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NONCONFORMING ELEMENTS
IN LEAST-SQUARES MIXED FINITE ELEMENT METHODS

HUO-YUAN DUAN AND GUO-PING LIANG

Abstract. In this paper we analyze the finite element discretization for the
first-order system least squares mixed model for the second-order elliptic prob-
lem by means of using nonconforming and conforming elements to approximate
displacement and stress, respectively. Moreover, on arbitrary regular quadri-
laterals, we propose new variants of both the rotated Q1 nonconforming ele-
ment and the lowest-order Raviart-Thomas element.

1. Introduction

As is well-known, nonconforming elements (e.g., Crouzeix-Raviart (CR) linear
elements [11] and the rotated Q1-element [12], [18], [10]) are very useful to seek
numerical solutions of many physical problems (see [11], [12], [13], [15], [16], [17],
[18], [27], [10]). A quadrilateral version of the rotated Q1-element was studied in
[18], but it is only suitable for uniform asymptotic rectangles. This is a restrictive
condition. In this paper, we propose a new variant which admits arbitrary regular
quadrilaterals and allows the finite element equation to be efficiently obtained on
the reference element.

In the classical mixed finite element analysis, both triangular and rectangular
normal continuous elements [19] are proposed, which are known as Raviart-Thomas-
Nédélec (RTN) elements [5], [8], [9] and Brezzi-Douglas-Marini (BDM) elements [7]
and Brezzi-Douglas-Fortin-Marini (BDFM) elements [6], and so on. On arbitrary
quadrilaterals, Wang and Mathew [25] analyzed variants of these elements, but the
very important commuting diagram property does not hold (cf. [35], [19], [37]). In
this paper, we propose a new variant of the lowest-order RTN rectangular element.
Our variant is the first one which not only admits arbitrary regular quadrilaterals,
but also satisfies the commuting diagram property.

These above two new elements will be used for the finite element discretization of
the first-order system least-squares mixed model for a second-order elliptic problem
with various boundary conditions.

It is well known that one advantage of the least squares mixed method [4] is
that coerciveness holds, while the classical mixed method [19], [28] is subject to
the Babus̆ka-Brezzi condition. However, it seems that the coerciveness strongly de-
pends on the conformity of the finite dimensional spaces (see [1], [2], [3], [23], [24],
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[26]). Up to now, it is not clear whether the coerciveness still holds if the displace-
ment is approximated by nonconforming elements and the stress by conforming
elements. In this paper, on triangular, rectangular and quadrilateral meshes, non-
conforming finite element methods are analyzed in a unified way. It is shown that
our nonconforming methods are still coercive, and optimal error bounds are derived.

As is known, the so-called inconsistent error is an essential feature of the non-
conforming displacement-based finite element method [20], [29], [22]. In this paper,
we find that this error does not exist in the first-order system least-squares mixed
methods in the case of nonconforming elements. It seems that the theory of the
patch test [20], [29], [30] would be lost. Nonetheless, it turns out that the patch
test is necessary to obtain coerciveness.

The rest of the paper is arranged as follows. In section 2, the first-order system
least-squares mixed model is recalled for the second order elliptic problem. In
section 3, nonconforming finite element methods are analyzed for the least-squares
mixed model. In section 4, two quadrilateral elements are proposed. In section 5,
some comments are made.

2. The least-squares mixed model

Let Ω ⊂ <d (d = 2, 3) be a bounded domain with Lipschitz boundary Γ = ∂Ω.
Given a subdomain O ⊆ Ω with Lipschitz boundary ∂O, we introduce L2(O), and
(L2(O))d, with inner product (·, ·)0,O and norm || · ||0,O, and introduce L2-based
Sobolev spaces Hm(O) and (Hm(O))d, with norm || · ||m,O and semi-norm | · |m,O
(m ≥ 1 is an integer). In addition, we introduce H1

0 (O) = {v ∈ H1(O); v|∂O = 0}
with norm | · |1,O, and H(div;O) = {q ∈ (L2(O))d; div q ∈ L2(O)} with norm
|| · ||H(div;O) (cf. [34]).

In the case O = Ω, we simplify the notation as follows: | · |m,O ≡ | · |m, || · ||m,O ≡
|| · ||m (m ≥ 1), (·, ·)0,O ≡ (·, ·), || · ||0,O ≡ || · ||.

Let Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, and let n be the unit outward normal
vector to Γ. We additionally introduce

H1
0,D(Ω) = {v ∈ H1(Ω); v = 0 on ΓD},

H0,N (div; Ω) = {q ∈ H(div; Ω); q · n = 0 on ΓN},
H1(div; Ω) = {q ∈ (H1(Ω))d; divq ∈ H1(Ω)}.

Considering the following second-order elliptic problem:

−
d∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
) = f in Ω,

u = 0 on ΓD,

−
d∑

i,j=1

ni aij
∂u

∂xj
= 0 on ΓN ,

(2.1)

where u is the displacement and A = (aij(x)) ∈ <d×d is a sufficiently smooth,
symmetric matrix of coefficients, satisfying

C

d∑
i=1

ξ2
i ≤

d∑
i,j=1

aij(x) ξi ξj ≤ C−1
d∑
i=1

ξ2
i ∀(ξi) ∈ <d, ∀x ∈ Ω.(2.2)
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Here and below, the letter C (with or without subscripts) is a generic constant
which may take different values at different occurrences.

