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A COMPLETE DESCRIPTION OF GOLAY PAIRS
FOR LENGTHS UP TO 100

P. B. BORWEIN AND R. A. FERGUSON

Abstract. In his 1961 paper, Marcel Golay showed how the search for pairs
of binary sequences of length n with complementary autocorrelation is at worst

a 2
3n
2 −6 problem. Andres, in his 1977 master’s thesis, developed an algorithm

which reduced this to a 2
n
2 −1 search and investigated lengths up to 58 for

existence of pairs. In this paper, we describe refinements to this algorithm,

enabling a 2
n
2 −5 search at length 82. We find no new pairs at the outstanding

lengths 74 and 82. In extending the theory of composition, we are able to
obtain a closed formula for the number of pairs of length 2kn generated by a
primitive pair of length n. Combining this with the results of searches at all
allowable lengths up to 100, we identify five primitive pairs. All others pairs
of lengths less than 100 may be derived using the methods outlined.

1. Introduction

Autocorrelation. Let A = [a0, a1, . . . , an−1] be a sequence of length n. For each
k with 0 ≤ k ≤ n − 1 we define the kth acyclic autocorrelation coefficient, ck, as
the inner product of A on the overlap of a copy of itself displaced by k positions:

a0 . . . ak ak+1 . . . an−1

a0 a1 . . . an−k−1 . . . an−1

ck =
n−k−1∑
i=0

aiai+k = a0ak + a1ak+1 + · · ·+ an−k−1an−1.

From A we construct the polynomial

A(x) = a0 + a1x+ · · ·+ an−1x
n−1.

The coefficients ck then appear in the expansion:

A(x)A(x−1) = c0 + c1(x+ x−1) + · · ·+ cn−1

(
xn−1 + x−(n−1)

)
.

A Golay pair consists of two sequences

A = [a1, a2, . . . , an−1] ,

B = [b1, b2, . . . , bn−1]
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with ±1 entries, such that the off-centre (k > 0) autocorrelations cancel, i.e.,

ck + dk = 0,

where ck, dk are the kth autocorrelation coefficients for A,B, respectively.

Example (n = 8).

A = [ 1, 1, 1,−1, 1,−1, 1, 1] ,

B = [ 1, 1, 1,−1,−1, 1,−1,−1] .

For k = 3, we obtain:

c3 = −1 + 1− 1− 1 + 1 = −1 and d3 = −1− 1 + 1 + 1 + 1 = 1,

giving c3 + d3 = 0. This is true for all values 1 ≤ k ≤ 7.

In polynomial terms, an equivalent formulation of the autocorrelation conditions
is

A(x)A(x−1) +B(x)B(x−1) = 2n.

This polynomial is constant on the unit circle in the complex plane, which explains
a number theoretic interest in such sequences.

From this we derive
2n = A(1)2 +B(1)2.

Thus A(1) and B(1) have the same parity and

n =
(
A(1) +B(1)

2

)2

+
(
A(1)−B(1)

2

)2

shows that n must be the sum of two integral squares.
Also derivable, except for the length 1, are the facts that n must be even (Golay

[7], 1961) and that n is not divisible by a prime ≡ 3 (mod 4) (Eliahou, Kervaire,
Saffari [5], 1990).

Combining these, we formulate a list of the “allowable” lengths less than 100,
namely,

1, 2, 4, 8, 10, 16, 20, 26, 32, 34, 40, 50, 52, 58, 64, 68, 74, 80, 82.

Searches for pairs. In searching for examples of Golay pairs, two considerations
may be taken into account [7], reducing the total 22n cases under consideration to
2

3n
2 −6:

(1) Equivalence: There are six operations establishing equivalence classes of
Golay pairs:

(a) interchanging the sequences in a pair,
(b) reversing the order in the first,
(c) or reversing the order in the second,
(d) changing the signs of the first,
(e) or changing the signs of the second,
(f) changing signs of alternate entries in both.

(2) Reduction modulo 4: This leads to the n
2 equations

aian−1−i + bibn−1−i = 0,

0 ≤ i ≤ n
2 − 1, involving entries in ±1 sequences in a pair (A,B).
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Through extended calculations made by hand, Golay demonstrated the existence
of two inequivalent pairs at length 10 and a pair at length 26. He also gave rules of
composition for forming pairs of lengths 2n and 2mn from existing pairs of length
m and n. His constructions for lengths 2k give all existing pairs for 0 ≤ k ≤ 6.

In his 1974 paper, Turyn [11] gave a construction for forming pairs of length mn
from existing pairs of length m and n.

The first exhaustive search for Golay pairs was conducted at length 26 (Jau-
regui), taking 75 hours to confirm the single example of inequivalent pairs. In his
1977 master’s thesis, Andres [1] showed that a further reduction modulo 2 enables
an initial search involving 2n/2 cases. A further reduction modulo 4 was applied
for examples surviving this test. He used one of the equivalences, bringing this to
a 2

n
2−1 search, reducing the time taken at n = 26 to 1 minute. His work showed

nonexistence of pairs at lengths 34, 50 and 58 and produced complete lists of repre-
sentatives at lengths 8, 10, 16, 20 and 32. Later work by James [9] (1987) established
the nonexistence of pairs at length 68. Djokovic [4] (1998) demonstrated how to
choose a canonical pair from each class of equivalent pairs. He conducted exhaustive
searches at lengths 32 and 40, producing complete lists of canonical pairs.

The present work outlines improvements which may be made to Andres’ algo-
rithm, enabling a 2

n
2−5 search at length 82 with a running time of two weeks.

Exhaustive searches have been conducted at all allowable lengths under 100, con-
firming earlier work and showing the nonexistence of pairs at lengths 74 and 82.

