ∈ C and

ζ
λ
(x) = (2c, 0,−iλ,−iλµ, λ2)eµx, µ = a(2c)−1iλ

so the solution space is one-dimensional in this case. When λ = 0 one gets

φ
0
(x) = (aξ +A, 2cξ,−ξ′,−ξ′′, 0),

where A ∈ C and ξ = ξ(x) ∈ H3(0, L) are arbitrary, so in this case the solution
space is infinite-dimensional. Finally, if a = 0 and λ 6= 0, one gets again a solution
of the form (2.8) with

ζ
λ
(x) = (2c, 0,−iλ, 0, λ2).

When a = λ = 0, the solution is

φ
0

= (A0, 2cξ,−ξ′,−ξ′′, 0)

with ξ ∈ H3(0, L) arbitrary.
It remains to consider the parabolic case ab − c2 = 0. Here we find that when

a, b 6= 0 the general solution is again given by (2.6) where now ζ
λ,1

, ζ
λ,2

are given
by {

ζ
λ,1

(x) = (c, b,−iλ,−iλµ, λ2)eµx,

ζ
λ,2

(x) = µ(c, b,−iλ,−iλµ, λ2)xeµx + (−c, 0, 0,−iλµ, 0)eµx

with µ = cb−1iλ. For the case when a = c = 0 and we have that{
ζ
λ,1

(x) = (1,−iλbx,−λ2x,−λ2,−iλ3x),

ζ
λ,2

(x) = (0, b,−iλ, 0, λ2).
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Finally in the case when b = c = 0 the only nonzero mode is obtained when λ = 0,
this being

φ
0
(x) = (aξ,A,−ξ′,−ξ′′, 0)

with A ∈ C and ξ ∈ H3(0, L) arbitrary.
Below we refer to the parabolic and hyperbolic geometries as degenerate cases

when the characteristic lines (along which the curvature vanishes) are parallel with
the coordinate lines. These are the cases a = c = 0 or b = c = 0 (parabolic) and
a = b = 0 (hyperbolic), i.e., the cases where two of the three curvature parameters
vanish.

3. The reduced-strain FE scheme

Given a family of finite element spaces Uh ⊂ U , 0 < h < h0, the usual finite
element formulation of problem (2.2) is, Find uh ∈ Uh such that

A(uh, v) = Q(v) ∀v ∈ Uh.(3.1)

This defines uh as the best approximation of u in the energy norm

v 7→ |||v||| =
√
A(v, v), v ∈ U .

Due to the parametric dependence of this norm, the best error bound in case of
lowest degree elements and bending-dominated deformation is

|||u − uh||| ∼ min{1, h
t
|u|2}

(see [9]). To prevent the error amplification at small t, we therefore need to consider
some modification of (3.1). A natural approach is to modify the membrane and
transverse stresses βij and ρi substituting these with β̃ij = Rijh βij and ρ̃i = Rihρi,
where the Rijh ’s and Rih’s are suitably chosen reduction (projection) operators. If
we then define the bilinear form

Ahm(u, v) = 6γ(1− ν)
∫

Ω

{ρ̃1(u)ρ̃1(v) + ρ̃2(u)ρ̃2(v)}dxdy

+12
∫

Ω

{ν(β̃11 + β̃22)(u)(β̃11 + β̃22)(v)(3.2)

+ (1 − ν)
2∑

i,j=1

β̃ij(u)β̃ij(v)}dxdy,

our modified FE formulation assumes the form, Find uh ∈ Uh such that

Ah(uh, v) + Ab(uh, v) +
1
t2
Ahm(uh, v) = Q(v) ∀v ∈ Uh.(3.3)

Since β̃ij , ρ̃i are related to βij , ρi via projection operators, it follows thatAhm(u, u) =
0 for all u ∈ U0. Therefore, if the exact solution to (2.2) happens to be inextensional,
one has

Q(v) = A(u, v) = Ab(u, v) = Ah(u, v), v ∈ U .

So in that case (3.3) is equivalent to

Ah(u − uh, v) = 0 ∀v ∈ Uh.
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ny

xk
x

y

H

L

Figure 1. A typical mesh considered; the mesh spacing is con-
stant in the y-direction but may vary in the x-direction.

This defines uh as the best approximation to u in the modified energy seminorm
v 7→ |||v|||h =

√
Ah(v, v), so that we are led to the problem of finding the best

approximation error

ea(u) = min
v∈Uh

|||u− v|||h.(3.4)

We note that, to obtain a bound for ea that is uniform in t, we need to look for
approximations in the subspace U0,h = {v ∈ Uh | Ahm(v, v) = 0}. Note as well that
if no strain reductions were made, we would have U0,h = U0 ∩ Uh, which typically
is a trivial space [9]. Hence the idea of the strain reduction is simply to make U0,h

large enough so that inextensional deformations can be approximated well in U0,h.
The modification A ↪→ Ah causes in general a secondary error term, the consis-

tency error defined by [3]

ec(u) = sup
v∈Uh,|||v|||h 6=0

(A−Ah)(u, v)
|||v|||h

.