Introducing the stress

p = −A5u(2.3)

as an independent variable, we can rewrite (2.1) in the first order system

div p = f, p = −A5u in Ω
u = 0 on ΓD,
p · n = 0 on ΓN .

(2.4)

A least-squares variational problem for (2.4) is to find u ∈ U = H1
0,D(Ω) and

p ∈ X = H0,N (div; Ω) such that

L(u,p; v, q) := (p+A5u, q+A5 v) + (div p, div q) = (f, div q)
(2.5)

for all (v, q) ∈ U ×X .

3. The nonconforming finite element method

3.1. Method (I). Let Th be the regular triangulation [20], [22] of Ω into triangles
or rectangles in <2, or tetrahedra or rectangular solids in <3. We define

Uh 6⊂ U, Xh ⊂ X.(3.1)

A finite element method for problem (2.5) is to find (uh,ph) ∈ Uh × Xh such
that  Lh(uh,ph; vh, qh)

:= (ph +A5h uh, qh +A5h vh) + (div ph, div qh) = (f, div qh)
∀(vh, qh) ∈ Uh ×Xh,

(3.2)

where

5h is the gradient operator element-by-element.(3.3)

To investigate both coerciveness and convergence, we define

| · |1,h =
√ ∑
K∈Th

| · |21,K , || · ||1,h =
√
|| · ||2 + | · |21,h.(3.4)

Hypothesis (H1). The equality∑
K∈Th

∫
∂K

qh · nK vh = 0 ∀(vh, qh) ∈ Uh ×Xh(3.5)

holds, where nK is the unit outward normal vector to K with boundary ∂K.
Hypothesis (H2). For u ∈ U ∩ H2(Ω) and p ∈ X ∩ H1(div; Ω), there exist two
interpolants Ih u ∈ Uh and Πhp ∈ Xh such that

||u− Ih u||+ h|u− Ih u|1,h ≤ C h2 ||u||2,(3.6)

||p−Πhp|| ≤ C h |p|1, ||div(p−Πhp)|| ≤ C h |divp|1.(3.7)

Hypothesis (H3). There exists a constant C1 > 0, independent of h, such that

||vh|| ≤ C1 |vh|1,h, ∀vh ∈ Uh.(3.8)
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Theorem 3.1. Under Hypotheses (H1) and (H3), there exists a constant C > 0,
independent of h, such that

Lh(vh, qh; vh, qh) ≥ C {||vh||21,h + ‖qh‖2H(div;Ω)} ∀(vh, qh) ∈ Uh ×Xh.

(3.9)

Proof. Given a constant α > 0, we have

||div qh||2 = ||div qh − α vh||2 + 2α (div qh, vh)− α2 ||vh||2,
(3.10)

where, in the light of Hypothesis (H1), we have

(div qh, vh) = −
∑
K∈Th

(q,5 vh)0,K +
∑
K∈Th

∫
∂K

qh · nK vh

= −
∑
K∈Th

(q,5 vh)0,K .
(3.11)

Since

− 2α
∑
K∈Th

(q,5 vh)0,K + ||qh +A5h vh||2

= ||qh + (A− αE)5h vh||2 + 2α (A5h vh,5h vh)− α2 |vh|21,h,

(3.12)

where E is the identity matrix, by (2.2) we have

(A5h vh,5h vh) ≥ C2 |vh|21,h.(3.13)

Therefore, from (3.10)–(3.13) and Hypothesis (H3) we get

Lh(vh, qh; vh, qh) = ||qh +A5h vh||2 + ||div qh||2

= ||div qh − α vh||2 + ||qh + (A− αE)5h vh||2

− α2 ||vh||2 + 2α (A5h vh,5h vh)− α2 |vh|21,h
≥ α (2C2 − α (1 + C2

1 )) |vh|21,h.

(3.14)

Putting α =
C2

1 + C2
1

, we get

α (2C2 − α (1 + C2
1 )) =

C2
2

1 + C2
1

,(3.15)

Lh(vh, qh; vh, qh) ≥ C |vh|21,h,(3.16)

from which we can obtain (3.9), using (3.8) and the triangle inequality. �

Theorem 3.2. Let (u,p = −A5u) ∈ (U ∩H2(Ω))×(X∩H1(div; Ω)) be the exact
solutions, and let (uh,ph) ∈ Uh×Xh be the finite element solution of (3.2). Under
Hypotheses (H1)–(H3), we have

||u− uh||1,h + ||p− ph||H(div;Ω) ≤ C h {||u||2 + |divp|1}.(3.17)
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Proof. For any vh ∈ Uh, qh ∈ Xh, we have

||u− uh||1,h + ||p− ph||H(div;Ω)

≤ ||u− vh||1,h + ||p− qh||H(div;Ω)

+ ||vh − uh||1,h + ||qh − ph||H(div;Ω),

(3.18)

where

||vh − uh||21,h + ||qh − ph||2H(div;Ω)

≤ Lh(vh − uh, qh − ph; vh − uh, qh − ph)

= Lh(vh − u, qh − p; vh − uh, qh − ph)

+ Lh(u− uh,p− ph; vh − uh, qh − ph)

(3.19)

and

Lh(u,p; vh − uh, qh − ph)

= (p+A5u, qh − ph +A5h (vh − uh))

+ (div p, div (qh − ph))

= (f, div (qh − ph))

= Lh(uh,ph; vh − uh, qh − ph).