We call a Golay pair primitive if it cannot be derived through composition from
pairs of shorter lengths. We present a context for the theory of the composition of
pairs from which Golay’s and Turyn’s constructions are easily derived. This theory
for producing pairs of length 2n from a primitive pair of length n is developed,
producing a closed formula for the number of pairs which may be generated:

Theorem 1.1. From a primitive Golay pair of length n having 64 conjugates, there
are exactly 2k+6(k + 1)(k + 1)! pairs derivable at length 2kn.

Combining this with the results of searches, we present a compact classifica-
tion for all pairs of length up to 100 (see the following section for the definitions
P,Q, P ∗, Q∗):

Theorem 1.2. For lengths n < 100, all Golay pairs are derivable from the following
five primitive pairs (in our canonical form):

Length 1 : ([1], [1]).
Length 10 : [P, P,−P,Q,Q∗] :

[ 1, 1,−1, 1,−1, 1,−1,−1, 1, 1],

[ 1, 1,−1, 1, 1, 1, 1, 1,−1,−1]

and [P,Q,−Q∗, P ∗, Q] :

[ 1, 1, 1, 1, 1,−1, 1,−1,−1, 1],

[ 1, 1,−1,−1, 1, 1, 1,−1, 1,−1].

Length 20 : [P,Q,Q, P,−P, P,Q∗,−P ∗,−P ∗, P ] :

[ 1, 1, 1, 1,−1, 1,−1,−1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1, 1],

[ 1, 1, 1, 1,−1, 1, 1, 1, 1, 1,−1,−1,−1, 1,−1, 1,−1, 1, 1,−1].
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Length 26 : [P, P, P,Q,−P, P, P,−Q,−P, P,−P,Q,Q∗] :

[ 1, 1, 1, 1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1, 1, 1, 1],

[ 1, 1, 1, 1,−1, 1, 1,−1,−1, 1,−1, 1, 1, 1, 1, 1,−1, 1,−1,−1,−1, 1, 1,−1,−1,−1].

2. Reductions modulo 2 and 4

Reduction modulo 4. Where a, b are restricted to the values ±1, we find

ab ≡ a+ b− 1 (mod 4).

Thus, polynomial equations involving variables taking only the values ±1 become
linear equations upon reduction modulo 4. We apply this to the n − 1 quadratic
equations

a0an−1 + b0bn−1 = 0,
a0an−2 + a1an−1 + b0bn−2 + b1bn−1 = 0,

a0an−3 + a1an−2 + a2an−1 + b0bn−3 + b1bn−2 + b2bn−1 = 0,
. . . . . .

a0a1 + a1a2 + · · ·+ an−2an−1 + b0b1 + b1b2 + · · ·+ bn−2bn−1 = 0

defining a Golay pair (A,B), obtaining:

Proposition 2.1 (Golay [7]). For a Golay pair (A,B) of length n:
(i) n must be even.
(ii) aian−1−i + bibn−1−i = 0 for 0 ≤ i ≤ n/2.

Proof. Reducing the first set of m =
⌊
n
2

⌋
of these leads to the conditions

ai + an−1−i + bi + bn−1−i ≡ 2 (mod 4),

which are equivalent to
aian−1−i + bibn−1−i = 0,

0 ≤ i < m.
In case n were odd, the next equation would reduce to

2a(n−1)/2 + 2b(n−1)/2 ≡ 2 (mod 4),

which is impossible for a(n−1)/2, b(n−1)/2 = ±1. Hence n must be even.
Continuing this reduction, we find the remaining equations to be linearly depen-

dent on the first m relations. �

Thus, for a Golay pair (A,B), exactly three of ai, an−1−i, bi, bn−1−i have the
same sign, for 0 ≤ i < m = n/2.

Quads (Andres [11]). We now identify the pair with a sequence of m nested quads,

(A,B) = (X0, X1, . . . , Xm−1).

These quads are the 2× 2 matrices defined by

Xi =
[
ai an−1−i
bi bn−1−i

]
, 0 ≤ i ≤ m− 1.
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There are eight possible quads, which we classify in the following way:

P =
[

1 1
1 −1

]
, P ∗, −P, −P ∗,

Q =
[

1 −1
1 1

]
, Q∗, −Q, −Q∗.

The superscript ∗ is used to indicate the interchanging of columns in a matrix.
The sequence (X0, X1, . . . , Xm−1) is completely described by three binary vec-

tors:
(1) the horizontal orientation vector H = [h0, h1, . . . , hm−1], where hi = 0 or 1

for the odd term in Xi being on the right or left,
(2) the vertical orientation vector V = [v0, v1, . . . , vm−1], where vi = 0 or 1 for

the odd term being on the top or bottom,
(3) the sign vector S = [s0, s1, . . . , sm−1], where si = 1 or −1 according to the

sign of Xi. An equivalent formulation is as a binary vector Bs = [b0, b1, . . . , bm−1],
where bi = 1

2 (si + 1).
Multiplication of quads is defined by

XY =
[
x1 x2

x3 x4

] [
y1 y2

y3 y4

]
=

1
4

(x1y1 + x2y2 + x3y3 + x4y4) .

Divisibility by 4 follows from the above proposition. This is really an inner product
and not to be confused with matrix multiplication. With this interpretation, the
autocorrelation conditions become:

X0X
∗
1 = 0,

X0X
∗
2 = 0,

X0X
∗
3 +X1X

∗
2 = 0,
. . .

X0X
∗
m−1 +X1X

∗
m−2 +X2X

∗
m−3 + · · ·+Xm−1X

∗
0 = 0,

X0Xm−1 +X1X
∗
m−1 +X3X

∗
m−2 + · · ·+Xm−2X

∗
0 = 0,

X0Xm−2 +X1Xm−1 +X3X
∗
m−1 + · · ·+Xm−3X

∗
0 = 0,
. . .

X0X2 +X1X3 + · · ·+Xm−3Xm−1 +Xm−2X
∗
m−1 = 0,

X0X1 +X1X2 + · · ·+Xm−3Xm−2 +Xm−2Xm−1 = 0.

