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NUMERICAL SOLUTION
OF THE ELASTIC BODY-PLATE PROBLEM

BY NONOVERLAPPING
DOMAIN DECOMPOSITION TYPE TECHNIQUES

JIANGUO HUANG

Abstract. The purpose of this paper is to provide two numerical methods for
solving the elastic body-plate problem by nonoverlapping domain decomposi-
tion type techniques, based on the discretization method by Wang. The first
one is similar to an older method, but here the corresponding Schur comple-
ment matrix is preconditioned by a specific preconditioner associated with the
plate problem. The second one is a “displacement-force” type Schwarz alter-
nating method. At each iteration step of the two methods, either a pure body
or a pure plate problem needs to be solved. It is shown that both methods
have a convergence rate independent of the size of the finite element mesh.

1. Introduction

The mathematical modeling of elastic multi-structures, i.e., elastic structures
that are assembled by elastic substructures of the same or different dimensions
(three-dimensional substructures, plates, rods, etc., usually made of different elastic
materials) with proper junctions, is a problem of practical importance, since such
elastic structures are very common in engineering.

In the past few decades, much attention has been paid to the investigation of
such elastic multi-structure problems. In [14, 15], Feng and Shi discussed the math-
ematical modeling of elastic multi-structures, from a mechanical and mathematical
viewpoint. More recently, Ciarlet and his colleagues have made significant contri-
butions to this field. Their main interest is the derivation of the proper junctions
among substructures by the techniques of asymptotic analysis, which is a crucial
step in obtaining reasonable mathematical models of elastic multi-structures. (We
refer to the monograph [12] and references therein for details.) Numerical analysis
on elastic multi-structures has been studied by Bernadou [2] with a conforming
finite element (the Hsieh-Clough-Tocher triangle), and by Wang [24, 25] with con-
ventional nonconforming finite elements and the TRUNC element.

In order to implement the aforementioned finite element methods efficiently, we
should develop some effective solvers for the resulting linear algebraic systems.
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Considering the special structures of these problems, the domain decomposition
method seems to be a natural choice (cf. [12]). In [18], F. d’Hennezel proposed
a domain decomposition method for the stiffened plate problem, discretized by
the conforming finite elements. First, the global problem was transformed into
a problem defined on the interface between subdomains, which led to the Schur
complement matrix of the global system. Then the matrix was preconditioned by a
specific operator associated only with the beam problem. Theoretical analysis and
numerical examples have shown that the rate of convergence of the method does
not depend on the mesh size.

In this paper, we propose two numerical methods for solving the elastic body-
plate problem by nonoverlapping domain decomposition type techniques. As in [24],
we will use the trilinear conforming elements in the body part, and the bilinear
conforming elements for the tangential displacements and the Adini element for
the vertical displacement in the plate part. The first method is similar to the
one studied in [3, 5, 18], but here the corresponding Schur complement matrix
is preconditioned by a specific preconditioner associated with the plate problem.
The second one, motivated by [19, 21] to some extent, is a “displacement-force”
type Schwarz alternating method. The intuitive description is as follows. Given
arbitrarily a guess displacement field on the interface linking the body part and
the plate part, we first compute the resulting displacement field in the body part
by solving a certain three-dimensional purely elastic problem which governs the
deformation of the body part. Thus the stress field related to this displacement
field is available on the interface. We next compute the displacement field on the
plate part by solving a purely plate problem which governs the deformation of the
plate part, with the aforementioned stress field as the extra “applied force” on
the interface. Now we have two displacement fields on the interface: the original
guess displacement and the one just obtained by computing the plate problem. We
can make a weighted average of the two ones to get a new displacement field on
the interface. We then use it as a new guess displacement field on the interface
to implement the previous process again. We repeat the iteration until we get
the desired result. We refer to (4.11)-(4.13) in Section 4 for the mathematical
description of the algorithm.

A common feature of the two methods is that, at each iteration step, one needs
only to solve either a pure body or a pure plate problem, which can be realized
by many known efficient numerical solvers. Therefore, both methods reflect the
essence of elastic multi-structures—that is, elastic multi-structures are complicated
globally but their substructures are rather simple locally. On the other hand, there
are some differences between the two methods. The first method needs to form the
global stiffness matrix related to the elastic body-plate problem for the use of the
preconditioned conjugate gradient method. The second one does not need to do
so, but it requires the choice of a proper parameter to guarantee the convergence
of the method.

In this paper we will estimate the rates of convergence for these two methods.
With the help of Brenner’s techniques (cf. [7, 8, 9]) and by some rigorous analysis,
we will show that both methods have a convergence rate independent of the finite
element mesh size.

The rest of this paper is organized as follows. Section 2 describes the math-
ematical model for the body-plate problem and its finite element approximation.
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Section 3 presents some basic results. Section 4 includes the construction of the
two nonoverlapping domain decomposition methods and the estimates of their con-
vergence rates.

2. Mathematical model and finite element approximation

For ease of exposition, let us first recall the mathematical model of the body-
plate problem and its finite element approximation. We refer to [24] for more detail.
The notation reads as follows (cf. Figure 1).

Ω is the three-dimensional elastic body.
~f Ω := (fΩ

i ), fΩ
i := fΩ

i (x1, x2, x3), is the applied body force in Ω.
~u Ω := (uΩ

i ), uΩ
i := uΩ

i (x1, x2, x3), is the displacement vector in Ω.
ωt := ω × (−t, t) is the elastic thin plate with thickness 2t (0 < t << 1).
~f ω := (fωi ), fωi := fωi (x1, x2), is the applied surface force in ω.
~u ω := (uωi ), uωi := uωi (x1, x2), is the displacement vector in ω, with uωα =
0, α = 1, 2, and uω3 = ∂uω3

∂x2
= 0 on γ0, which means that the elastic plate is

clamped on the boundary γ0.

Let ωtb := ωb × (−t, t) be the intersection of the elastic body Ω and the elastic
plate ωt. We assume that there exists a rigid junction between Ω and ωt, that is,

(2.1) ~u Ω = ~u ω on ωb.

This condition means that the displacement ~uΩ in the body Ω and the displacement
~u ω in the plate ω are continuous across the interface ωb.