(3.20)

Hence, from (3.19) and (3.20) we get

||vh − uh||1,h + ||qh − ph||H(div;Ω) ≤ C{||vh − u||1,h + ||qh − p||H(div;Ω)}.
(3.21)

Combining (3.18) and (3.21), from (3.6) and (3.7) we have

||u− uh||1,h + ||p− ph||H(div;Ω)

≤ C inf
(vh,qh)∈Uh×Xh

{||u− vh||1,h + ||p− qh||H(div;Ω)}

≤ C h {||u||2 + |divp|1}.
(3.22)

�

Remark 3.1. Clearly, the standard argument of analyzing nonconforming error is
lost in proving Theorem 3.2, since the term of inconsistent error does not exist.
Nevertheless, the patch test (i.e., Hypothesis (H1)) is still indispensable to obtain
the coerciveness.

Remark 3.2. Let Ω be a polygonal (or polyhedral) bounded domain, with Ω =⋃
K∈Th K. Let S be the set of all element-edges (or faces) in the triangulation Th

and let S0 be the set of all internal element-edges (or faces). Let S∂ = S − S0 and
S∂D be the set of element-edges (or faces) on ΓD, and let S∂N = S∂ − S∂D. Denote
by [v] = v|K1

− v|K2
the jump of v across the interelement boundaries.

Moreover, let U(K) be the nonconforming element of the CR linear element or
the rotated Q1 element, and let X(K) be the normal continuous element of the
RTN0(K) triangular element or RTN[0](K) rectangular element of lowest order.
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Define

Uh = {v ∈ L2(Ω); v|K ∈ U(K), ∀K ∈ Th,(3.23) ∫
e

[v] = 0, ∀e ∈ S0,

∫
e

v = 0, ∀e ∈ S∂D},

Xh = {q ∈ X ; q|K ∈ X(K), ∀K ∈ Th}.(3.24)

Then Hypotheses (H1) and (H2) hold, while (H3) can be derived from (H1) (see
[27]).

3.2. Method (II). If Xh is replaced by

Xc
h ⊂ X ∩ (H1(Ω))d,(3.25)

which is a continuous subspace in the usual sense [20], [22], then it is not obvious
whether Theorem 3.1 holds or not, since Hypothesis (H1) is not necessarily valid.

In order to show that Theorem 3.1 is still true with Xh and Uh given by (3.25)
and (3.1), respectively, we replace Hypothesis (H1) by Hypothesis (H1′) and give
an additional Hypothesis (H4) as follows:
Hypothesis (H1′). There exists a constant C > 0, independent of h, such that

|
∑
K∈Th

∫
∂K

vh χ · nK | ≤ C h ||χ||1 |vh|1,h ∀(vh,χ) ∈ Uh × (X ∩ (H1(Ω))d).

(3.26)

Hypothesis (H4). There exists an interpolation operator Ich : (H1(Ω))d → Xc
h such

that

||Ich χ− χ|| ≤ C h |χ|1, |Ich χ|1 ≤ C |χ|1.(3.27)

If additionally χ ∈ (H2(Ω))d, then

||Ichχ− χ||+ h |Ich χ− χ|1 ≤ C h2 ||χ||2.(3.28)

Theorem 3.3. Under Hypotheses (H1′) and (H4), we have

||qh +A5h vh||2 ≥ C {||qh||2 + ||vh||21,h} ∀(qh, vh) ∈ Xc
h × Uh,

(3.29)

so long as h is sufficiently small.

Proof. For any sh ∈ Xc
h, we have

||sh +A5h vh||2 = ||sh + (A− αE)5h vh||2 + 2α (sh,5h vh)

+ 2α (A5h vh,5h vh)− α2 |vh|21,h,

(3.30)

where α > 0 is a constant to be specified. Choosing q∗ ∈ (X ∩ (H1(Ω))d) such that

div q∗ = −vh, ||q∗||1 ≤ C ||vh||,(3.31)

we have

2α (sh,5h vh) = 2α (sh − q∗,5h vh) + 2α (q∗,5h vh),(3.32)
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where, from (3.31) and Hypothesis (H1′)

2α (q∗,5h vh) = −2α (div q∗, vh) + 2α
∑
K∈Ch

∫
∂K

q∗ · nK vh

≥ 2α ||vh||2 − 2αC h ||q∗||1 |vh|1,h
≥ 2α {C3 ||vh||2 − C4 h

2 |vh|21,h}.

(3.33)

Since

2α (A5h vh,5h vh)− α2 |vh|21,h ≥ α (2C2 − α) |vh|21,h,(3.34)

then, if we put 0 < α < 2C2, we have

||sh +A5h vh||2 ≥ ||sh + (A− αE)5h vh||2 + α(2C2 − α) |vh|21,h
+ 2αC3 ||vh||2 − 2αC4 h

2 |vh|21,h − 2α ||sh − q∗|| |vh|1,h.

(3.35)

Then, taking the infimum in (3.35) with respect to sh, we have

inf
sh∈Xch

||sh +A5h vh||2 + 2α |vh|1,h inf
sh∈Xch

||sh − q∗||

≥ 2αC3 ||vh||2 + α (2C2 − α− 2C4 h
2) |vh|21,h.