This vanishes when u ∈ U0, but in other deformation states the consistency error
term can be significant or even dominant. We will analyze this error in Part II of
the paper where more general deformation states will be considered. Here we focus
on bounding the best approximation error (3.4).

In the finite element scheme to be studied, we assume that Ω is subdivided by a
rectangular mesh with maximal side length = h. We denote the nodal points of the
mesh by (xk, yn), k = 0 . . .Nx, n = 0 . . .Ny, and assume that the mesh is uniform
in the y-direction so that yn+1−yn = H/Ny = hy for all n (see Figure 1). Note that
at this point we make no assumption on the ratios (xk+1 − xk)/hy = hkx/hy. We
write further hx = maxk hkx. On this mesh we assume continuous piecewise bilinear
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representation of each component of the displacement field, so that Uh = [Vh]5,
where Vh is the scalar bilinear FE space with periodic boundary conditions at
y = 0, H .

In the assumed numerical setup, we define the reduced membrane and shear
strains in (3.2) as

β̃11 =Πx
hβ11,

β̃22 =Πy
hβ22,(3.5)

β̃12 =Πxy
h β12 = β̃21,

and
ρ̃1 =Πx

hρ1,

ρ̃2 =Πy
hρ2,

(3.6)

where Πx
hx, Πy

h and Πxy
h are projection operators defined elementwise as projectors

onto the (global) spaces Wx
h , Wy

h , and Wxy
h , respectively, where Wx

h consists of
functions that are constant in x and linear with respect to y on each element, so
that ∂u/∂x ∈ Wx

h when u ∈ Vh, Wy
h is defined analogously so that ∂v/∂y ∈ Wy

h

when v ∈ Vh, andWxy
h consists of functions that are constant on each element. We

consider these as subspaces of L2(Ω), so we impose a priori no continuity conditions
along the interelement boundaries. Operator Πxy

h in (3.5) is defined simply as the
L2 projection, i.e., Πxy

h is the elementwise averaging operator. When defining Πx
h,

Πy
h we consider two options which lead to the same finite element scheme but differ

slightly in the error analysis based on (3.4).
(O1) Πx

h : L2(Ω)→Wx
h , Πy

h : L2(Ω)→Wy
h are defined as L2-projections.

(O2) Πx
h, Πy

h are defined for sufficiently regular φ so that for each horizontal side
Sx and for each vertical side Sy of the rectangular mesh∫

Sx

Πx
hφ(x, y)dx =

∫
Sx

φ(x, y)dx,∫
Sy

Πy
hφ(x, y)dy =

∫
Sy

φ(x, y)dy.

Remark 3.1. Since the strain reductions by Πx
h, Πy

h do not affect the derivative
terms of βii and ρi in (3.5)–(3.6) when u, v, w ∈ Vh, we could obviously write
β̃11 = ∂u/∂x+ Πx

haw, etc., in the finite element model. In the FE model we could
further interpret the reductions equivalently as interpolation operators, such that
Πx
h interpolates at the midpoints (xk+1/2, yn) of the horizontal sides, Πy

h interpolates
at the midpoints (xk, yn+1/2) of the vertical sides, and Πxy

h interpolates at the
centers (xk+1/2, yn+1/2) of the rectangles Kkn. Although such interpretations do
not affect the FE algorithm, they do have an effect on the error indicator (3.4) if
assumed beyond Uh. Also the two options (O1), (O2) are different in this sense.
Option (O1) is natural in the sense that the modified strains are then defined in the
entire energy space, and one has |||v|||h ≤ C|||v|||, v ∈ U (with C = (1 − ν2)−1/2

as the best constant). The advantage of (O2) is that this definition enforces the
continuity of β̃11 and ρ̃1 with respect to y and the continuity of β̃22 and ρ̃2 with
respect to x. We need this property in Theorem 3.2 below.

Remark 3.2. The connection of the chosen reduced-strain algorithm and the facet
FEM models is discussed in [6] in the context of cylindrical shell geometry. In
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Figure 2. Finite difference approximation of the shear and mem-
brane constraints in the reduced-strain FE formulation: ρ1 =
β11 = 0 at (©), ρ2 = β22 = 0 at (�) and β12 = 0 at (×).

(3.5)–(3.6) we have made an extrapolation from this study (cf. also [9]). We note
that the facet formulation actually implies a slightly different definition of β̃12, but
this reduces essentially to the chosen one when approximating an inextensional
deformation [6].

When approximating an inextensional field u ∈ U0, we can bound the best
approximation error (3.4) uniformly in t from

ea(u) ≤ ẽa(u) = min
v∈U0,h

|||u− v|||h = min
v∈U0,h

√
Ab(u− v, u− v).(3.7)

Obviously this also gives the best bound that is uniform in t. When u ∈ Uh,
the reduced constraints β̃ij(u) = ρ̃i(u) = 0, i, j = 1, 2 are imposed equivalently
by setting ρ1 = β11 = 0 at the midpoint of each horizontal side of the mesh,
ρ2 = β22 = 0 at the midpoint of each vertical side, and β12 = 0 at each element
center (see Remark 3.1), so the reduced constraints are effectively finite difference
approximations of the original ones (see Figure 2).

Our first main result states an estimate for ẽa in (3.7) when u ∈ U0.