We obtain the following multiplication table for basic quads:

P P ∗ Q Q∗

P 1 0 0 0
P ∗ 0 1 0 0
Q 0 0 1 0
Q∗ 0 0 0 1

which is extended by (−X)Y = X(−Y ) = −XY.
Reduction molulo 2. All of the nonzero products obtained by multiplying quads
are ±1. Reducing modulo 2, we derive the following:

XiXj ≡ (1 + vi + vj)(1 + hi + hj),

XiX
∗
j ≡ (1 + vi + vj)(hi + hj).



972 P. B. BORWEIN AND R. A. FERGUSON

After specifying the value of either the H or V vector, the autocorrelation equations
become linear in the coordinates of the other orientation vector by reducing modulo
2 (2

n
2 search, Andres, 1977).

Reduction modulo 4 (again). We note now that

XiXj = sisj [XiXj (mod 2)] .

Once the values of H and V are set, we are left with a quadratic system in the
components of S, the sign vector.

Reducing modulo 4 converts this to a linear system. The final search is no more
than exponential in the number of free variables of this system.

Further reductions. In cases where these numbers of free variables are large in
relation to n, further reduction modulo 2 or 4 may be made to narrow the search.
This can be applied to known solutions for H and V obtained in the reduction
molulo 2 for larger values of n.

3. Equivalence

Each of the six operations establishing equivalence classes of Golay pairs is of
order 2. Together they generate a noncommutative group of order 64. In his 1998
paper, Djokovic [4] outlined a method for choosing a canonical representative from
each class. For our purposes, we need to describe the effects of these operations
on the H-, V - and S-vectors, leading, as well, to the determination of a canonical
representative, though our choice varies slightly. The operations are as follows:

(1) Interchanging the sequences, defined by τ(A,B) = (B,A). This transforms
all quads of P -type into Q-type and vice versa. The binary entries of the vertical
orientation vector V are complemented without changing the H- or S-vectors.

(2) Reversing the first sequence A, defined by ρQ(A,B) = (A∗, B). This ex-
changes the columns for any quad of Q-type, while leaving those of P -type un-
changed; e.g., ρQ(Q) = Q∗ and ρQ(P ) = P . The H-vector is changed by the
addition of the complement of the V -vector modulo 2.

(3) Reversing the second sequence B, defined by ρP (A,B) = (A,B∗). The quads
of P -type are reversed; those of Q-type remain fixed. The H-vector is changed by
the addition of the V -vector modulo 2.

(4) Changing the signs of the first sequence, defined by σ1(A,B) = (−A,B).
Quads of Q-type are reversed, i.e., σ1(Q) = Q∗. Quads of P -type are reversed and
also change sign, i.e., σ1(P ) = −P ∗. Thus, the H-vector is complemented; the
Bs-vector is changed by the addition of the H-vector modulo 2.

(5) Changing the signs of the second sequence, σ2. Here σ2(A,B) = (A,−B).
Quads of P -type are reversed; quads ofQ-type are reversed and change sign. TheH-
vector is complemented; the Bs-vector is changed by the addition of the complement
of the H-vector modulo 2.

(6) Changing the signs of alternate entries in both sequences, denoted by σa.
In the polynomial representation, we choose σa(A(x), B(x)) = (A(−x), B(−x)),
specifying that σa changes the sign of entries in even positions. The effect on
quads, then, depends on whether their positions are even or odd. In odd position,
σa(P ) = Q, σa(P ∗) = −Q∗. In even position, σa(P ) = −Q, σa(P ∗) = Q∗. The
vertical orientation vector V is complemented and entries in Bs are changed as
well. The signs which change are determined by finding the sum of the vector
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[0, 1, 0, 1, . . .] (every second entry 1) and the H-vector modulo 2. We add this to
Bs modulo 2 to obtain the new sign vector.

Golay pairs which are in a common orbit for this group, i.e., are interchangeable
through successive operations from this group, we call conjugates. Already, we
have one test which is a necessary property for conjugates.

Lemma 3.1. If two series are conjugates, then their V -vectors are either identical
or complementary.

Proof. This is true for each operation in the generating set. �
We will redefine a generating set for the equivalence group, to better align them

with the P/Q split of the quad sequence. We define σP = ρPρQσ1 and σQ =
ρPρQσ2. The effect of σP is to change the signs of all the P -type quads. This
changes the S-vector by adding the V -vector mod 2. Here σQ changes the signs of
all the Q-type quads. This changes the S-vector by adding the complement of the
V -vector mod 2. Thus, through conjugation, we are able to reverse the direction
or change the sign of either the P - or Q-type quads independently.

The new generating set is {τ, ρP , ρQ, σP , σQ, σa}, where now the first five op-
erations listed commute. These enable the first steps in choosing the canonical
representative from each set of conjugates. Specifically, for a canonical pair:

(1) The first quad will be of type P and will have right orientation and positive
sign, i.e., X0 = P .

(2) The first quad of Q-type in the series will also have right orientation and
positive sign, i.e., the first quad of Q-type will be Q.

Through conjugation, there are eight possible choices for the first quad. The
subgroup of the conjugation group fixing the first quad at P must have order eight
as well. The only case where the quads have the same vertical orientation is where
n = 2, i.e., the series consists of a single quad. This has eight conjugates. The
autocorrelation conditions force longer sequences to have quads of both P - and
Q-type. With the first quad fixed at P , there are now four options for the first
quad of type Q, all attainable through conjugation. Thus, any Golay pair of length
greater than 2 will have at least the 32 distinct conjugates obtainable using the first
five operations of our generating set. There will be 64 conjugates if and only if the
subgroup fixing the quads described in (1) and (2) has index 2.