(3.36)

It follows that
inf
sh∈Xch

||sh +A5h vh||2

≥ −2α |vh|1,h inf
sh∈Xch

||sh − q∗||

+ 2αC3 ||vh||2 + α (2C2 − α− 2C4 h
2) |vh|21,h

≥ −2α |vh|1,h ||Ich q∗ − q∗||
+ 2αC3 ||vh||2 + α (2C2 − α− 2C4 h

2) |vh|21,h
≥ 2αC3 ||vh||2 + α (2C2 − α− 2C4 h

2 − 2C h) |vh|21,h,

(3.37)

where we have used (3.27) in Hypothesis (H4) and the second inequality in (3.31).
Choosing h such that

2C2 − α > 2C4 h
2 + 2C h,(3.38)

we have

||qh +A5h vh||2 ≥ inf
sh∈Xch

||sh +A5h vh||2 ≥ C ||vh||21,h.(3.39)

Using the triangle inequality, we get

C ||qh||2 ≤ ||qh +A5h vh||2 + |vh|21,h ≤ C ||qh +A5h vh||2,
(3.40)

which completes the proof. �

Corollary 3.1. Under Hypotheses (H1′), (H4) and (3.6), if h is sufficiently small,
then

Lh(vh, qh; vh, qh) ≥ C {||qh||2H(div;Ω) + ||vh||21,h}, ∀(vh, qh) ∈ Uh ×Xc
h,

(3.41)

||u − uh||1,h + ||p− ph||H(div;Ω) ≤ C h {||u||2 + ||p||2},(3.42)
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where (u,p = −A5u) ∈ (U ∩H2(Ω)) × (X ∩ (H2(Ω))d) and (uh,ph) ∈ Uh ×Xc
h

are the exact and the finite element solutions, respectively. �

Remark 3.3. Define

Xc
h = {q ∈ X ∩ (H1(Ω))d; q|K ∈ (R1(K))d, ∀K ∈ Th},(3.43)

where R1(K) denotes P1(K) (the space of linear polynomials) or Q1(K) (the space
of bilinear polynomials), while Uh is still defined by (3.23). Then (H1′) (cf. [11]),
(H4) and (3.6) hold, where Ich can be taken as the well-known Clément interpolation
operator [21], [22].

Remark 3.4. Our method can be applied for other choices of Xh and Uh. For
example, on triangles, we define (cf. [11], [36], [19])

Uh = {v ∈ L2(Ω); v|K ∈ P3(K),K ∈ Th∫
e

[v]w = 0, w ∈ P2(e), e ∈ S0,

∫
e

v w = 0, w ∈ P2(e), e ∈ S∂D},

(3.44)

Xh = {q ∈ X ; q|K ∈ BDFM3(K), RTN2(K),K ∈ Th},(3.45)

Xc
h = {q ∈ (H1(Ω))2 ∩X ; q|K ∈ (P2(K))2,K ∈ Th},(3.46)

it can be easily verified that Hypotheses (H1)–(H3) (or (H1′), (H4)) hold. Therefore,
using similar arguments, we can obtain the coerciveness and the error bound O(h3)
(or O(h2)), with (3.44) and (3.45) (or (3.44) and (3.46)).

Remark 3.5. We can further consider the Robin-boundary value problem:

−div (A5u) + κu = f in Ω,
u = 0 on ΓD,

n · A5u+ ρ u = 0 on ΓN ,
(3.47)

where if ΓD = ∅, we require that either κ(x) or ρ(x) is bounded below away from
zero; if ΓD 6= ∅, we require that both κ(x) and ρ(x) are nonnegative functions. A
is a sufficiently smooth, symmetric matrix of coefficients which satisfies (2.2).

We introduce

W0,N (Ω) = {(p, u) ∈ H(div; Ω)× U ;−p · n+ ρ u = 0 on ΓN},
(3.48)

where W0,N (Ω) is a Hilbert space with respect to the norm ||p||H(div;Ω) + ||u||1 (cf.
[23]).

We consider the following finite element method: Find (uh,ph) ∈ Wh ⊂W0,N (Ω)
such that

(ph +A5h uh, qh +A5h vh) + (div ph + κuh, div qh + κ vh) = (f, div qh + κ vh)
(3.49)
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for all (vh, qh) ∈Wh, where

Wh = {(q, v) ∈ H(div; Ω)× L2(Ω);

q|K ∈ X(K) (or q ∈ (H1(Ω))d and (R1(K))d), ∀K ∈ Th,

v|K ∈ U(K), ∀K ∈ Th,
∫
e

[v] = 0, e ∈ S0,

∫
e

v = 0, e ∈ S∂D,

q · n = ρ v on S∂N}.

(3.50)

Similarly, we can obtain the coerciveness and the optimal error bound O(h).

4. Quadrilateral elements

Clearly, under Hypotheses (H1)–(H3) (or (H1′), (H4) and (3.6)), we have estab-
lished both coerciveness and error bound for the first-order system least-squares
nonconforming mixed finite element problem (3.2). However, in the previous sec-
tion we only dealt with triangular (or rectangular) elements in <2, or tetrahedral
(or rectangular solid) elements in <3. In this section we will construct quadrilat-
eral elements satisfying (H1)-(H3) (or (H1′), (H4) and (3.6)). Due to the Clément
interpolation, (H4) can still be easily verified.