Theorem 3.1. Let U0,h = {u ∈ Uh | Ahm(u, u) = 0}, where Uh is the bilinear finite
element space and Ahm is defined by (3.2) and (3.5)–(3.6) where Πxy

h is the elemen-
twise averaging operator and Πx

h, Πy
h are defined according to either option (O1) or

(O2). Then, if u ∈ U0, the constrained approximation error (3.7) is bounded as

ẽa(u) ≤ C1h|u|2 + C2h
2
3 (s−1)|u|s, 2 ≤ s ≤ 3,

where C2 = 0 in the elliptic case and also in the degenerate parabolic or hyperbolic
cases.

We note that when bounding ea according to (3.7), the result of Theorem 3.1 is
easily extended to cover bending-dominated (or nearly inextensional) fields of the
form

u = u0 + tu1,(3.8)

where u0 ∈ U0 and u1 ∈ U is such that |u1|2 is bounded uniformly in t. Indeed, the
factor t in front of u1 in (3.8) cancels the parametric error amplification, so that
the standard interpolant tũ ∈ Uh approximates this term sufficiently accurately.
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For membrane-dominated deformations, or for deformations containing strong
layers, the expansion (3.8) is not realistic unless |u1|2 is allowed to grow as t→ 0.
For such more general deformations we can anyhow extend the result of Theorem
3.1 to a nonuniform bound with respect to t, provided u is extremely smooth.
Since we need also to strengthen our assumptions on the mesh here, let us define
the following weak uniformity conditions:
(A) h/hkx ≤ C ∀k,
(B)

∑Nx−1
k=1 |hkx − hk−1

x | ≤ Ch.

Theorem 3.2. Let u ∈ [Hs(Ω)]5, s ≥ 6, assume that the mesh satisfies conditions
(A), (B), and assume that Ahm in (3.3) is defined as in Theorem 3.1, with Πx

h, Πy
h

now defined according to option (O2). Then the best approximation error (3.4) is
bounded for each t > 0 as

ea(u) ≤ C||u||6h+ C||u||st−1hs−2.

Remark 3.3. In the case of a smooth membrane-dominated deformation such that
the second term in (2.1) is dominating, it would be more natural to scale (2.1) by
factor t2 and thus the energy norm by factor t. In such a weaker norm one would
obtain by standard interpolation error analysis the quasioptimal bound ea(u) ≤
C|u|2h (cf. also [3, 7]). The result of Theorem 3.2, which states an error bound in
a rather strong norm, is based on nonstandard interpolation.

4. Proof of Theorems 3.1 and 3.2

The main idea of the proof is to use the Fourier representation (2.4) (for u ∈ U0

or u ∈ U) and approximate then u by

ũ =
∑

λ∈Λ:|λ|≤λ0

ϕ̃λ(y)φ̃
λ
(x),

where λ0 = λ0(h) is a truncation frequency to be chosen, ϕ̃λ is the piecewise linear
interpolant of ϕλ, and φ̃

λ
is a special approximation of φ

λ
to be found.

Lemma 4.1. Assume that the geometric parameters a, b and c satisfy one of the
following: 

b 6= 0, a 6= 0, c ∈ R,
b 6= 0, c 6= 0, a ∈ R,
b 6= 0, a = 0, c = 0.

Then for every ϑλ,j = ϕλ(y)ζ
λ,j

(x), j = 1, 2, such that |λ|hy ≤ |λ|h ≤ ĉ < π, ĉ

small enough, there exists ϑ̃λ,j = ϕ̃λ(y)ζ̃
λ,j

(x) ∈ U0,h such that

|||ϑλ,j − ϑ̃λ,j |||h ≤ (C1h+ C2λ
2h2)|ϑλ,j |2

with C2 = 0 in the elliptic and in the degenerate parabolic case a = c = 0.

Proof. Consider first the cases where b 6= 0 and either a 6= 0 or c 6= 0. Without loss
of generality we restrict to the case j = 1 and write ζ

λ,1
= ζ

λ
= (uλ, vλ, wλ, θλ, ψλ)

and similarly ζ̃
λ,1

= ζ̃
λ

= (ũλ, ṽλ, w̃λ, θ̃λ, ψ̃λ). Since we want ϑ̃λ ∈ U0,h, one
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must have β̃ij(ϑ̃λ) = ρ̃i(ϑ̃λ) = 0. This is equivalent to requiring the nodal values
ϑ̃λ(xk, yn) = ϑ̃

n

k = (unk , v
n
k , w

n
k , θ

n
k , ψ

n
k ) to satisfy

unk+1 − unk + a
2h

k
x(wnk + wnk+1) = 0,

vn+1
k − vnk + b

2hy(w
n
k + wn+1

k ) = 0,
1

2hy
(un+1
k+1 − unk+1 + un+1

k − unk ),

+ 1
2hkx

(vn+1
k+1 − v

n+1
k + vnk+1 − vnk )

+ + c
2 (wn+1

k+1 + wn+1
k + wnk+1 + wnk ) = 0,

hkx
2 (θnk + θnk+1)− (wnk+1 − wnk ) = 0,
hy
2 (ψnk + ψn+1

k )− (wn+1
k − wkn) = 0.