Consider the total energy of the elastic body-plate structure under a virtual
displacement vector ~v := (~v Ω, ~v ω) :

(2.2) J(~v) =
1
2
D(~v,~v)− F (~v),

where F (~v) = FΩ(~v Ω) +Fω(~v ω), FΩ(~v Ω) =
∫

Ω
~f Ω ·~v ΩdΩ, Fω(~v ω) =

∫
ω
~f ω ·~v ωdω,

and, for ~w = (~w Ω, ~w ω),

D(~v Ω, ~w Ω) :=
∫

Ω

σij(~v Ω)εij(~w Ω)dΩ +
∫
ω

Qαβ(~v ω)εαβ(~w ω)dω

+
∫
ω

Mαβ(~v ω)Kαβ(~w ω)dω,

x3

ωb
ωc

γ1
γ0

Ω

x2

x1

Figure 1.
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εij(~v Ω) := 1
2 (∂jvΩ

i + ∂iv
Ω
j ), ∂iv := ∂v

∂xi
,

σij(~v Ω) = EΩ
1+νΩ

εij(~v Ω) + EΩνΩ
(1+νΩ)(1−2νΩ)εkk(~v Ω)δij , i, j = 1, 2, 3,(2.3)

εαβ(~v w) := 1
2 (∂βvωα + ∂αv

ω
β ), ∂αv := ∂v

∂xα
,

Qαβ(~v w) = 2Eωt
1−ν2

ω
{(1− νω)εαβ(~v w) + EΩνΩ

(1+νΩ)(1−2νΩ)ειι(~v
w)δαβ}, α, β = 1, 2,

(2.4)

Kαβ(~v ω) := −∂2
αβv

ω
3 = − ∂2vw3

∂xa∂xβ
,

Mαβ(~v ω) := 2Eωt
3

3(1−ν2
ω){(1− νω)Kαβ(~v ω) + νωKιι(~v ω)δaβ}, α, β = 1, 2.

(2.5)

Here EΩ > 0 and Eω > 0 denote Young’s modulus of the body Ω and the plate
ωt (denoted also by ω in what follows), while, νΩ and νω ∈ (0, 1) represent the
corresponding Poisson ratios. Throughout this paper, Latin indices have values
{1, 2, 3}, Greek indices take the values {1, 2}, respectively. We also use the summa-
tion convention whereby summation is implied when an index is repeated exactly
two times. As usual, the constant C (with or without a subscript) denotes a generic
constant independent of related parameters (especially the finite element mesh size
h), which may take different values in different places.

With this notation, the mathematical model of the body-plate problem is to find
~u := (~u Ω, ~u ω) ∈ V such that

J(~u) = min
~v∈V

J(~v),

or equivalently, find ~u := (~u Ω, ~u ω) ∈ V such that

(2.6) D(~u,~v) = F (~v), ∀~v ∈ V,

where

V := {~v = (~v Ω, ~v ω) : ~v Ω ∈ (H1(Ω))3, ~v ω ∈ (H1(ω))2 ×H2(ω), ~v Ω = ~v ω on ωb,
vωα = 0, α = 1, 2, on γ0, v

ω
3 = ∂2v

ω
3 = 0 on γ0}.

Throughout this paper we adopt the standard definitions of Sobolev spaces (cf.
[11, 20]) and the standard conventions for Sobolev norms and seminorms of a func-
tion v defined on an open set G:

‖v‖m,G := (
∫
G

∑
|α|≤m

|∂αv|2dx)1/2, |v|m,G := (
∫
G

∑
|α|=m

|∂αv|2dx)1/2.

Meanwhile, for a vector-valued function ~v = (v1, v2, · · · , vl) ∈ (Hs(G))l,

‖~v‖s,G := (
∑
i=1

l‖vi‖2s,G)1/2, |~v|s,G := (
∑
i=1

l|vi|2s,G)1/2,

etc. In what follows, we also denote by Pl(G) the space of polynomials of total
degree no more than l on G, and by Ql(G) the space of polynomials of degree no
more than l with respect to each variable xi on G.

The unique solvability of (2.6) was proved in [24] by the Lax-Milgram lemma. By
Green’s formula for partial integration, we can also obtain the partial differential
system of the body-plate problem (2.6) (cf. [24]). For simplicity, we list here only
the induced “force” junctions on the interface ωb, which will be used later on:

(2.7)
{
−∂βQαβ(~u ω) = fωα + σα3(~u Ω), on ωb,
−∂αβMαβ(~u ω) = fω3 + σ33(~u Ω), on ωb.
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The equalities (2.7) can be explained as follows. Due to the rigid contact of the
body Ω with the plate ω, the body Ω gives an extra applied surface force to the
plate ω on the interface part ωb.

We proceed to present the finite element approximation of (2.6). Let ω̄ :=⋃
τ∈Tωh

τ̄ be the quasi-uniform rectangular subdivision of ω, with each element τ
being an open rectangle of size h. By quasi-uniformity we mean that there exist two
positive constants C0 and C1, independent of h, such that each rectangle τ ∈ Tωh
contains (resp. is contained in) a disk of radius C0h (resp. C1h). We also assume
that the boundary of ωb is aligned with the subdivision Tωh (cf. [13]), which means
that there exists no rectangle τ ∈ Tωh which is cut into two parts by the boundary of
ωb. Similarly, let Ω̄ :=

⋃
K∈TΩ

h
K̄ denote the quasi-uniform cuboidal subdivision of

Ω such that each element τ ⊂ ωb is the boundary surface of a certain finite element
K ∈ TΩ

h . For simplicity, we also denote by h the mesh size of the subdivision TΩ
h .

We denote by V 1
h (ω) (resp. V 1

h (Ω)) the space of all piecewise bilinear (resp.
trilinear) continuous functions associated with the subdivision Tωh (resp. TΩ

h ). We
denote by V 2

h (ω) the usual Adini finite element space associated with the subdivision
Tωh (cf. [11, p. 364]); that is, for each τ ∈ Tωh , with {ai}4i=1 as its four vertices
respectively, the shape function space consists of all polynomials of the form

P : x = (x1, x2)→ p(x) =
∑

α1+α2≤3

bα1α2x
α1
1 xα2

2 + b13x1x
3
2 + b31x

3
1x2,

which are uniquely determined by the degrees of freedom

Στ = {p(ai), ∂1p(ai), ∂2p(ai), 1 ≤ i ≤ 4}.