We consider the quadrilateral triangulation Th = {K} in the xy-plane, with K a
quadrilateral whose diameter is hK and whose four vertices are (xi, yi), 1 ≤ i ≤ 4,
and h = supK∈Th hK is the mesh size. |e| denotes the length of any edge e ∈ ∂K,
and ne denotes the unit outward normal vector to e. In addition, in this section

the curl operator curl v = (−∂v
∂y
,
∂v

∂x
)t is used. |K| denotes the measurement of K.

Let K̂ be the reference square on the ξη-plane, and let FK : K̂ → K be the
invertible mapping, with inverse mapping F−1

K : K → K̂. From the assigned
function v̂ : K̂ → < we can get a corresponding function vK : K → < by vK(x, y) :=
v̂(F−1

K (x, y)).

Lemma 4.1. For any given function v ∈ H1(K), if it has zero mean value over
any given side e ∈ ∂K (

∫
e
v = 0), or over K (

∫
K
v = 0), then, under the shape

regular condition of Th,

||v||0,K ≤ C hK |v|1,K .(4.1)

Proof. Since the restriction of FK to any given side e ∈ ∂K is an affine mapping,
from

∫
e
v = 0 we know that

∫
ê
v̂ = 0. Then, applying the Poincaré inequal-

ity [14] to the reference element K̂, we have ||v̂||0,K̂ ≤ C |v̂|1,K̂ . As a result,
||v||0,K ≤ C hK ||v̂||0,K̂ ≤ C hK |v̂|1,K̂ ≤ C hK |v|1,K . If

∫
K v = 0, it follows from

the Poincaré inequality again that ||v||0,K ≤ C hK |v|1,K . �

4.1. A quadrilateral nonconforming element. Define

Y (K) = span{1, x, y, BK(x, y)}, BK(x, y) = (ξ2 − η2) ◦ F−1
K ,(4.2)

Uh = {v ∈ L2(Ω); v|K ∈ Y (K),K ∈ Th,(4.3) ∫
e

[v] = 0, e ∈ S0,

∫
e

v = 0, e ∈ S∂D}.
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Remark 4.1. Unlike [18], here Y (K) is not a parametric or nonparametric space,
but a part-parametric one, and this allows for not only arbitrary shape-regular
quadrilateral meshes, but also efficient calculation on the reference element K̂.

Theorem 4.1. If w ∈ H2(K), we can define a unique IK w ∈ Y (K) such that∫
e

(IK w − w) = 0 ∀e ∈ ∂K,(4.4)

where IK w satisfies

||w − IK w||0,K + hK |w − IK w|1,K ≤ C h2
K ||w||2,K ,(4.5)

h2m−2
K ||w − IK w||m,K + |IK w|1,K ≤ C |w|1,K (m = 0, 1).(4.6)

Proof. To determine IKw ∈ Y (K), we only need to show that the following coeffi-
cient matrix is nonsingular:


|e1|−1

∫
e1
|e1|−1

∫
e1
x |e1|−1

∫
e1
y |e1|−1

∫
e1
BK(x, y)

|e2|−1
∫
e2
|e2|−1

∫
e2
x |e2|−1

∫
e2
y |e2|−1

∫
e2
BK(x, y)

|e3|−1
∫
e3
|e3|−1

∫
e3
x |e3|−1

∫
e3
y |e3|−1

∫
e3
BK(x, y)

|e4|−1
∫
e4
|e4|−1

∫
e4
x |e4|−1

∫
e4
y |e4|−1

∫
e4
BK(x, y)

 ,

(4.7)

where 1 ≤ i (mod 4) ≤ 4

|ei|−1

∫
ei

= 1, |ei|−1

∫
ei

BK = (−1)i
2
3
,

|ei|−1

∫
ei

x =
xi + xi+1

2
, |ei|−1

∫
ei

y =
yi + yi+1

2
.

It can be seen that the determinant of (4.7) is
4 |K|

3
6= 0, which leads to the

conclusion.
To show both (4.5) and (4.6), we let IK w(x, y) = a1 + a2x+ a3y + a4BK(x, y)

on each K, where the ai, 1 ≤ i ≤ 4, are coefficients to be determined, and we let
bi =

∫
ei
w/|ei|, ei ∈ ∂ K, 1 ≤ i ≤ 4. By solving a standard algebraic linear system,

we get

a4 =
3
8

(b4 − b3 + b2 − b1),(
a2

a3

)
=

1
4 |K|

(
y4 − y2 y1 − y3

x2 − x4 x3 − x1

)(
b2 − b1 + b3 − b4
b3 − b2 + b4 − b1

)
,

(4.8)

where a1 = b1 −
x1 + x2

2
a2 −

y1 + y2

2
a3 +

2
3
a4.

Note that ∫
K

5 (w − IK w) =
∫
∂ K

(w − IK w) = 0.(4.9)

From Lemma 4.1 we have
|w − IK w|1,K ≤ C hK |w − IK w|2,K

(with 5 (w − IK w) vanishing average on K),
(4.10)

‖w − IK w‖0,K ≤ C hK |w − IK w|1,K
(with w − IK w vanishing average on ∂ K).