(4.1)

Inspired by the form of ϑλ, we seek a solution to these equations in the form
ϑ̃
n

k = eiλnhy(Uk, V k,W k,Θk,Ψk). Substituting these expressions and simplifying,
we get from the second and from the last two equations in (4.1) that

W k = −2i
bhy

tan (1
2λhy)V k,

Ψk = 2i
hy

tan (1
2λhy)W k,

Θk+1 + Θk = 2
hkx

(W k+1 −W k),
(4.2)

and from the first three equations in (4.1) that(
V
U

)
k+1

−
(
V
U

)
k

=
1
2
τkM

[(
V
U

)
k+1

+
(
V
U

)
k

]
,(4.3)

where τk = 2h
k
x

hy
tan (1

2λhy) and

M = i

(
2c
b −1
a
b 0

)
.

Since uλ and vλ satisfy by (2.5) a system(
vλ
uλ

)′
= λM

(
vλ
uλ

)
,(4.4)

we see that (4.3) is a finite difference approximation to (4.4) that closely resembles
the Trapezoidal rule. The first step is now to perform the error analysis of (4.3).

We consider the approximation of a solution to (4.4) of the form (uλ, vλ) ∼ e−µx,
where µ = (α1 + iα2)λ = αλ with α1λ > 0 in the elliptic case when λ 6= 0 and
α1 = 0 in the parabolic and hyperbolic case. Without loss of generality we may
assume that |λ|hy ≤ |λ|h ≤ ĉ < π. (This sets an upper bound of order O(h−1) for
the truncation frequency λ0.) Then

1− 1
2ατk

1 + 1
2ατk

=e−µh
k
x +O

(
|λ|3(hkx)3 + |λ|3hkx(hy)2

)
,∣∣∣∣1− 1

2ατk

1 + 1
2ατk

∣∣∣∣ ≤e−β|λ|hkx ,
where α1 > β > 0 in the elliptic case and β = 0 in the parabolic and hyperbolic case.
Following the standard error analysis techniques for A-stable difference schemes (for
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the reader’s convenience we present the reasoning in Appendix A), we then see that
with the initial conditions ũλ(0) = uλ(0), ṽλ(0) = vλ(0),

|vλ(xk)− ṽλ(xk)| ≤C
∫ xk

0

e−β|λ|(x
k−t)|λ|3(h2

x + h2
y)e
−α1|λ|tdt

≤Ch2|λ|3−me−β|λ|xk ,
(4.5)

where

m =

{
1 in the elliptic case,
0 in the parabolic and hyperbolic case.

Comparing (4.3), (4.4) and using (4.5) we also see that

|v′λ(xk+1/2)− ṽ′λ(xk+1/2)| ≤ Ch2|λ|4−me−β|λ|x
k

.(4.6)

Furthermore, from the first two equalities in (4.2) and from their continuous coun-
terparts we conclude easily that (4.5) and (4.6) imply

|wλ(xk)− w̃λ(xk)| ≤ Ch2|λ|4−me−β|λ|xk ,

|ψλ(xk)− ψ̃λ(xk)| ≤ Ch2|λ|5−me−β|λ|x
k

,(4.7)

|ψ′λ(xk+1/2)− ψ̃′λ(xk+1/2)| ≤ Ch2|λ|6−me−β|λ|xk .

Upon combining the last two bounds in (4.7) with standard interpolation error
bounds and using finally |λ|4− 1

2m ≤ C|ϕλ(y)ψλ(x)|2, we obtain the following L2-
bounds:

||ψλ − ψ̃λ||L2(0,L) ≤ Ch2|λ|1−m|ϕλψλ|2,
||ψ′λ − ψ̃′λ||L2(0,L) ≤ (Ch+ Ch2|λ|2−m)|ϕλψλ|2.

(4.8)

Using (4.8) together with ||ϕλ − ϕ̃λ||L2(0,H) ≤ Ch2λ2, ||ϕ′λ − ϕ̃′λ||L2(0,H) ≤ Chλ2,
λ2||ψλ||L2(0,L) ≤ C|ϕλψλ|2, |λ|||ψ′λ||L2(0,L) ≤ C|ϕλψλ|2, and recalling also that
|λ|h ≤ ĉ, we can bound the second term on the right hand side of

|||ϑλ − ϑ̃λ|||h = Ab(ϑλ − ϑ̃λ, ϑλ − ϑ̃λ)1/2

≤ C|ϕλθλ − ϕ̃λθ̃λ|1 + C|ϕλψλ − ϕ̃λψ̃λ|1
from

|ϕλ(y)ψλ(x)− ϕ̃λ(y)ψ̃λ(x)|1 ≤ |(ϕλ(y)− ϕ̃λ(y))ψλ(x)|1
+ |ϕ̃λ(y)(ψλ(x) − ψ̃λ(x))|1

as

|ϕλψλ − ϕ̃λψ̃λ|1 ≤ (C1h+ C2h
2λ2)|ϕλψλ|2,(4.9)

where C2 = 0 in the elliptic case.
For the second rotational component ϕλθλ the estimation can be done similarly

up to the point where a bound for δθkλ = θλ(xk)− θ̃λ(xk) is needed. Since by (4.2)
we have that