Any additional conjugates are obtained using σa. The operator ρPρQτσa changes
only the sign vector Bs by adding Ba = H+[0, 1, 0, 1, . . . ] modulo 2. There are two
cases to consider, depending on whether the position for the first Q in the quad
sequence is even or odd. We define σA1 = ρP ρQτσa and σA2 = σQρPρQτσa =
σ2τσa. The first changes signs, adding BA = Ba to Bs; the second changes signs,
adding BA = Ba + V c to Bs, where V c is the complement of V . To leave the first
Q fixed, we set σA = σA1 if this Q occurs in odd position and σA = σA2 , otherwise.
If σA 6= id, then there are 64 conjugates.

These considerations lead us to the final condition for a canonical pair:
(3) The sign of the quad corresponding to the first nonzero entry in SA will be

positive.
If, after (1) and (2), the sign of this quad is negative, we change Bs by adding

BA (mod 2).

Using equivalences. In conducting an exhaustive search, we are able to restrict
ourselves to locating a canonical representative of each equivalence class. In the
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reduction modulo 2, we have a choice of specifying either the H- or V -vectors.
Specifying that X0 = P sets h0 = 0, v0 = 1, b0 = 1, leaving n

2 − 1 values to be set
in either case (2

n
2−1 search, Andres [1]). Specifying the first quad of Q-type to be

Q itself narrows the search further, but its full effect is not immediately apparent.
Our algorithm starts by supplying values for the H-vector. An initial consequence
is the following, allowing a 2

n
2−2 search, in line with Eliahou, Kervaire, and Saffari

[5]:

Lemma 3.2. For a canonical pair:
(i) h1 = 0,
(ii) b1 = 1.

Proof. (i) We have

X0X1 ≡ (1 + v0 + v1)(h0 + h1) ≡ v1h1 ≡ 0 (mod 2).

h1 = 1 would imply that v1 = 0, giving the first quad of Q-type to be Q∗, not Q
as specified.

(ii) v1 = 0 would mean the second quad is of Q-type and b1 = 1 by specification.
Otherwise, the BA-vector given above would have the value 1 in the second position,
so that again b1 = 1. �

The implications have not yet been exhausted, however. For example, h0 = h1 =
h3 = 0, h2 = 1 is also inconsistent, so another 1/4 of the cases can be eliminated.
Its effect is progressive in the length of the sequences. The above lemma could be
extended again and again. However, a test routine in the search program takes
care of this. There are blocks of cases to be eliminated during run time, so that at
n = 82, about 7/8 of the cases are “stepped over” (2

n
2−5 search).

The final specification, induced either by σA if it is not the identity or by setting
the sign of the first Q-quad if this has not been used in the lemma, can be applied
in the reduction modulo 4 to reduce the number of free variables is solving for the
sign vector.

4. Composition

A pair of multivariate functions (F (x1, x2, . . . , xn), G(x1, x2, . . . , xn)) is comple-
mentary if

F (x1, x2, . . . , xn)F (x−1
1 , x−1

2 , . . . , x−1
n ) +G(x1, x2, . . . , xn)G(x−1

1 , x−1
2 , . . . , x−1

n )

is the constant function.
A pair of sequences (A,B) is complementary if and only if the functions (A(x),

B(x)) are complementary. We easily see that (A,B) complementary implies that
each of (A(xk), B(xk)), (A(x), B(x)xk) and (αA(x), αB(x)) are complementary for
any numbers k and α. We may use the following theorem to obtain combinations
of pairs.

Theorem 4.1. Suppose each of the pairs (C(r), D(r)) and (A(s), B(s)) is comple-
mentary. Then the pair

F (r, s, t, u) = C(r)A(s) +D(r−1)B(s)t,
G(r, s, t, u) = (D(r)A(s) − C(r−1)B(s)t)u

is complementary.
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Proof. Substituting, we find that

F (r, s, t, u)F (r−1, s−1, t−1, u−1) +G(r, s, t, u)G(r−1, s−1, t−1, u−1)

simplifies to(
C(r)C(r−1) +D(r)D(r−1)

) (
A(s)A(s−1) +B(s)B(s−1)

)
,

which is constant by our hypothesis. �

A simple application where (A,B) is complementary and C(r) = D(r) = t =
u = 1 shows that (A+B,A−B) is complementary. By making other apppropriate
substitutions, we obtain the following construction due to Turyn:

Corollary 4.2 (Turyn [11], 1974). Where (C,D) and (A,B) are Golay pairs of
lengths m and n, respectively, the combination

C(xn)(A(x) +B(x))/2 +D∗(x−n)(A(x) −B(x))/2,
D(xn)(A(x) +B(x))/2 − C∗(x−n)(A(x) −B(x))/2

is a Golay pair.

Proof. Starting with the complementary pairs (C(r), D(r)) and ((A(s) + B(s))/2,
(A(s) − B(s))/2), we apply the theorem using the substitutons r → xn,
s → x, t → x(m−1)n, u → 1. The coefficients in the expansion are ±1, yielding
a Golay pair of length mn. �

Remark. Adapting to (C(r), D∗(r)) and (A(s), B(s)), the substitutions r → xn,
s→ x, z → x(m−1)n, w → xmn generate the Golay pairs

C(xn)A(x) +D(xn)B(x)xmn,
D∗(xn)A(x) − C∗(xn)B(x)xmn and

C(x2n)A(x2) +D(x2n)B(x2)x,
D∗(x2n)A(x2)− C∗(x2n)B(x2)x.

These are Golay’s contructions [7], yielding pairs of length 2mn. These are deriv-
able using Turyn’s construction combined with equivalences. For example, com-
bining Golay pairs ([1, 1], [1,−1]) and (C,D), we obtain the Golay pair (xmd(x) +
C(x), xmD(x) − C(x)). We apply equivalence operations to obtain (xmD(x) +
C(x), xmC∗(x) + D∗(x)). Combining now with (A,B) and simplifying, we obtain
(C(xn)A(x) +D(xn) +D(xn)B(x)xmn, −D∗(xn)A(x) + C∗(xn)B(x)xmn).