(4.11)
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In what follows, we shall show that

|IK w|r,K ≤ C |w|r,K (r = 1, 2).(4.12)

By an easy but tedious calculation, from the standard trace theorem [20], [22] we
have

|IK w|1,K ≤ C

{
4∑
i=1

(
|ei|−1

∫
ei

w

)2
}1/2

≤ C ‖ŵ‖1,K̂ .(4.13)

Due to the fact that for any constant polynomial p0 ∈ P0(K) the function ṽ ∈ Y (K)
defined by w + p0 is IK w + p0, we have

|IK w|1,K = |ṽ|1,K ≤ C inf
p0∈P0(K)

{‖ŵ + p0‖0,K̂ + |ŵ|1,K̂} ≤ C |ŵ|1,K̂ ≤ C |w|1,K .
(4.14)

Next, similarly to (4.13), from (4.8) and using the trace theorem again, we get

|IK w|2,K ≤ C h−1
K

{
4∑
i=1

(
|ei|−1

∫
ei

w

)2
}1/2

≤ C h−2
K {‖w‖0,K + hK |w|1,K}.

(4.15)

Also, since for any linear polynomial p1 ∈ P1(K) the function ṽ ∈ Y (K) defined by
w + p1 is IK w + p1, we have

|IK w|2,K = |ṽ|2,K ≤ C h−2
K inf

p1∈P1(K)
{‖w + p1‖0,K + hK |w + p1|1,K}.

(4.16)

Furthermore, it can be seen that

inf
p1∈P1(K)

‖w + p1‖0,K ≤ inf
p1∈P1(K)

inf
p0∈P0(K)

‖w + p1 + p0‖0,K

≤ C hK inf
p1∈P1(K)

|w + p1|1,K ,

inf
p1∈P1(K)

|w + p1|1,K = inf
p1∈P1(K)

‖5w +5 p1‖0,K

≤ ‖5w + p0‖0,K ≤ C hK |5w|1,K ,

where we have chosen a special linear polynomial p1 = d0 + d1 x + d2 y ∈ P1(K)
with p0 = (d1, d2)t = −

∫
K
5w/|K|; that is to say, 5w + p0 has a vanishing

average on K, and the above estimation is derived from Lemma 4.1.
Therefore, we have

inf
p1∈P1(K)

{‖w + p1‖0,K + hK |w + p1|1,K} ≤ C h2
K |w|2,K .(4.17)

It follows that |IK w|2,K ≤ C |w|2,K . So (4.10)–(4.12) yield both (4.5) and (4.6).
�

Remark 4.2. It is interesting to note that both (4.5) and (4.6) are derived from
the standard Poincaré inequality, not from the Bramble-Hilbert lemma (cf. [20],
[22]). As a matter of fact, since P1(K) ◦ FK is only a proper subspace of Q1(K̂)
and Y (K) is not an isoparametric space, the classical estimation on quadrilaterals
is not available.



12 HUO-YUAN DUAN AND GUO-PING LIANG

Corollary 4.1. Define Ih : U ∩H2(Ω)→ Uh as follows:

Ih w(x, y) = IK w(x, y) ∀(x, y) ∈ K, ∀K ∈ Th.(4.18)

Then

||Ih w − w|| + h |w − Ih w|1,h ≤ C h2 ||w||2,(4.19)

( ∑
K∈Th

h2m−2
K ||w − Ih w||2m,K

)1/2

+ |Ih w|1,h ≤ C |w|1 (m = 0, 1). �

(4.20)

4.2. A quadrilateral normal continuous element. Define

D(K) = span{(1, 0)t, (0, 1)t, (x, y)t, curl(N1 ◦ F−1
K )}, N1(ξ, η) = (1+ξ)(1+η)/4,

(4.21)

Xh = {q ∈ X ; q|K ∈ D(K),K ∈ Th}.(4.22)

Remark 4.3. D(K) is a new element for quadrilaterals, but is the same as the RT[0]

rectangular element [5], [19] when Th is composed of rectangles.

Theorem 4.2. Given a function χ ∈ H1(div;K), we can find a unique interpolant
ΠK χ ∈ D(K) such that∫

e

(ΠK χ− χ) · ne = 0 ∀e ∈ ∂K,(4.23)

||ΠK χ− χ||0,K ≤ C hK |χ|1,K ,(4.24)

||div(χ −ΠKχ)||0,K ≤ C hK |divχ|1,K ,(4.25)

divΠKχ = PKdivχ, ||divΠKχ||0,K ≤ ||divχ||0,K ,(4.26)

where PK is the L2-projection operator onto P0(K), the space of constant polyno-
mials.

Proof. To show the existence and uniqueness of ΠK χ, we only show that the matrix
generated from (4.23) is nonsingular. Let the outward unit normal vector to ei be
denoted by nei = (yi − yi+1, xi+1 − xi)t/|ei|; then from (4.23) we get the following
coefficient matrix:

y1 − y2 x2 − x1 y1x2 − y2x1 1
y2 − y3 x3 − x2 y2x3 − y3x2 0
y3 − y4 x4 − x3 y3x4 − y4x3 0
y4 − y1 x1 − x4 y4x1 − y1x4 −1

 .(4.27)

By a direct calculation, we know that the determinant of (4.27) is∣∣∣∣ y1 − y3 x3 − x1

y2 − y4 x4 − x2

∣∣∣∣ ∣∣∣∣ y2 − y3 x3 − x2

y2 − y4 x4 − x2

∣∣∣∣ 6= 0,

since under the shape regular condition we have∣∣∣∣∣∣∣∣
x1 y1 1 1
x2 y2 1 0
x3 y3 1 0
x4 y4 1 0

∣∣∣∣∣∣∣∣ 6= 0.