1
2

(θ̃λ(xk+1) + θ̃λ(xk)) = w̃′λ(xk+1/2)
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and clearly

1
2

(θλ(xk+1) + θλ(xk)) =
1
2

(w′λ(xk+1) + w′λ(xk)),

it follows that
1
2

(δθk+1
λ + δθkλ) =

1
2

(w′λ(xk+1) + w′λ(xk))− w̃′λ(xk+1/2) = ωk,

hence

δθkλ = (−1)kδθ0
λ + 2

k∑
j=1

(−1)j+1ωk−j .(4.10)

In order to bound the right hand side of (4.10), recall first that by (4.3)(
ṽλ
ũλ

)′
(xk+1/2) =

1
hy

tan (
1
2
λhy)M

[(
ṽλ
ũλ

)
(xk) +

(
ṽλ
ũλ

)
(xk+1)

]
.

Since also

w̃′λ(xk+1/2) = − 2i
bhy

tan (
1
2
λhy)ṽ′λ(xk+1/2)

and

w′λ(xk) = − iλ
b
v′λ(xk),

we see that

ωk =
2
b

[
(
λ2

4
− (

1
hy

tan (
1
2
λhy))2)(

2c
b

(vλ(xk+1) + vλ(xk))− (uλ(xk+1) + uλ(xk)))

(4.11)

+ (
1
hy

tan (
1
2
λhy))2)(

2c
b

(δvk+1
λ + δvkλ)− (δuk+1

λ + δukλ))
]

=∆k+1 + ∆k,

where δvkλ = vλ(xk) − ṽλ(xk), δukλ = uλ(xk) − ũλ(xk). By (4.11) the telescoping
sum (4.10) reduces to δθkλ = ∆k+(−1)k+1(2∆0− δθ0

λ), so with the initial condition
δθ0
λ = 2∆0 we get

|θλ(xk)− θ̃λ(xk)| = 2|∆k| ≤ Ch2|λ|5−me−β|λ|xk .

Furthermore, upon bounding (hkx)−1|δθk+1
λ − δθkλ| = 2(hkx)−1|∆k+1 − ∆k| using

(4.11), (4.3), and (4.5)–(4.6) together with similar estimates for uλ−ũλ, we conclude
that

|θ′λ(xk+1/2)− θ̃′λ(xk+1/2)| ≤ Ch2|λ|6−me−β|λ|x
k

.

Proceeding as above, we get a bound similar to (4.9), so the proof in the nonde-
generate cases is complete.

In the remaining case, a = c = 0 ζ
λ,j

is a polynomial of order one in maximum,
so the approximation error vanishes.

We note finally that when (uλ, vλ) ∼ xe−µx the analysis is similar, only in this
case (4.3) must be considered as an approximation to the entire system (4.4) and
the analysis must be performed for vector-valued functions.



ANALYSIS OF A BILINEAR FINITE ELEMENT FOR SHALLOW SHELLS I 937

Lemma 4.2. Assume that λ 6= 0 and that the parameters satisfy one of the follow-
ing: {

b = 0, a 6= 0, c 6= 0,
b = 0, a = 0, c 6= 0.

Then for every ϑλ = ϕλ(y)ζ
λ
(x), such that |λ|h ≤ ĉ, ĉ small enough, there exists

ϑ̃λ ∈ U0,h such that

|||ϑλ − ϑ̃λ|||h ≤ (C1h+ C2λ
2h2)|ϑλ|2

with C2 = 0 in the case a = b = 0.

Proof. For the first case with b = 0, a 6= 0, c 6= 0 we note that (4.1) reduces to

Uk+1 − Uk = i
a

4c
τk(Uk+1 + Uk),

thus providing an approximation as accurate as in the hyperbolic case in Lemma
4.1. In the second case, a = b = 0, ζ

λ
is a constant, so that the approximation

error vanishes again.

Lemma 4.3. Assume that λ = 0 and one of the following holds :
b = 0, a 6= 0, c 6= 0,
b = 0, a = 0, c 6= 0,
b = 0, c = 0, a 6= 0.

Then for every φ
0
∈ U0, there exists φ̃

0
∈ U0,h such that

|||φ
0
− φ̃

0
|||h ≤ Ch|φ0

|2.

Proof. These modes, having all in common that they are built on an arbitrary
function ξ ∈ H3(0, L), can be treated by choosing first a suitable interpolant for θλ
and then integrating the other components from this, paralleling the construction
in [9] and leading to the optimal error bound.

In order to compute our final approximation, we need some orthogonality results.

Lemma 4.4. For λ ∈ Λ let Υλ(x, y) = ϕλ(y)χ(x), Υ̃λ(x, y) = ϕ̃λ(y)χ̃(x) for some
χ, χ̃ ∈ [H1(0, L)]5 and let ϕλ, ϕ̃λ be as in Lemmas 4.1–4.3. Then if λ, µ ∈ Λ, λ 6= µ,
one has

Ab(Υλ,Υµ) = Am(Υλ,Υµ) = 0.