We now set

Vh :={~v = (~v Ω, ~v ω) : ~v Ω
h ∈ (V 1

h (Ω))3, vωα,h ∈ V 1
ω (ω), α = 1, 2, vω3,h ∈ V 2

h (ω),

~v ωh(Q) = ∂1v
ω
3,h(Q) = ∂2v

ω
3,h(Q) = 0, ∀ nodes Q ∈ γ0,

and ~v Ω
h (Q) = ~v ωh(Q), ∀ nodes Q ∈ ωb},

and for ~vh, ~wh ∈ Vh we define

Dh(~vh, ~wh) := DΩ,h(~v Ω
h , ~w

Ω
h ) +Dω,h(~v ωh , ~w

ω
h),

where

DΩ,h(~v Ω
h , ~w

Ω
h ) :=

∫
Ω

σij(~v Ω
h )εij(~w Ω

h )dΩ,

Dω,h(~v ωh , ~w
ω
h) :=

∫
ω

Qαβ(~v ωh)εαβ(~w ω
h)dω

+
∑
τ∈Tωh

∫
τ

Mαβ(~v ωh)Kαβ(~w ω
h)dτ.

Then the finite element approximation of (2.6) can be expressed by finding ~uh =
(~uΩ

h , ~u
ω
h) ∈ Vh such that

(2.8) Dh(~uh, ~vh) = F (~vh), ∀~vh ∈ Vh.
In practice, other high order finite elements are acceptable choices to approx-

imate problem (2.6). For simplicity of presentation, we consider here only the
discretization method proposed in [24].
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3. Some basic results

In this section, let us give some basic results that will be needed later. We first
define

V 1
h (Ω;ωb) := {v ∈ V 1

h (Ω) : v(Q) = 0, ∀ nodes Q ∈ ωb}.
To simplify the presentation hereafter, we also define

‖v‖k,h,G := (
∑

τ∈Tωh ∩G
‖v‖k,τ 2)1/2, |v|k,h,G := (

∑
τ∈Tωh ∩G

|v|2k,τ )1/2,

where G is any open subset of ω aligned with the finite element subdivision Tωh ,
and v is smooth on each rectangular element τ ∈ Tωh .

Lemma 1. There exists a positive constant C, independent of the mesh size h,
such that for any vector-valued function ~v ∈ (V 1

h (Ω))3 satisfying

DΩ,h(~v, ~w) = 0, ∀~w ∈ (V 1
h (Ω;ωb))3,

it admits the following estimate:

(3.1) DΩ,h(~v,~v) ≤ C‖~v‖ 1
2 ,ωb

2,

where ‖ · ‖ 1
2 ,ωb

denotes the standard fractional order Sobolev norm (cf. [17, 20]),
i.e.,

‖v‖21
2 ,ωb

:= ‖v‖20,ωb +
∫
ωb

∫
ωb

|v(x̄0)− v(ȳ0)|2
|x̄0 − ȳ0|3

dx1dx2dy1dy2

where x̄0 = (x1, x2, 0) and ȳ0 = (y1, y2, 0).

Proof. The proof is standard to some extent (cf. [3, 5]). We first introduce an
auxiliary problem: Find ~u ∈ (H1(Ω))3 with ~u = ~v on ωb such that

(3.2) DΩ,h(~u, ~w) = 0, ∀~w ∈ (H1(Ω))3 with ~w = 0 on ωb.

For the cuboidal domain Ω considered here, there always exists some ε ∈ (0, 1
2 )

such that ~u is in (H1+ε(Ω))3 and admits the regularity estimates (cf. [17, 20])

(3.3) ‖~u‖1+ε,Ω ≤ C‖~v‖ 1
2 +ε,ωb

, ‖~u‖1,Ω ≤ C‖~v‖ 1
2 ,ωb

.

Let IΩ
h denote the usual piecewise trilinear interpolation operator associated

with the finite element space V 1
h (Ω). Then, noting that ~v is just the finite element

approximate solution of (3.2), by Cea’s lemma we easily have (cf. [11, p. 104])

(3.4) DΩ,h(~v,~v) ≤ C[‖~u− ~v‖21,Ω + ‖~u‖21,Ω] ≤ C[‖~u− IΩ
h ~u‖21,Ω + ‖~u‖21,Ω],

which, together with (3.3), the interpolation estimate of IΩ
h and the inverse inequal-

ity (cf. [11, p.122], [1]), implies

DΩ,h(~v,~v) ≤ C[h2ε‖~u‖21+ε,Ω + ‖~v‖21
2 ,ωb

] ≤ C[h2ε‖~u‖21
2 +ε,ωb

+ ‖~v‖21
2 ,ωb

]

≤ C‖~v‖21
2 ,ωb

.

The desired result then follows. �

To obtain some estimates related to functions in the Adini finite element space,
we now introduce a transfer operator Eh which builds an important bridge between
V 2
h (ω) and its conforming relative: the Bogner-Fox-Schmit bi-cubic element (cf.

[7, 8, 9]). The definition is as follows. Let τ be a rectangle in Tωh , with pi, 1 ≤ i ≤ 4,
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as its four vertices. Then (Ehv)|τ ∈ Q3(τ) for any v ∈ V 2
h (ω), and it satisfies the

interpolation conditions

(3.5)

 (Ehv)(pi) = v(pi), 1 ≤ i ≤ 4,
[∂α(Ehv)](pi) = (∂αv)(pi), 1 ≤ i ≤ 4, α = 1, 2,
[∂12(Ehv)](pi) = 0, 1 ≤ i ≤ 4.

For this transfer operator, we have the estimate (cf. [7, 8, 9])

(3.6)
2∑
i=0

hi|v − Ehv|i,τ ≤ Ch2|v|2,τ , ∀τ ∈ Tωh , ∀v ∈ V 2
h (ω).