Next, we consider (4.24).
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Consider two adjacent sides of K, say e1, e2, with outward unit vectors ne1 ,ne2 .
Under the shape regular condition, ne1 ,ne2 are linearly independent, and they can
form a base in the plane. Then, any given vector-valued function χ can be uniquely
written as χ = (χ · ne1)ne1 + (χ · ne2)ne2 , and it can be easily seen that

||χ||E ≤ |χ · ne1 |+ |χ · ne2 | ≤ 2 ||χ||E ,
where || · ||E is the norm in 2-dimensional Euclidean space. Since ΠK χ is defined
by (4.23), i.e.,, (ΠK χ−χ) ·nei has a vanishing average on e ∈ ∂K, by Lemma 4.1
we have

||(ΠK χ− χ) · nei ||0,K ≤ C hK |(ΠK χ− χ) · nei |1,K ≤ C hK |ΠK χ− χ|1,K .
(4.28)

Then

||ΠK χ− χ||0,K ≤ C {||(ΠK χ− χ) · ne1 ||0,K + ||(ΠK χ− χ) · ne2 ||0,K}
≤ C hK {|(ΠK χ− χ) · ne1 |1,K + |(ΠK χ− χ) · ne2 |1,K}
≤ C hK |ΠK χ− χ|1,K .

(4.29)

Now we will show that

|ΠK χ|1,K ≤ C |χ|1,K .(4.30)

To that goal, define bi =
∫
ei
χ · nei , 1 ≤ i ≤ 4, and ΠK χ = (a, b)t + cϕK + dωK ,

with ϕK = (x, y)t and ωK = curl (N1 ◦ F−1
K ). From (4.23) we know that for any

constant vector p0 ∈ (P0(K))2 we have ΠK p0 ≡ p0, and so

|c| ≤ C h−1
K |

4∑
i=1

bi| = C h−1
K |

∫
K

divχ| ≤ C ||divχ||0,K ,(4.31)

|d| ≤ C

4∑
i=1

|bi| ≤ C hK ||χ̂||1,K̂ ≤ C hK {||χ̂+ p0||0,K̂ + |χ̂|1,K̂}

(4.32)

≤ C hK |χ̂|1,K̂ ≤ C hK |χ|1,K .

Noting that

|ϕK |1,K ≤ C hK , |ωK |1,K ≤ C |N1 ◦ F−1
K |2,K ≤ C h−1

K ,(4.33)

we have

|ΠK χ|1,K ≤ |c| |ϕK |1,K + |d| |ωK |1,K ≤ C |χ|1,K .(4.34)

Obviously, (4.24) follows from (4.29) and (4.30).
Moreover, from (4.23) and divΠKχ ∈ P0(K), we have∫

K

(divχ− PKdivχ) =
∫
K

div (χ −ΠK χ) = 0,(4.35)

where PK is the standard orthogonal L2-projection operator onto P0(K). Thus
both (4.25) and (4.26) hold. The proof is finished. �

Corollary 4.2. Let Πh : H1(div; Ω)→ Xh be defined by

Πh χ(x, y) = ΠKχ(x, y) ∀(x, y) ∈ K, ∀K ∈ Th.(4.36)
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Then

||Πh χ− χ|| ≤ C h |χ|1, ||div (Πh χ− χ)|| ≤ C h |divχ|1,
(4.37)

divΠhχ = Phdivχ, ||divΠhχ|| ≤ ||divχ||,(4.38)

where Ph is the standard othogonal L2-pojection operator onto Mh defined by

Mh = {v ∈ L2(Ω); v|K ∈ P0(K), ∀K ∈ Th}.(4.39)

Lemma 4.2. For any s ∈ D(K),

div s|K = constant, s · ne = constant, ∀e ∈ ∂K.(4.40)

Proof. Since the restrictions of N1 ◦ F−1
K to e2 and e3 are zero, it follows that

curl (N1 ◦ F−1
K ) · ne2 = curl (N1 ◦ F−1

K ) · ne3 = 0 on e2 and e3.

Next, let us consider, say, e4, with the unit normal vector ne4 and the unit
tangent vector τ e4 . Since

curl (N1 ◦ F−1
K ) · ne4 =

∂(N1 ◦ F−1
K )

∂τ e4

and the restriction to e4 of N1 ◦ F−1
K is a linear polynomial, we immediately know

that curl (N1 ◦ F−1
K ) · ne4 = constant on e4. �

Remark 4.4. Lemma 4.2 indicates that the interpolation ΠK χ can be also deter-
mined by the mid-point values χ · n on the four sides of ∂K.