If, in addition, |λ|hy < π, |µ|hy < π, then

Ab(Υλ, Υ̃µ) =Ab(Υ̃λ, Υ̃µ) = 0,

Am(Υλ, Υ̃µ) =Am(Υ̃λ, Υ̃µ) = 0,

Ahm(Υλ,Υµ) =Ahm(Υλ, Υ̃µ) = Ahm(Υ̃λ, Υ̃µ) = 0.

Proof. The first assertion follows from ϕ′λ = iλϕλ and from the orthogonality
(ϕλ, ϕµ) +

∫ H
0 ϕλϕµdy = 0, λ, µ ∈ Λ, λ 6= µ. To prove the orthogonality for
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the remaining seven bilinear expressions, we note that if the integration in the
seven expressions is restricted to the domain

Ωn = {(x, y) | 0 < x < L, yn < y < yn+1},

the result takes the form ei(λ−µ)nhyC(µ, λ, hy) in each case. The assertion then
follows by summing over n.

Proof of Theorem 3.1. Consider first the case, when b 6= 0. Then it suffices to show
that for each u = uj ∈ U0 of the form uj =

∑
λ∈ΛAλϕλ(y)ζ

λ,j
(x), j = 1, 2, there

exists ũj ∈ U0,h such that

|||uj − ũj |||h ≤ C1h|uj |2 + C2h
2
3 (s+1)|uj |2+s,

where C2 = 0 in the elliptic and in the degenerate parabolic and hyperbolic
cases. To this end, drop again the index j, write ϑλ = ϕλ(y)ζ

λ
(x), and set

ũ =
∑
|λ|≤λ0

Aλϑ̃λ, where ϑ̃λ is as in Lemma 4.1. Then Lemma 4.4 gives

|||u− ũ|||2h = |||
∑
|λ|≤λ0

Aλ(ϑλ − ϑ̃λ) +
∑
|λ|>λ0

Aλϑλ|||2h

≤ 2
∑
|λ|≤λ0

|Aλ|2|||ϑλ − ϑ̃λ|||2h + 2
∑
|λ|>λ0

|||Aλϑλ|||2h.

In the elliptic case and in the degenerate hyperbolic and parabolic cases we can set
λ0 = ĉ

h , ĉ sufficiently small, to obtain

|||u− ũ|||2h ≤ Ch2
∑
|λ|≤ c

h

|Aλ|2|ϑλ|22 + Ch2
∑
|λ|> c

h

|λ|2|Aλ|2|ϑλ|21 ≤ Ch2|u|22,(4.12)

where we used Lemma 4.1, the bound |||ϑλ|||2h ≤ C|ϑλ|21, and the fact that∑
λ∈Λ

|λ|2p|Aλ|2|ϑλ|2` ≤ C|u|2`+p, p ≥ 0.

In the nondegenerate hyperbolic and parabolic cases we get first by a similar argu-
ment that

|||u − ũ|||2h ≤ Ch2|u|22 + Ch4
∑
|λ|≤λ0

|Aλλp|2|λ|4−2p|ϑλ|22 + 2
∑
|λ|>λ0

λ−2r |||λrAλϑλ|||2h

≤ C
(
h2|u|22 + h4λ

2(2−p)
0 |u|22+p + λ−2r

0 |u|21+r

)
.

Balancing the last two error terms here, choosing r = 1 + p, λ0 ∼ h−
2
3 , we get

|||u− ũ|||2h ≤ Ch2|u|22 + C(h4λ
2(2−p)
0 + λ

−2(1+p)
0 )|u|22+p

≤ Ch2|u|22 + Ch
4
3 (p+1)|u|22+p, 0 ≤ p ≤ 1.

(4.13)

For the cases b = 0, we write u = ϕ0φ0
+
∑
λ∈Λ\{0} Aλϑλ and ũ = ϕ̃0φ̃0

+∑
0<|λ|≤λ0

Aλϑ̃λ and apply the results given in Lemmas 4.2–4.4 as above. This
proves the theorem together with (4.12), (4.13).

Remark 4.1. Choosing u = ϑλ0
in the nondegenerate hyperbolic or parabolic case

so that C2 6= 0 in Lemma 4.1 we conclude from the proof of Lemma 4.1 that

|||u − ũ|||2h ∼ h2|u|22 + h
4
3 (s+1)|u|22+s, 0 ≤ s ≤ 1.
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Since obviously ũ is essentially the best approximation of u, we conclude that the
error bound of Theorem 3.1 is not improvable.

Remark 4.2. In the degenerate parabolic and hyperbolic shell geometries, the
Fourier transform technique is actually not needed for proving Theorem 3.1. This is
because in those cases the general inextensional displacement field takes the simple
form

u(x, y) =


xΦ1(y) + Φ2(y) when a = c = 0,
yΦ1(x) + Φ2(x) when b = c = 0,
Φ1(x) + Φ2(y) when a = b = 0,

(4.14)

which allows the 1D construction technique of [9] (cf. also [7]) when approximating
u. In this way one can show that Theorem 3.1 holds on a general rectangular
mesh in the degenerate geometries. Also more general than semiperiodic boundary
conditions can be handled in these cases (cf. [9]).