Lemma 2. There exists a positive constant C, independent of h, such that, for any
v ∈ V 2

h (ω) with zero nodal parameters on γ0 (i.e., v(Q) = ∂1v(Q) = ∂2v(Q) = 0,
∀ nodes Q ∈ γ0), we have

(3.7) ‖v‖2,h,ω ≤ C|v|2,h,ω.
This is just the so-called Poincaré type inequality for the Adini finite element

space.

Proof. The result can be verified via the techniques in [23]. But it seems more
convenient to obtain this result with the help of the interpolation operator Eh. In
this way, we can also show more clearly that the generic constant C is independent
of the finite element mesh size h. It is easy to see by a compactness argument (cf.
[26]) that there exists a positive constant C such that, for any w ∈ H2(ω) with
w = ∂2w = 0 on γ0,

(3.8) ‖w‖2,ω ≤ C|w|2,ω ,
which is just the conventional Poincaré type inequality.

Note that Ehv ∈ H2(ω) and Ehv = ∂2(Ehv) = 0 on γ0. Thus it follows from the
estimates (3.6) and (3.8) that

‖v‖2,h,ω ≤ ‖v − Ehv‖2,h,ω + ‖Ehv‖2,ω ≤ C[|v|2,h,ω + |Ehv|2,ω]
≤ C|v|2,h,ω.

The desired result then follows. �
We also define

V 1
h (ω; γ0) := {v ∈ V 1

h (ω) : v(Q) = 0, ∀ nodes Q ∈ γ0},
V 2
h (ω; γ0) := {v ∈ V 2

h (ω) : v(Q) = ∂1v(Q) = ∂2v(Q) = 0, ∀ nodes Q ∈ γ0},
and V 2

h (G) := V 2
h (ω)|G, V 1

h (G) := V 1
h (ω)|G, where G is any subset in ω with the

boundary ∂G aligned with the subdivision Tωh .
Any vector-valued function ~v ω ∈ (V 1

h (ω; γ0))2×V 2
h (ω; γ0) can be associated with

a unique vector-valued function [~v ω]Ω ∈ (V 1
h (Ω))3 such that

(3.9)
{

[~v ω ]Ω(Q) = ~v(Q), ∀ nodes Q ∈ ωb,
DΩ,h([~v ω]Ω, ~w) = 0, ∀~w ∈ (V 1

h (Ω;ωb))3.

Any function v ∈ V 2
h (ωb) can be associated with a unique extension function v̂ ∈

V 2
h (ω; γ0) such that

(3.10)v̂(Q) = v(Q), ∂αv̂(Q) = ∂αv(Q), α = 1, 2, ∀ nodes Q ∈ γ1 := ∂ωb ∩ ∂ωc,∑
τ∈Tωh ∩ωc

∫
τ
Mαβ(v̂)Kαβ(w)dτ = 0,
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where ωc := ω \ ωb, and w ∈ V 2
h (ωc) with w(Q) = ∂αw(Q) = 0, α = 1, 2, ∀ nodes

Q ∈ γ0 or γ1. Note that only the third component of a vector-valued function ~v is
used in the definitions of Mαβ(~v) and Kαβ(~v) (cf. (2.5)). Thus, for a scalar function
v, we naturally define Mαβ(v), and Kαβ(v) by (2.5) in such a way of viewing the
scalar function v as the third component of a certain vector-valued function ~v. We
will use the similar conventions for other definitions given in Section 2.

Lemma 3. There exist two positive constants C1 and C2, independent of h, such
that, for any function v ∈ V 2

h (ωb),

(3.11) C1‖v‖22,h,ωb ≤
∑
τ∈Tωh

∫
τ

Mαβ(v̂)Kαβ(v̂)dτ ≤ C2‖v‖22,h,ωb.

Proof. It is clear that (cf. [7])

(3.12) A(1 − νω)|v̂|22,h,ω ≤
∑
τ∈Tωh

∫
τ

Mαβ(v̂)Kαβ(v̂)dτ ≤ A(1− νω)|v̂|22,h,ω,

where A := 2Eωt
1−ν2

ω
stands for the rigid coefficient of the plate ω.

Therefore it suffices to verify the following result, which implies (3.12):

(3.13) C1‖v‖2,h,ωb ≤ |v̂|2,h,ω ≤ C2‖v‖2,h,ωb.
The left-hand inequality of (3.13) follows at once from Lemma 2. In order to prove
the right-hand inequality of (3.13), we first introduce an auxiliary problem:
(3.14){

u ∈ H2(ωc), u = Ehv̂, ∂2u = ∂2(Ehv̂), on γ0 and γ1,∫
ωc
Mαβ(u)Kαβ(w)dω = 0, ∀w ∈ H2(ωc) with w = ∂2w = 0 on γ0 ∪ γ1,

where Eh is defined by (3.5).
Then for the domain ωc with shape given in this paper, there always exists some

ε ∈ (0, 1
2 ) such that u is in H2+ε(ωc) and admits the regularity estimates (cf. [4, 17])

(3.15)
{ ‖u‖2+ε,ωc ≤ C[‖u‖ 3

2 +ε,γ1
+ ‖∂2u‖ 1

2 ,γ1
],

‖u‖2,ωc ≤ C[‖u‖ 3
2 ,γ1

+ ‖∂2u‖ 1
2 ,γ1

].

Note that v̂ (the restriction of v̂ to ωc, still denoted by v̂ for simplicity) is just the
approximate solution of the continuous problem (3.14) by the Adini finite element
method. We then have (cf. [11])

(3.16) ‖u− v̂‖2,h,ωc ≤ Chε‖u‖2+ε,ωc.

Hence, by the inverse inequality, (3.15) and (3.16) we know that

|v̂|2,h,ωc ≤ |u− v̂|2,h,ωc + |u|2,h,ωc
≤ C[hε(‖u‖ 3

2 +ε,γ1
+ ‖∂2u‖ 1

2 ,γ1
) + ‖u‖ 3

2 ,γ1
+ ‖∂2u‖ 1

2 ,γ1
](3.17)

≤ C[‖u‖ 3
2 ,γ1

+ ‖∂2u‖ 1
2 ,γ1

] = C[‖Ehv̂‖ 3
2 ,γ1

+ ‖∂2(Ehv̂)‖ 1
2 ,γ1

].