Corollary 4.3. There exists a constant C > 0, independent of h, such that

sup
χ∈Xh

(v, divχ)
||χ||H(div;Ω)

≥ C ||v||, ∀v ∈Mh.(4.41)

Proof. For any given v ∈Mh, let s ∈ (H1(Ω))2 be such that

div s = v, ||s||1 + ||s||H(div;Ω) ≤ C ||v||.(4.42)

We can define Πh s ∈ Xh by∫
e

(s−Πh s) · ne = 0, ∀e ∈ ∂K, ∀K ∈ Th,(4.43)

with

||Πh s|| ≤ C |s|1, ||div Πh s|| ≤ ||div s||.(4.44)

Therefore, we get

sup
χ∈Xh

(v, divχ)
||χ||H(div;Ω)

≥ (v, div Πh s)
||Πh s||H(div;Ω)

=
(v, div s)

||Πh s||H(div;Ω)
+

(v, div (Πh s− s))
||Πh s||H(div;Ω)

=
(v, div s)

||Πh s||H(div;Ω)
≥ C ||v||. �

(4.45)

Remark 4.5. Corollaries 4.2 and 4.3 indicate that (Xh,Mh) can be used in the clas-
sical mixed finite element approximation for (2.5) of second-order elliptic problems,
when using arbitrary quadrilateral meshes.
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Remark 4.6. It is obvious that Hypotheses (H1)–(H3) hold with Uh and Xh defined
by (4.3) and (4.22), respectively. Therefore, on the arbitrary quadrilateral triangu-
lation, we can easily establish the coerciveness and the error bound O(h) with both
(4.3) and (4.22) used for solving (3.2).

Remark 4.7. For other quadrilateral versions of the RTN[0] rectangular mixed el-
ement, (4.38) and the second inequality in (4.37) do not hold, since the Piola-
transformation is involved (cf. [19], [25]). In the literature, (4.38) is referred to as
the property of commuting diagram. This property is very important (cf. [19], [35],
[37], [38]).

In what follows, we give other properties of Xh on quadrilateral meshes. To do
so, we first define

Vh = {v ∈ H1(Ω); v ◦ FK ∈ Q1(K̂),K ∈ Th, v|ΓN = 0},(4.46)

where Q1(K̂) = span{Ni(ξ, η), 1 ≤ i ≤ 4} is the space of bilinear polynomials on
K̂, with Ni(ξ, η) = (1 + ξiξ)(1 + ηiη)/4, (ξi, ηi) ∈ {(1, 1), (−1, 1), (−1,−1), (1,−1)}.

Theorem 4.3. We have

curlVh ⊂ Xh.(4.47)

Proof. For any given v ∈ Vh we have v|K =
∑4

i=1 viNi◦F
−1
K , with the vi, 1 ≤ i ≤ 4,

being nodal values of v. To show (4.47), we only need to show that

curl (Ni ◦ F−1
K ) ∈ span{(1, 0)t, (0, 1)t, curl (N1 ◦ F−1

K )}.
Noting that

1 =
4∑
i=1

Ni ◦ F−1
K , x =

4∑
i=1

xiNi ◦ F−1
K , y =

4∑
i=1

yiNi ◦ F−1
K ,

(4.48)

we have 

4∑
i=1

curl (Ni ◦ F−1
K ) = (0, 0)t,

4∑
i=1

xi curl (Ni ◦ F−1
K ) = (0, 1)t,

4∑
i=1

yi curl (Ni ◦ F−1
K ) = (−1, 0)t,

(4.49)

which can alternatively be written as



4∑
i=2

curl (Ni ◦ F−1
K ) = −curl (N1 ◦ F−1

K ),

4∑
i=2

xi curl (Ni ◦ F−1
K ) = (0, 1)t − x1 curl (N1 ◦ F−1

K ),

4∑
i=2

yi curl (Ni ◦ F−1
K ) = (−1, 0)t − y1 curl (N1 ◦ F−1

K ).

(4.50)

By virtue of the shape-regularity of the partition, we know that 1 1 1
x2 x3 x4

y2 y3 y4

(4.51)
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is a nonsingular matrix, and by solving (4.50) we get

curl (Ni ◦ F−1
K ) = (ai, di)t + gi curl (N1 ◦ F−1

K ), 2 ≤ i ≤ 4,
(4.52)

with (ai, di, gi) being constants. It immediately follows that (4.47) is true. �
Corollary 4.4. For any s ∈ Xh div s = 0, there is an v ∈ Vh such that

s = curl v. �(4.53)

5. Conclusions

In this paper, in fact, we have shown that both coerciveness and optimal error
bounds in energy norms still hold for the first-order system least-squares mixed
method for second-order elliptic problems subject to various homogeneous boundary
conditions, even if a nonconforming finite element is used for the displacement and
a conforming element for the stress, since, in most cases, the nonconforming finite
element space Uh satisfies Hypothesis (H1), while Hypotheses (H3) and (H1′) can
be derived from (H1) (cf. [11], [27]), and Hypotheses (H2) and (H4) are trivial in
the standard interpolation theory.

On arbitrary regular quadrilaterals [20], we have constructed two new elements.
One is a new variant of the rotated Q1 nonconforming rectangular element, and
the other is a new variant of the lowest-order RTN[0] rectangular element. These
two elements can also be used for other problems, such as the Stokes problem and
the Reissner-Mindlin plate problem (cf. [38]).

This new nonconforming element can be easily generalized to 3-D. The analogy
is

Y (K) = span{1, x, y, z, B1K, B2K},
with B1K(x, y, z) = (ξ2 − η2) ◦ F−1

K , B2K(x, y, z) = (ξ2 − ζ2) ◦ F−1
K . However, it

seems difficult to construct an analogous normal continuous element in 3-D.
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