Proof of Theorem 3.2. To proceed with the case when u is not inextensional, we
use again the Fourier decomposition and look for interpolants ϑ̃λ(x) such that
β̃ij(ϑ̃λ) = β̃ij(ϑλ) and ρ̃i(ϑ̃λ) = ρ̃i(ϑλ) for |λ|h ≤ c, c > 0 sufficiently small, so
that Ahm(ϑλ − ϑ̃λ, ϑλ − ϑ̃λ) = 0 for such λ. In this case (4.1) becomes a system on
inhomogeneous difference equations. In the same way as in the inextensional case,
we find that when b 6= 0 the reduced system corresponding to (4.3) is(

V
U

)
k+1

−
(
V
U

)
k

=
1
2
τkM

[(
V
U

)
k+1

+
(
V
U

)
k

]
+ hkxF̃

k,(4.15)

where F̃ k is a second-order accurate approximation to F (xk+1/2) in the system(
vλ
uλ

)′
= λM

(
vλ
uλ

)
+ F = λM

(
vλ
uλ

)
+
(
F1

F2

)
,

as satisfied by vλ and uλ with

F1 = 2f12 − 2cb−1f22, F2 = f11 − ab−1f22,

where fjl = e−iλyβjl(ϑλ). For the error δF kj = Fj(xk+1/2) − F̃ kj , one gets the
bounds

|δF kj | ≤C(h2
x||F ′′j ||∞ + λ2h2

y||Fj ||∞),

|δF k+1
j − δF kj | ≤C|hk+1

x − hkx|hx||F ′′j ||∞
+ C(hk+1

x + hkx)(h2
x||F ′′′j ||∞ + λ2h2

y||F ′j ||∞),

(4.16)

where || · ||∞ = || · ||L∞(0,L). Assuming |λ|h ≤ ĉ, we can again evaluate the error of
(4.15), thus obtaining (we omit the details) a bound

|δvkλ|+ |δukλ| ≤ Gshs, s = 1, 2,

where

Gs ≤ C|λ|s+2(||vλ||∞ + ||uλ||∞) + C

s∑
m=0

|λ|s−m
∑
j,l

||f (m)
jl ||∞.
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We note that again in this case

|||ϑλ − ϑ̃λ|||2h = Ab(ϑλ − ϑ̃λ, ϑλ − ϑ̃λ).

Using the (now inhomogeneous) difference equations to provide an approximation
to ψλ and its derivative, we are led to the bound

|ϕλψλ − ϕ̃λψ̃λ|1 ≤ Gψ,λh,(4.17)

where Gψ,λ is a constant bounded by

Gψ,λ ≤Cλ4(||vλ||∞ + ||uλ||∞) + C

3∑
m=0

|λ|3−m
∑
j,l

||f (m)
jl ||∞

+ C

2∑
m=0

|λ|2−m(||g(m)
2 ||∞ + ||ψ(m)||∞),

where g2(x) = e−iλyρ2(ϑλ).
Bounding |ϕλθλ − ϕ̃λθ̃λ|21 is again a little trickier. Similar to the homogeneous

case we have that(
ṽλ
ũλ

)′
(xk+1/2) =

1
hy

tan (
1
2
λhy)M

[(
ṽλ
ũλ

)
(xk) +

(
ṽλ
ũλ

)
(xk+1)

]
+ F̃ k.

The error δθkλ satisfies again a similar equation to (4.10), where now ωk contains
additional terms due to inhomogeneity. To bound the contribution from these terms
to the telescoping sum (4.10), we need the second estimate in (4.16) and a similar
bound for δgk1 = g1(xk+1/2) − g̃k1 where g1(x) = e−iλyρ1(ϑλ). Invoking the mesh
hypothesis (B) we obtain

|δθkλ| ≤ G̃θ,λh2,

where G̃θ,λ is bounded by

G̃θ,λ ≤C|λ|5(||vλ||∞ + ||uλ||∞) + C

4∑
m=0

|λ|4−m
∑
j,l

||f (m)
jl ||∞

+ C

3∑
m=0

|λ|2−m||g(m)
1 ||∞.

This provides a bound for |θλ(xk)−θ̃λ(xk)|. To bound also |θ′λ(xk+1/2)−θ̃′λ(xk+1/2)|,
we use the mesh hypothesis (A) and apply an inverse inequality, so as to obtain the
desired bound

|ϕλθλ − ϕ̃λθ̃λ|1 ≤ Gθ,λh(4.18)

with

Gθ,λ ≤ C(G̃θ,λ +
2∑

m=0

|λ|2−m||θ(m)||∞).