On the other hand, it follows from the trace theorem (cf. [17, 20]) and the estimate
(3.6) that

(3.18) ‖Ehv̂‖ 3
2 ,γ1

+ ‖∂2(Ehv̂)‖ 1
2 ,γ1
≤ C‖Ehv̂‖2,ωb ≤ C‖v̂‖2,ωb = C‖v‖2,ωb.

The right-hand inequality of (3.13) then follows from (3.17) and (3.18) directly. �



NUMERICAL SOLUTION OF THE ELASTIC BODY-PLATE PROBLEM 27

It should be pointed out that even for v ∈ V 2
h (ω; γ0), we also have the following

result, similar to the left-hand inequality of (3.11):

(3.19) ‖v‖22,h,ωb ≤ C
∑
τ∈Tωh

∫
τ

Mαβ(v)Kαβ(v)dτ.

Lemma 4. There exists a positive constant C∗, independent of h, such that for
any vector-valued function ~v ω ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0) we have

(3.20) DΩ,h([~v ω]Ω, [~v ω]Ω) ≤ C∗Dω,h(~v ω, ~v ω),

where [~v ω]Ω is defined by (3.9).

Proof. Define ~w := [~v ω]Ω|ωb . It follows from Lemma 1 that

(3.21) DΩ,h([~v ω]Ω, [~v ω]Ω) ≤ C‖~w‖21
2 ,ωb

.

By the trace theorem and the Korn inequality (cf. [20]) we have (~w := (wi))

‖w1‖21
2 ,ωb

+ ‖w2‖21
2 ,ωb

≤ C[‖vω1 ‖21,ω + ‖vω2 ‖21,ω]

≤ C

∫
ω

Qαβ(~v ω)εαβ(~v ω)dω.(3.22)

Moreover, by the interpolation estimate of IΩ
h , the trace theorem, the embedding

inequality and (3.19) we get

(3.23) ‖w3‖21
2 ,ωb

= ‖IΩ
h v

ω
3 ‖21

2 ,ωb
≤ C‖vω3 ‖22,h,ωb ≤ C

∑
τ∈Tωh

∫
τ

Mαβ(vω3 )Kαβ(vω3 )dτ.

The desired result follows from (3.21), (3.22) and (3.23). �

Lemma 5. For any vector-valued functions ~v Ω∈(V 1
h (Ω))3 and ~v ω ∈ (V 1

h (ω; γ0))2×
V 2
h (ω; γ0) which satisfy

(3.24)
{
DΩ,h(~v Ω, ~w) = 0, ∀~w ∈ (V 1

h (Ω;ωb))3,
DΩ,h(~v Ω, [~w]Ω) +Dω,h(~v ω, ~w) = 0, ∀~w ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0),

we have the estimate

(3.25) Dω,h(~v ω, ~v ω) ≤ C∗DΩ,h(~v Ω, ~v Ω),

where the generic constant C∗ is the same as in Lemma 4.

Proof. Taking ~w = ~v ω in the second equation of (3.24), we find from Lemma 4 and
the Cauchy-Schwarz inequality that

Dω,h(~v ω, ~v ω) = −DΩ,h(~v Ω, [~v ω]Ω)

≤ D1/2
Ω,h(~v Ω, ~v Ω)D1/2

Ω,h([~v ω]Ω, [~v ω]Ω)

≤
√
C∗D

1/2
Ω,h(~v Ω, ~vΩ)D1/2

ω,h(~v ω, ~v ω),

which leads to the inequality (3.25). �
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4. Nonoverlapping domain decomposition methods

and condition number estimates

In this section, we give some numerical solvers for the problem (2.8), which yields
a large sparse symmetric positive definite linear algebraic system

(4.1) Aū = f̄

when describing it in matrix form according to the nodal parameters.
Considering the specialty of such a problem, the nonoverlapping domain decom-

position method is a natural and reasonable choice (cf. [12]). Here let us first
introduce a nonoverlapping domain decomposition method for solving (2.8) (or
equivalently, (4.1)) via the basic strategy given in [3, 5, 18]. To this end, we list the
nodal parameters ū in proper order such that the index set I = I1 ∪ I2, where I1
consists of the indices of nodal parameters with nodes belonging to Ω̄ \ ω̄b, whereas
I2 consists of the indices of nodal parameters related to the remaining nodes. Then
the linear system (4.1) takes the block form

(4.2)
[
A11 A12

At12 A22

] [
ū1

ū2

]
=
[
f̄1

f̄2

]
.

By the block Gaussian elimination, problem (4.2) reduces to an equivalent system
of the unknowns ū2 given by

(4.3) Sū2 = f̃2,

where S := A22 −At12A
−1
11 A12, f̃ := f̄2 −At12A

−1
11 f̄1. The matrix S is referred to as

the Schur complement A22 in A. According to the construction of I2, it is clear that
all the components of ū2 are the nodal parameters related to the plate problem.

If we obtain ū2 by solving (4.3), we can then get ū1 by solving the subsystem

(4.4) A11ū1 = f̄1 −A12ū2.

We point out that the solution of the subsystem with the typical form A11ū1 = ḡ1

amounts to solving a body problem with prescribed displacements on ωb and with
the free boundary conditions on ∂Ω \ ωb, i.e.,

(4.5)
{
~v ∈ (V 1

h (Ω))3,
DΩ,h(~v, ~w) = g1(~w), ∀~w ∈ (V 1

h (Ω;ωb))3.

Thus we can utilize known effective algorithms to carry out this step.
Since the Schur complement S is dense and ill-conditioned, it is common practice

to solve the Schur complement system (4.3) iteratively via preconditioned conju-
gated gradient methods. To enhance the efficiency of computation, we need to
propose an effective preconditioner associated with the Schur complement S. For-
tunately, the following theorem states that the symmetric positive definite matrix
S̄ related to the bilinear form Dω,h(·, ·) is an optimal one. To see this, we first give
the detailed description of S̄. Let [·.·] denote the standard euclidean inner product.
For any ~v ω, ~w ω ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0), we denote by v̄2 and w̄2 their nodal

parameters respectively, which inherit the same order determined by the index set
I2. Then S̄ is just the symmetric positive definite matrix given by

(4.6) [S̄v̄2, w̄2] = Dω,h(~v ω, ~w ω).
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Theorem 1. There exist two positive constants C1 and C2, which are independent
of the mesh size h, such that

(4.7) C1 ≤ Cond2(S̄−1S) := λmax(S̄−1S)/λmin(S̄−1S) ≤ C2.