Using only Turyn’s multiplicative construction and equivalences is insufficient
to give a good classification for Golay pairs of increasing length. Djokovic [4], for
example, lists two sequences at length 16 and 44 at length 32 as being noncon-
structible. In fact, these are derivable using a procedure for lengths of the form
2k which is outlined in Golay’s 1961 paper [7]. Starting from Golay pairs, Turyn’s
construction produces Golay pairs with coefficients ±1. We obtain more flexibility
if at each stage we stipulate only that complementary pairs be produced at inter-
mediate stages, without demanding that all entries be ±1. In the process described
below, the extension is to allow entries 0, ±1 at intermediate stages.

To conveniently identify the pairs which may be derived from a pair (A,B)
through successive combinations, we use the following matrix notation. To compose
the sequence identified through the notation

A B A B
A −B −A B
−B∗ A∗ −B∗ A∗

−B∗ −A∗ B∗ A∗

 ,
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we form series by interleaving elements of series running down the rows and we
juxtapose these resulting series running across the columns. Thus, this gives a
representation for the series

a1, a1,−bn,−bn, a2, . . . , b1,−b1, an,−an, . . . , a1,−a1, . . . , b1, b1, . . . , bn, bn, a1, a1

of length 16n. The number of rows determines the separation between entries in A
or B as they appear in the sequences.

Let (A,B) be a Golay pair of length n, and let O be a sequence of length n
consisting of 0’s. There are two basic processes of combination for forming pairs of
length 2n that involve adding and subtracting the component series after displace-
ment or separation of their entries:

(1) Golay’s first construction, (
[
A B

]
,
[
A −B

]
), involves addition and

subtraction of the complementary series (
[
A O

]
,
[
O B

]
). This is the same

up to equivalences as that obtained from Turyn’s construction using pairs (C =
[1, 1], D = [1,−1]) and (A,B).

(2) Golay’s second construction([
A
B

]
,

[
A
−B

])
,

involves addition and subtraction of the complementary series([
A
O

]
,

[
O
B

])
.

This is equivalent to Turyn’s construction using (A,B) and ([1, 1], [1,−1]), with
their order now reversed.

These processes of (1) juxtaposition and (2) interleaving in terms of matrix
addition and subtraction are generalized to produce Golay pairs of length 2kn. We
start with a pair of 2k1 × 2k2 matrices with k1 + k2 = k. The first matrix has
all O entries except for a single entry A and represents a sequence of length 2kn
having the A entries 2k1 positions apart with 0’s elsewhere. The second has O’s
except for a single B. These represent a complementary pair. If we are able to
add and subtract appropriately k times so that the resulting matrices have only A
and B entries, the corresponding series will form a Golay pair. This motivates the
following inductive process:

(i) We start with A in the (1, 1) position in the first matrix and B either in the
(2i+1, 1) or (1, 2j+1) position in the second matrix, where 1 ≤ i < k1, 1 ≤ j < k2.
Adding and subtracting these matrices yields a complementary pair.

(ii) The matrices in pair, (M1,M2), entered at a succeeding step have nonzero
sequences in the (1, 1) position. Consider the smallest submatrix of M2 such that
all entries outside consist of O’s. However we translate this submatrix within this
second matrix, keeping O entries outside, the sequences represented remain com-
plementary. This translation is done to place the nonzero entry in the upper left
corner of this submatrix in either the (2i+ 1, 1) or (1, 2j + 1) position in the second
matrix, where 1 ≤ i < k1, 1 ≤ j < k2, and where this entry is O in the first matrix.
Where M ′2 is the matrix formed by this internal translation, we form the two new
pairs (M1 +M ′2,M1 −M ′2) and (M1 +M ′2,−M1 +M ′2), each of which represents a
complementary pair.

This process is reversible. Adding and subtracting in the same order, and then
dividing by 2, we obtain (M1,M

′
2) and (M ′2,M1), respectively, from these two pairs.
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Only M1 has a nonzero entry in the (1, 1) position. Taking this as the first choice,
i.e., (M1,M

′
2), re-establishes the original order. In this fashion, we may trace the

process back to the original pair (A,B). Hence, each conjugate of (A,B) produces
a different set of matrices.

Lemma 4.3. The matrices formed after k steps in the above inductive process
represent a Golay pair.

Proof. From the entries in a matrix produced at the k′th step we compose a poly-
nomial fk′(x, y), where the coefficient of the term xi−1yj−1 represents the number
of copies of A or B added or subtracted to obtain the (i, j)th entry in this matrix.
Thus

(i) f1(x, y) = 1 + x2i if B is placed in the (2i + 1, 1)th position or 1 + y2j if B is
placed in the (1, 2j + 1)th position during the first step.

(ii) Before adding or subtracting at the k′th step, the polynomial for the first
matrix is fk′−1(x, y). The second matrix, after translation, has either the polyno-
mial fk′−1x

2i , giving fk′(x, y) = fk′−1(x, y)(1 + x2i), or the polynomial fk′−1y
2j ,

giving fk′(x, y) = fk′−1(x, y)(1 + y2j ).
In running through the allowable values for i and j in the k steps, we obtain

fk(x, y) =
k1−1∏
i=0

k2−1∏
j=0

(1 + x2i)(1 + y2j )

= (1 + x+ · · ·+ x2k1−1)(1 + y + · · ·+ y2k2−1).

The term corresponding to each position in the final matrix has coefficient 1 so that
each entry in this matrix is one of A,−A,B,−B. Therefore, the final sequences
have only the entries ±1 and are Golay pairs. �
Completing equivalence classes. As stated above, the pairs generated by differ-
ent conjugates compose distinct classes. However, conjugation is not an operation
confined to classes. For example, the pair ([A B], [A − B]) belongs to the class
generated by (A,B) while its conjugate ([−A − B], [A − B]) belongs to the class
generated by (−A,−B). This leads to difficulty in comparing lists of canonical
pairs generated by a search program to pairs generated by composition. This may
be reconciled by comparing total counts or by eliminating derivable pairs from the
search.