Combining finally (4.17), (4.18) we have

|||ϑλ − ϑ̃λ|||2h ≤ C(G2
ψ,λ +G2

θ,λ)h2.
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To finalize the analysis, we assume that u =
∑
λ∈Λ Aλϑλ and let our approxi-

mation be ũ =
∑
|λ|≤λ0

Aλϑ̃λ. Then we have again that

|||u− ũ|||2h ≤ 2
∑
|λ|≤λ0

|Aλ|2|||ϑλ − ϑ̃λ|||2h + 2
∑
|λ|>λ0

|Aλ|2|||ϑλ|||2h

≤ C1(u)h2 + λ−2s
0

∑
|λ|>λ0

|||λsAλϑλ|||2h

≤ C1(u)h2 + C2(u)λ−2s
0 t−2,

whereby setting λ0h = ĉ gives

|||u − ũ|||2h ≤ C1(u)h2 + C2(u)t−2h2s.(4.19)

Here we may bound C1(u) from

C1(u) ≤ C
∑
λ∈Λ

|Aλ|2(G2
ψ,λ +G2

θ,λ),

using ∑
λ∈Λ

|λ|2s||fλ||2L∞(0,L) ≤C
∑
λ∈Λ

|λ|2s||fλ||2H1(0,L)

≤C||f ||2s+1, f =
∑
λ∈Λ

ϕλ(y)fλ(x),

as

C1(u) ≤ C(||u||26 + ||v||26 + ||w||25 + ||θ||23 + ||ψ||23) ≤ C||u||26.

Constant C2(u) may be bounded, using the fact that the reduction operators Πx
h,

Πy
h are bounded as maps from H1(Ω) to L2(Ω), as

C2(s, u) ≤
∑
λ∈Λ

|λ|2s(||uλ||22 + ||vλ||22 + ||wλ||22 + ||θλ||21 + ||ψ||21) ≤ C||u||22+s.

This completes the proof for the case b 6= 0. When b = 0, the analysis is similar
and the final result takes the same form. We omit the details.

Remark 4.3. That the additional mesh hypothesis (B) in the proof of Theorem 3.2
is necessary, is seen by considering a single mode where uλ = vλ = 0, wλ(x) = x3,
θλ = w′λ, ψλ = iλwλ, and a mesh where hkx = hx for k odd and hkx = hx/2 for
k even. Then the above construction enforces ũλ = ṽλ = 0, w̃λ(xk) = wλ(xk), so
(4.10) holds with ωk = 1

2 (hkx)2, and we conclude that

|θ′λ(xk+1/2)− θ̃′λ(xk+1/2)| = ck|2δθ0
λ/hx +

3
4
khx|+O(hx),

where ck = 1 for k odd and ck = 2 for k even. Then |ϕλθλ − ϕ̃λθ̃λ|1 6→ 0 as h→ 0.

Remark 4.4. The smoothness requirements in the proof of Theorem 3.2 are suffi-
cient for all geometries. A slight improvement in terms of λ is obtainable in the
case of an elliptic or degenerate parabolic and/or hyperbolic shells. Moreover, in
the bounds for Gs, Gψ, Gθ above, somewhat less regularity is actually needed for
some of the fjl:s.



942 VILLE HAVU AND JUHANI PITKÄRANTA

Remark 4.5. Option (O1) for defining Πx
h, Πy

h fails in Theorem 3.2 because in that
case we could not enforce the constraints Ahm(ϑλ − ϑ̃λ, ϑλ − ϑ̃λ) = 0 for |λ|h ≤ c.
Indeed, Πy

h(β22(u) − β22(ũ)) = 0 would require that β22(u) varies linearly in x,
otherwise Πy

hβ22(u) could be discontinuous at points xk, unlike Πy
hβ22(ũ). This

shows that when considering more general than (nearly) inextensional deformations,
the error indicator (3.4) becomes very sensitive not only to the smoothness of u but
also to the way the modified energy norm ||| · |||h is extended beyond Uh.

Acknowledgment. The authors wish to thank the anonymous reviewer for several
valuable comments.

Appendix A. Error analysis for an A-stable difference scheme

Suppose that we are trying to solve the linear, homogeneous scalar ODE

dy

dx
= −µy, y(0) = y0

for µ > 0 with an implicit difference scheme

ỹ(xk)− ỹ(xk−1) = −1
2
µτk(ỹ(xk) + ỹ(xk−1)), ỹ(0) = y0,

leading to

ỹ(xk) =
1− 1

2µτk

1 + 1
2µτk

ỹ(xk−1) = σk−1ỹ(xk−1).

Assume further that the σk’s satisfy

σk = e−µh
k
x +O(hkxh

n),(A.1)

where hkx = xk+1 − xk, h = maxk hkx, n ∈ N and that the damping property holds

|σk| ≤ e−βh
k
x(A.2)

with β > 0. Then we can expand y(xk) − ỹ(xk) = e−µx
k

y0 − σk−1 · · ·σ0y
0 as a

telescoping sum, so that

|y(xk)− ỹ(xk)| ≤|
k∑
j=1

(σk−1 · · ·σje−µx
j

y0 − σk−1 · · ·σj−1e
−µxj−1

y0)|

≤C
k∑
j=1

|σk−1 · · ·σje−µx
j−1

(e−µh
j−1
x − σj−1)|

≤Chn
k∑
j=1

|σk−1 · · ·σje−µx
j

hj−1
x |

≤Chn
k∑
j=1

e−β(xk−xj)e−µx
j

hj−1
x

≤Chn
∫ xk

0

e−β(xk−t)e−µtdt

by (A.1), (A.2). A generalization of the above reasoning to the vector case is
straightforward.
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8. J. Pitkäranta, A.-M. Matache, C. Schwab, Fourier mode analysis of layers in shallow shell
deformations, Research Report No. 99-18 (ETH Zürich, 1999).
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