Proof. With the help of Lemma 3 or (3.19), the proof is formal (cf. [3, 5]). By
the Rayleigh representation theorem, it suffices to show that for any nonzero nodal
parameter vector v̄2 the following estimate holds:

(4.8) C1[S̄v̄2, v̄2] ≤ [Sv̄2, v̄2] ≤ C2[S̄v̄2, v̄2].

Let ~v ω ∈ (V 1
h (ω; γ0))2×V 2

h (ω; γ0) denote the related vector-valued function with
v̄2 as its nodal parameters. Then from the definition (4.6) we have

(4.9) [S̄v̄2, v̄2] = Dω,h(~v ω, ~v ω).

On the other hand, let [~v ω]Ω ∈ (V 1
h (Ω))3 be the related vector-valued function

defined by (3.9). It is easy to check that (cf. [3, 5])

(4.10) [Sv̄2, v̄2] = DΩ,h([~v ω]Ω, [~v ω]Ω) +Dω,h(~v ω, ~v ω).

(4.8) follows immediately from (3.20), (4.9) and (4.10). �

Note also that the solution of the problem S̄ū2 = ḡ2 amounts to solving the
related elastic plate problem, i.e.,{

~v ω ∈ (V 1
h (ω; γ0))2 × V 2

h (ω; γ0),
Dω,h(~v ω, ~w ω) = g2(~w ω), ∀~w ω ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0),

which can be solved by existing efficient solvers.
Now we proceed to give another nonoverlapping domain decomposition method

for solving (2.8). The main ideas arise in some sense from [19, 21]. We first consider
the continuous version of this method. We know that once the displacements on ωb
are obtained, the global problem (2.8) can then be transformed into two separate
subproblems—the elastic body problem and the elastic plate problem. Based on this
observation and noting the induced “force” junctions on the interface ωb (cf. (2.7)),
we can design an iterative algorithm for solving (2.8). That is, given arbitrarily a
guess displacement field on the interface linking the body part and the plate part,
we first compute the resulting displacement field in the body part by solving a
certain three-dimensional purely elastic problem which governs the deformation of
the body part. Thus the stress field related to this displacement field is available on
the interface. We next compute the displacement field on the plate part by solving
purely a plate problem which governs the deformation of the plate part, with the
aforementioned stress field as the extra “applied force” on the interface. Now we
have two displacement fields on the interface, the original guess displacement and
the one just obtained by computing the plate problem. We can make a weighted
average of the two to get a new displacement field on the interface. We then use
it as a new guess displacement field on the interface to implement the previous
process again. Repeat the iteration until the desired result is achieved.

After obtaining the continuous version of the method, we can easily get the dis-
crete algorithm in the same manner. For convenience of presentation, it is described
in variational form.

D-F Alternating Algorithm. Let ~λ 0
h ∈ (V 1

h (ωb))2 × V 2
h (ωb) be any given

vector-valued function, and θ ∈ (0, 1) a fixed parameter. Then the vector-valued
function sequences {~λ nh}, {~u

ω,n
h } and {~uΩ,n

h } are formed as follows:
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Step 0. n = 0. Solve the problems
~u Ω,n+1
h ∈ (V 1

h (Ω))3,

~u Ω,n+1
h (Q) = ~λ nh(Q), ∀ nodes Q ∈ ωb,

DΩ,h(~u Ω,n+1
h , ~v Ω) = FΩ(~v Ω), ∀~v Ω ∈ (V 1

h (Ω;ωb))3,

(4.11)

{
uω,n+1
h ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0),

Dω,h(~u ω,n+1
h , ~v ω) = Fω(~v ω) + {FΩ(~v Ω)−DΩ,h(~uΩ,n+1

h , ~v Ω)},(4.12)

where ~v ω ∈ (V 1
h (ω; γ0))2 × V 2

h (ω; γ0) and ~v Ω ∈ (V 1
h (Ω))3 satisfy that

~v Ω(Q) = ~v ω(Q), ∀ nodes Q ∈ ωb. Set

(4.13) ~λ n+1
h = θ~λ nh + (1 − θ)~u ω,n+1

h |ωb .
Step n. n := n+1. Repeat the above iteration until achieving the desired accuracy.

Now we give the convergence rate estimate for the D-F alternating algorithm.
Let ~µ nh := ~λ nh − ~u ωh |ωb , ~δ

ω,n
h := ~u ω,nh − ~u ωh , ~δ

Ω,n
h := ~u Ω,n

h − ~u Ω
h . Then it follows

from (2.8), (4.11)-(4.13) that
~δ Ω,n+1
h ∈ (V 1

h (Ω))3,
~δ Ω,n+1
h (Q) = ~µ nh(Q), ∀ nodes Q ∈ ωb,

DΩ,h(~δ Ω,n+1
h , ~v Ω) = 0, ∀~v Ω ∈ (V 1

h (Ω;ωb))3,

(4.14)

{
~δ ω,n+1
h ∈ (V 1

h (ω; γ0))2 × V 2
h (ω; γ0),

Dω,h(~δ ω,n+1
h , ~v ω) +DΩ,h(~δ Ω,n+1

h , ~v Ω) = 0,
(4.15)

and

(4.16) µ̃n+1
h = θµ̃nh + (1− θ)~δ ω,n+1

h ,

where ~v ω and ~v Ω are defined as before, and µ̃nh denotes the extension of the vector-
valued function ~µ nh on ω such that Dω,h(µ̃nh , ~v

ω) = 0, ∀~v ω ∈ (V 1
h (ωc))2 × V 2

h (ωc)
with ~v ω(Q) = ∂αv

ω
3 (Q) = 0, Q ∈ γ0 ∪ γ1,

µ̃nh = ~µ nh on ωb.

We then have the following result.