We still need, however, to see if conjugation at longer lengths will increase the
numbers of derivable pairs:

(1) Changing order : We see that

(M1 −M ′2,M1 +M ′2) = (M1 + (−M ′2),M1 − (−M ′2))

is produced from the pair (M1,−M2), a conjugate at the previous step.
The same is true for (M1 +M ′2,−M1 +M ′2).

(2) Changing signs : Changing the sign of the second pair has been included.
Changing the sign of the first, e.g.,

(−M1 −M ′2,M1 −M ′2) = ((−M1) + (−M ′2),−(−M1) + (−M ′2)),

is covered by conjugation at the previous step. Changing even positioned
signs depends upon the positioning of M ′2. Even positioned signs in M1 are
changed but for M ′2 the signs changed may be either in the even or odd
positions. Both cases are covered by conjugation at the previous step.
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(3) Reversing the order of a sequence: We denote by M∗ this operation applied
to a component matrix M . It is achieved by rotating M a half turn and
reversing the order of all its entries. We may have to expand our inductive
process to include this operation on the second sequence. Once this is done,
application to the first sequence produces no new pairs. For example,

(M∗1 +M ′∗2 ,M1 −M ′2) = (M∗1 +M ′∗2 , (M
∗
1 −M ′∗2 )∗)

is achieved by combining conjugation at the previous step with reversal of
the second sequence.

We see below that it can be applied at most once in the derivation of a particular
pair. At each step, therefore, there is a separation into two classes of complementary
pairs.

Lemma 4.4. If reversal of the second sequence has been applied at one step of the
inductive process, its later application is equivalent to conjugation at earlier steps.

Proof. Let (M1 +M ′2,M1 −M ′2) be a pair produced in the inductive process, where
reversal of the second sequence has been applied at an earlier step. This is equivalent
to the polynomial form

(
M1(x) +M2(x)xk1 ,M1(x) −M2(x)xk1

)
, where k1 is some

power of 2. Our inductive assumption is that the pair (M1,M
∗
2 ) is derivable from

a previous pair (M3,M4), i.e., M1(x) = M3(x) + M4(x)xk2 , M∗2 (x) = M3(x) −
M4(x)xk2 , either because the reversal was applied at this step or by extension of
the assumption. Our claim is that the pair (M1 +M ′2,M

∗
1 −M ′∗2 ) is derivable from

the pair (M3,−M∗4 ) with one reversal in the intermediate step.
Indeed, the polynomial representation of (M1 +M ′2,M

∗
1 −M ′∗2 ) is(

M1(x) +M2(x)xk1 ,
M∗1 (x)xk1 −M∗2 (x)

)
=
(

M3(x) +M4(x)xk2 +
(
M∗3 (x)xk2 −M∗4 (x)

)
xk1 ,(

M∗3 (x)xk2 +M∗4 (x)
)
xk1 −

(
M3(x)−M4(x)xk2

) ) .
The other derivation is(

M3(x) −M∗4 (x)xk1 ,
M3(x) +M∗4 (x)xk1

)
→

(
M3(x) −M∗4 (x)xk1 ,
M∗3 (x)xk1 +M4(x)

)
→

(
M3(x)−M∗4 (x)xk1 +

(
M∗3 (x)xk1 +M4(x)

)
xk2 ,

−M3(x) +M∗4 (x)xk1 +
(
M∗3 (x)xk1 +M4(x)

)
xk2

)
.

The final pairs are the same. The proof is similar for the pair (M1 + M ′2,
−M1 +M ′2). �

Pairs of length 2k. We consider Golay pairs which are derivable from the pair
(A = [1], B = [1]). This has four conjugates corresponding to changes in signs. All
derivable pairs are representable by single row matrices. At length 2, we derive the
pairs ([1 1], [1 − 1]) and ([1 1], [−1 1]). Using the four equivalences on the initial
pair (A,B) will then generate the eight pairs of length 2.

At this first step no new pairs are obtained by reversing the second sequence.
By the lemma, no new pairs will be produced by reversal of the second sequence in
a pair at any later step.

This is extendable to the following theorem.

Theorem 4.5 (Golay [7], [3]). Using the above inductive process, there are exactly
2k+2k! Golay pairs of length 2k derivable from the initial pair ([1], [1]).
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Proof. In the operations to form a pair of length 2k, there are k positions for placing
the first nonzero entry in the second matrix, namely, 20 + 1, 21 + 1, . . . , 2k−1 + 1.
There are k! choices for the order in which these are chosen. At each step we may
independently choose the order of addition and subtraction at each step, giving an
additional 2k choices. Independently again we may apply the four equivalences of
the original pair to form a total of 2k+2k! Golay pairs at length 2k. �

Pairs of length 2kn. Let (A,B) be a primitive pair of length greater than 1.
The entries in a pair (M1 +M ′2,±(M1 −M ′2)) produced at the k′th step are the
same except for signs. Where there has been no reversal in the process, the (1, 1)
entries in these matrices will be ±A. The smallest submatrix of the second matrix
containing all the non-O entries will have ±B in its bottom right corner. Reversing
the order of the second sequence and repositioning this submatrix so that this (now)
B∗ entry is in the (1, 1) position, we have the following:

(1) With n > 1, we have A 6= ±B∗, so that entries in the two matrices no longer
match up in sign. Hence, this reversal has, in fact, produced a different pair.

(2) Each of these matrices is seen, inductively, to retain the same function
fk′(x, y) described in a previous lemma. Thus, the non-O entries in the two matri-
ces are in the same positions and the inductive process can continue. This allows
the following derivation:

Theorem 4.6. From a primitive Golay pair of length n having 64 conjugates, there
are exactly 2k+6(k + 1)(k + 1)! pairs derivable at length 2kn.

Proof. There are k + 1 choices for the dimensions 2k1 × 2k−k1 of a matrix, with
0 ≤ k1 ≤ k. There are the same k positions for placing the first nonzero entry
in the second matrix, and therefore k! choices for the order in which these are
chosen. With no reversals of the second sequence, we produce 2k(k + 1)k! Golay
pairs from an initial pair. There are k steps at which this reversal can occur to
generate new pairs, each reversal producing 2k(k+1)k! more pairs, for a total count
of 2k(k + 1)k! + k(2k(k + 1)k!) = 2k(k + 1)(k + 1)! from the initial pair. From the
26 conjugates of the initial pair we obtain the final count. �

Remark. We note that after the k−1 step we have produced matrices where either
blocks of 2i rows which have no O entries are interspersed with blocks of 2i rows
of all O’s or we have the corresponding configurations with blocks of 2j columns.
Deleting all the O entries will reduce the matrices to having 2k−1 entries each. We
can generate these matrices by the same inductive process starting from matrices
of these new dimensions. Hence, this deletion produces Golay pairs. This permits
the following interpretation of the inductive process, where after each step Golay
pairs of double the length are produced.

(i) Starting with the matrices ([A], [B]), we either add O-rows to produce the
pairs ([

A
O

]
,

[
O
B

])
or O-columns to produce (

[
A O

]
,
[
O B

]
). Adding and subtracting produce

Golay pairs of length 2n.
(ii) The k′th step begins with two 2k1 ×2k2 matrices M1,M2 with A,−A,B,−B

entries where k1 + k2 = k′ − 1. We may either form 2k1+1 × 2k2 matrices, the first
by taking successive blocks of 2k3 rows from M1 followed by blocks of 2k3 rows of
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O’s, the second by taking blocks of 2k3 rows of O’s followed by successive blocks of
2k3 rows from M2, where 0 ≤ k3 ≤ k1, or we may form 2k1 × 2k2+1 matrices in the
same manner by inserting O-columns appropriately. Adding and subtracting yield
Golay pairs of length 2k

′
n.

5. H-regularity

A Golay pair A,B is H-regular (of period 2k) if the pair is composed of blocks
of length k where the entries in A and B are the same interspersed with blocks of
length k where they are different.

Note that for such a pair the H-vector consists of alternating blocks of 0’s and
1’s, each of length k. The regularity of this vector is not quite equivalent to H-
regularity. However, if we extend this vector by its mirror image, the 0 entries
indicate positions where A and B agree and the 1 entries indicate positions where
they disagree. Regularity of this vector is equivalent to H-regularity of the pair.
H-regularity is invariant under reversal of signs in one or both sequences in the

pair or under reversal of direction of both sequences.

Examples. The pair

A = [1, 1, 1, 1, 1,−1, 1,−1,−1, 1, 1,−1,−1,−1, 1, 1],
B = [1, 1, 1, 1,−1, 1,−1, 1,−1, 1, 1,−1, 1, 1,−1,−1]

is H-regular with period 8. It has H-vector [0, 0, 0, 0, 1, 1, 1, 1].
The pair

A = [1, 1, 1, 1, 1,−1, 1,−1,−1, 1],
B = [1, 1,−1,−1, 1, 1, 1,−1, 1,−1]

is not H-regular. Its H-vector is [0, 0, 1, 1, 0]. This extends to

[0, 0, 1, 1, 0, 1, 0, 0, 1, 1],

which we see is not regular.

Theorem 5.1. Let A,B be a Golay pair of length n. If A,B or A,B∗ is H-regular,
then A,B is derivable from a Golay pair of length n/2.

Proof. Suppose A,B is H-regular of period 2k. Then C = (A + B)/2 and D =
(A− B)/2 are complementary, each having blocks of consecutive indices of length
k for which values are ±1 interspersed with blocks of length k for which the values
are 0. Removing the 0’s, we obtain two sequences, C′ = [c′1, c′2, . . . , c′n/2] and

D = [d′1, d′2, . . . , d′n/2]. Consider the jth autocorrelation coefficients
∑n/2−j

i=1 c′ic
′
i+j

for C and
∑n/2−j

i=1 didi+j for D.
Let j = sk+j′, where 0 ≤ j < k. If c′i comes from an entry in C at the beginning

of a nonzero block in (A+B)/2, then c′i+j will come from the entry 2sk+j′ positions
ahead. When c′i comes from a later entry in a nonzero block, then c′i+j will come
from the entry which is 2sk + j′ positions ahead if this is nonzero, and from the
entry (2s+ 1)k + j′ positions ahead otherwise. We obtain

n/2−j∑
i=1

c′ic
′
i+j =

n−(2sk+j′)∑
i=1

cici+2sk+j′ +
n−((2s+1)k+j′)∑

i=1

cici+(2s+1)k+j′ .

The contributions to the sums on the right not coming from terms on the left are
all 0. Each autocorrelation coefficient for C′ is the sum of two autocorrelation
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coefficients for C. In the same way, each autocorrelation coefficient for D′ is the
sum of two corresponding autocorrelation coefficients for D. So C′ and D′ inherit
the defining autocorrelation conditions from C and D and are Golay pairs. �

In the sense of derivability outlined in the previous section we have:

Corollary 5.2. Let (A,B) be a Golay pair of length not divisible by a product mn,
where m and n are not powers of 2 but are the lengths of existing Golay pairs.
(A,B) is derivable if and only if it or one of its conjugates is H-regular.

Proof. Suppose the length of (A,B) is of the form 2km, where m is the length
of some smaller Golay pair. A pair derived from the process outlined in the last
section without reversal of the second sequence at the final step isH-regular. Hence,
if (A,B) is derivable either it or its conjugate obtained by reversing the second
sequence is H-regular. �

Combining results from searches conducted at allowable lengths under 100 with
those from applying the composition process, we are able to make the following
summary:

Theorem 5.3. For lengths n < 100, all Golay pairs are derivable from the following
five primitive pairs (in canonical form):

Length 1: ([1], [1]).
Length 10: [P, P,−P,Q,Q∗] and [P,Q,−Q∗, P ∗, Q].
Length 20: [P,Q,Q, P,−P, P,Q∗,−P ∗,−P ∗, P ].
Length 26: [P, P, P,Q,−P, P, P,−Q,−P, P,−P,Q,Q∗].