Theorem 2. There exists a fixed parameter θ∗ ∈ (0, 1), independent of the mesh
size h, such that for the D-F alternating algorithm with the parameter θ = θ∗ we
have the estimates

(4.17)
‖~µ nh‖h ≤ Cρ∗n‖~µ 0

h‖h,
DΩ,h(~δ Ω,n

h , ~δ Ω,n
h ) +Dω,h(~δ ω,nh , ~δ ω,nh ) ≤ Cρ∗2n‖~µ 0

h‖2h,

where ρ∗ =
√
θ∗, and for ~v := (vi) ∈ (V 1

h (ωb))2 × V 2
h (ωb),

‖~v‖h := (
2∑
i=1

‖vi‖21
2 ,ωb

+ ‖v3‖22,h,ωb)
1/2.

Proof. We have from (4.16) that

Dω,h(µ̃n+1
h , µ̃n+1

h ) = θ2Dω,h(µ̃nh , µ̃
n
h) + 2θ(1− θ)Dω,h(µ̃nh , ~δ

ω,n+1
h )

+ (1 − θ)2Dω,h(~δ ω,n+1
h , ~δ ω,n+1

h ).(4.18)
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It follows from (4.14) that

~δ Ω,n+1
h (Q) = ~µ nh(Q), ∀ nodes Q ∈ ωb.

Therefore we can choose ~v ω = µ̃nh, ~v
Ω = ~δ Ω,n+1

h in (4.15) to get

(4.19) Dω,h(µ̃nh , ~δ
ω,n+1
h ) = −DΩ,h(~δ Ω,n+1

h , ~δ Ω,n+1
h ) ≥ 0.

Since ~δ ω,n+1
h , ~δ Ω,n+1

h satisfy (4.14) and (4.15), it follows from Lemma 5 that (the
constant C∗ is the one in Lemma 4)

Dω,h(~δ ω,n+1
h , ~δ ω,n+1

h ) ≤ C∗DΩ,h(~δ Ω,n+1
h , ~δ Ω,n+1

h ),

which together with (4.19) yields

DΩ,h(~δ Ω,n+1
h , ~δ Ω,n+1

h ) ≤ D
1/2
ω,h(µ̃nh , µ̃

n
h)D1/2

ω,h(~δ ω,n+1
h , ~δ ω,n+1

h )

≤
√
C∗D

1/2
ω,h(µ̃nh, µ̃

n
h)D1/2

Ω,h(~δ Ω,n+1
h , ~δ Ω,n+1

h ),

that is,

(4.20) Dω,h(~δ ω,n+1
h , ~δ ω,n+1

h ) ≤ C∗DΩ,h(~δ Ω,n+1
h , ~δ Ω,n+1

h ) ≤ C∗2Dω,h(µ̃nh, µ̃
n
h).

Therefore it follows from (4.18)-(4.20) that

Dω,h(µ̃n+1
h , µ̃n+1

h ) ≤ [θ2 + C∗2(1− θ)2]Dω,h(µ̃nh, µ̃
n
h).

Now taking θ = θ∗ = C∗2

1+C∗2 ∈ (0, 1) in the above inequality, we have

Dω,h(µ̃n+1
h , µ̃n+1

h ) ≤ ρ∗2Dω,h(µ̃nh , µ̃
n
h),

where ρ∗ =
√

C∗2

1+C∗2 =
√
θ∗, which immediately implies

(4.21) Dω,h(µ̃nh, µ̃
n
h) ≤ ρ∗2nDω,h(µ̃0

h, µ̃
0
h).

Furthermore, arguing as in the proof of Lemma 3, we have

C1‖~µ nh‖2h ≤ Dω,h(µ̃nh , µ̃
n
h) ≤ C2‖~µ nh‖2h.

This with (4.21) gives

(4.22) ‖~µ nh‖h ≤ Cρ∗n‖~µ 0
h‖h.

The other inequality of (4.17) follows from (4.19), (4.22) and Lemma 5 in a similar
manner. �

According to Theorem 2, it is of practical importance to choose the parameter
θ∗ ∈ (0, 1) reasonably, or equivalently, to give the upper bound estimate for the
constant C∗ in Lemma 4, to guarantee the convergence of the D-F alternating
algorithm. One simple way is that, since the inequality (3.20) naturally holds
when C∗ is chosen large enough, θ∗ can then be taken as a positive number very
close to 1 (but strictly less than 1). Or alternatively, we can first execute the D-F
alternating algorithm with a positive number θ1 ∈ (1

2 , 1). If the computational
results behave badly, then replace θ1 by the other number θ2 ∈ (θ1, 1) and execute
the D-F alternating algorithm again. We may repeat this process several times to
get the desired parameter θ∗. Obviously, more numerical experience is needed to
use this method in a more sophisticated way.
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The other way is to compute C∗ in Lemma 4 by the power method (cf. [16]).
That means we want to estimate the term

(4.23) sup
DΩ,h([~v ω]Ω, [~v ω]Ω)
Dω,h(~v ω, ~v ω)

with the supremum taken over the set (V 1
h (ω; γ0))2 × V 2

h (ω; γ0) \ {0}. For clarity
we attempt to rewrite (4.23) in matrix form. We first divide the index set I2 given
before into two subsets, i.e., I2 = I2b ∪ I2c, where I2b consists of the indices of the
nodal parameters related to the finite element spaces (V 1

h (Ω))3 and with nodes in
ω̄b, and I2c := I2 \ I2b. For ~v ω ∈ (V 1

h (ω; γ0))2×V 2
h (ω; γ0), let v̄2 := (v̄2b, v̄2c) denote

its nodal parameter representation partitioned into two parts via the index sets I2b
and I2c. Therefore by definition (3.9) we have

DΩ,h([~v ω]Ω, [~v ω]Ω) = [S̄1v̄2b, v̄2b],

where S̄1 is the Schur complement associated with the bilinear form DΩ,h(·, ·) de-
fined on the set of functions in (V 1

h (Ω))3 with the prescribed nodal parameters v̄2b

on ωb and with the free boundary conditions on ∂Ω \ ω̄. Similarly,

Dω,h(~v ω, ~v ω) = [T̄2v̄2, v̄2],

where T̄2 is the stiffness matrix associated with the bilinear form Dω,h(·, ·). Then
(4.23) amounts to

(4.24) sup
v̄2 6=0

[S̄1v̄2b, v̄2b]
[T̄2v̄2, v̄2]

= λmax(T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 ).

Hence the approximate vector sequence constructed for computing the eigenvec-

tor related to the maximal eigenvalue of T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 is (x0 denotes the

initial vector)

(T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 )nx0,

which, together with the Rayleigh quotient representation, yields a sequence for

computing the maximal eigenvalue of T̄−
1
2

2

[
S̄1

0

]
T̄
−1

2
2 , given by

[(T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 )2n+1x0, x0]

[(T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 )2nx0, x0]

.

Noting that

(T̄−
1
2

2

[
S̄1

0

]
T̄
− 1

2
2 )n = T̄

1
2

2 (T̄−1
2

[
S̄1

0

]
)nT̄−

1
2

2 ,

we then have the following algorithm for computing λmax(T̄−
1
2

2

[
S̄1

0

]
T̄
−1

2
2 ).
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Step 0. Given initial the vector z0 6= 0, set n = 0.

Step n. Compute z2n+1 and z2n+2 by T̄2z2n+1 =
[
S̄1

0

]
zn and T̄2z2n+2 =[

S̄1

0

]
zn+1. Set ẑ2n+2 = z2n+2

max(z2n+2) and compute αn by the formula

αn :=
[ẑ2n+2,

[
S̄1

0

]
z0]

[ẑ2n+2, T̄2z0]
.

Set n := n + 1. We repeat the above iteration until we obtain the desired
result.

The main computational work of this algorithm is the numerical solutions of the
pure elastic body problem and the pure elastic plate problem, which can be solved
by existing efficient algorithms.

Finally we give some comparisons between the two methods presented above.
A common feature of the two methods is that, at each iteration step, one needs
only to solve either a pure body or a pure plate problem, which can be realized
by many known efficient numerical solvers. Therefore, both methods reflect the
essence of elastic multi-structures, that is, elastic multi-structures are complicated
globally but their substructures are rather simple locally. On the other hand, there
are some differences between the two methods. The first method needs to form the
global stiffness matrix related to the elastic body-plate problem for the use of the
preconditioned conjugate gradient method. The second one does not need to do so,
but it requires the choice of a proper parameter to guarantee convergence.

Acknowledgments

The author is very grateful to an anonymous referee, whose careful examina-
tion and constructive suggestions greatly improved this paper. The author is also
grateful to Prof. Zhongci Shi and Prof. Jun Zou, who improved the English of this
paper.

References

[1] I. Babuska and A. Aziz, Survey lectures on the mathematical foundations of the finite element
method, in The Mathematical Foundations of the Finite Element Method with Applications
to Partial Differential Equations, A. K. Aziz eds., Academic Press, New York and London,
1972. MR 54:9111

[2] M. Bernadou, S. Fayolle and F. Lene, Numerical analysis of junctions between plates, Com-
put. Methods Appl. Mech. Engrg., 74(1989), pp. 307-326. MR 90j:73062

[3] P. E. Bjørstad and O. B. Widlund, Iterative method for the solution of elliptic problems on
regions partitioned into substructures, SIAM J. Numer. Anal., 23(1986), pp. 1097-1120. MR
88h:65188

[4] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operators on
domains with angular corners, Math. Meth. Appl. Sci., 2(1980), pp. 556-581. MR 82a:35022

[5] J. H. Bramble, J. E. Pasciak and A. H. Schatz, An iterative method for elliptic problems on
regions partitioned into substructures, Math. Comp., 46(1986), pp. 361-369. MR 88a:65123

[6] J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic

problems by substructuring, I, Math. Comp., 47(1986), pp. 103-134. MR 87m:65174
[7] S. C. Brenner, A two-level Schwarz preconditioner for nonconforming plate elements, in

Domain Decomposition Methods in Scientific Computing (Proceedings of DDM 7) eds. David
E. Keyes and Jinchao Xu, 1994, Contemp. Math. 180, pp. 9-14. MR 95j:65134

http://www.ams.org/mathscinet-getitem?mr=54:9111
http://www.ams.org/mathscinet-getitem?mr=90j:73062
http://www.ams.org/mathscinet-getitem?mr=88h:65188
http://www.ams.org/mathscinet-getitem?mr=82a:35022
http://www.ams.org/mathscinet-getitem?mr=88a:65123
http://www.ams.org/mathscinet-getitem?mr=87m:65174
http://www.ams.org/mathscinet-getitem?mr=95j:65134


34 JIANGUO HUANG

[8] S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element
methods, Math. Comp., 65(1996), pp. 897-921. MR 96j:65117

[9] S. C. Brenner, A two-level additive Schwarz preconditioner for nonconforming plate elements,
Numer. Math., 72(1996), pp. 419-447. MR 97h:65147

[10] T. F. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica, 2(1994), pp.
61-143. MR 95f:65214

[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978. MR 58:25001

[12] P. G. Ciarlet, Plate and Junctions in Elastic Multi-structures, Springer-Verlag, Berlin-
Heiderberg-New York, 1990. MR 91h:73004

[13] M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms
for elliptic problem, in Third International Symposium on Domain Decomposition Methods
for PDE (eds T. F. Chan et al), SIAM, Philadelphia, 1990, 3–21 MR 91m:65294

[14] K. Feng, Elliptic equations on composite manifold and composite elastic structures (in Chi-
nese), Math. Numer. Sinica, 1(1979), pp. 199-208. MR 83m:49041

[15] K. Feng and Z. Shi, Mathematical Theory of Elastic Structures (in Chinese), Science Presss,
Beijing, 1981. (English translation, Springer-Verlag & Science Press, Berlin-New York, 1995.)
MR 84f:73001; MR 97b:73001

[16] G. H. Golub and C. F. Van Loan, Matrix computation (2nd edn)., The Johns Hopkins

University Press, Baltimore, 1989. MR 90d:65055
[17] P. G. Grisvard, Singularities in Boundary Value Problems, Springer-Verlag, Berlin-

Heidelberg-New York, 1992. MR 93h:35004
[18] F. d’Hennezel, Domain decomposition method and elastic multi-structures: the stiffened plate

problem, Numer. Math., 66(1993), pp. 181-197. MR 95c:73080
[19] L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods

using finite elements, Numer. Math., 55(1989), pp. 575-598. MR 90g:65150
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