Proof. Previous searches were conducted by Andres [1] (lengths 8, 16, 20, 26, 32,
34, 50, 58), James [9] (length 68), Djokovic [4] (lengths 32, 40). Our own searches
were conducted at all allowable lengths under 100, confirming previous results and
extending these at lengths 52, 64, 74, 80 and 82. The four pairs listed for lengths
10, 20, 26 above are the only canonical pairs of length less than 100 for which no
conjugate is H-regular. At lengths 8, 16, 20, 26, 32, 40, 52 and 64, all canonical
pairs were found during the searches. Our search at length 80 was restricted to
finding canonical pairs for which no conjugate is H-regular. �

6. The Algorithm

The search program is written in C. A bit vector is used to specify H , using 32
bit integers for lengths n ≤ 64 and 64 bit integers for lengths 64 < n ≤ 128. The
run time, even at n = 100, however, becomes excessive.

Reduction modulo 2. Matrices are set up as bit arrays, each autocorrelation
equation supplying a row bit vector of coefficients of variables vi in V . A set of
matices is composed for each bit of H , corresponding to its contribution to the
set of equations. Using a Gray code for H allows the matrix of coefficients to be
updated by addition of the single set of these matrices corresponding to the bit
change. This matrix is kept separate from the matrix used in the reduction, rows
being transferred in order as required.

The higher order bits in the H-bit vector correspond to the lower index values
h0, h1, h2, . . .. Then, with h0 = h1 = 0, the first nonzero autocorrelation equation
becomes

X0X2 ≡ (1 + h2)v2 ≡ 0 (mod 2).
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The next m − 3 equations introduce the variables h3, h4, . . . , hm−1 successively.
In updating the Gray code, we change the lowest order bit possible, so that the
fewest number of equations are affected. Rows are not interchanged in the matrix
reduction. Instead, a list of the nonzero rows and the pivot variables associated
with each is maintained as a bit vector as the matrix reduction proceeds. Forward
substitution is performed on updated rows as they are introduced.

The lowest order bit in each row vector corresponds to the constant term. In-
consistency in the set of equations is recognized, therefore, by an integer value of
1, and further reduction is abandoned for this H value.

If the row is consistent and nonzero, the pivot variable chosen has the lowest
index. By saving the partial reductions, we are able to begin an updated matrix
reduction at the first equation changed.

An inconsistency in the first m − 2 equations, implies inconsistency for a block
of H values, allowing the Gray code for H to be updated so that these values are
overstepped. This can be incorporated into the algorithm, but, in practice, this
does not seem to occur. Specifying that the first i for which vi = 0 (the first Q)
has hi = 0, does bring about such economies.

When a bit in the Gray code is changed, setting a value for an entry hi, we want
to be able to solve for each value v1, v2, . . . , vm−1 as soon as this is possible. This
requires updating a set of back substitution matrices for each equation. We look
for a solved string v1, v2, . . . , vj for which vj is the first 0. If hj is set at 0, the
system is inconsistent. If this occurs in the first m− 2 equations, it means that the
beginning entries in H are inconsistent, down to the entry introduced for the first
time at this equation. This means inconsistency for a block of H values and the
Gray code is updated accordingly.

Back substitution is performed after all equations are reduced. After the free
variables are isolated, each set of their possible values will provide a solution in this
reduction.

Solutions where 4 - n. The program runs most smoothly for lengths not divisible
by 4. In these cases, the number of solutions to this first linear system is quite
small, with no free variables being found:

n # of solutions
to 1st system

10 2
26 9
34 11
50 14
58 32
74 43
82 38

There are two patterns recurring in the solutions at each of these lengths, namely,

H = [0, 0, 0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 1],

V = [1, 1, 1, 0, 1, 1, 1, 0, . . . , 1, 1, 1, 0, 0]
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and

H = [0, 0, 1, 1, 0, 0, 1, 1, . . . , 0, 0, 1, 1, 0],

V = [1, 0, 0, 1, 1, 0, 0, 1, . . . , 1, 0, 0, 1, 0].

Both yield Golay pairs at n = 10. The first yields a solution at n = 26.

Solutions where 4|n. We find that this first linear system:
(1) always has a solution when h2i = h2i+1, 0 ≤ i ≤ m/2− 1,
(2) has m

2 − 1 free variables when H corresponds to an H-regular pair.
From (1), the number of solutions is exponential in the length n. For most

of these, the corresponding pair or a conjugate pair is H-regular. From (2), the
number of solutions passing to the second stage, for any H having such a regular
pattern, is exponential in the length n.

In these cases, however, any complete solution is derivable from a solution at half
the length. We can treat these cases separately and include them in the search. In
particular, if there is no solution at half the length, there is no need to include these
cases at all. This is true for lengths 68 and 100, allowing for considerable efficiency
to be included in the search at these lengths.

Reduction modulo 4. From XiXj = sisj |XiXj |, we have

XiXj ≡ (si + sj − 1) |XiXj | ≡ (2bi + 2bj) |XiXj |+ |XiXj| ,
XiX

∗
j ≡ (2bi + 2bj)

∣∣XiX
∗
j

∣∣+
∣∣XiX

∗
j

∣∣ ,
(mod 4). The solution of the first system sets the values of each XiXj and XiX

∗
j

up to sign, with the number of nonzero values being even in each autocorrelation
equation. We may therefore divide each of these equations by 2 to produce another
linear system molulo 2, which may be reduced as before. Solutions from the first
reduction often lead to inconsistencies at this next stage, or the number of free
variables is very small, so that all cases may be tested to see if they yield Golay
pairs. For the two patterns listed above where 4 - n and in other cases where
4|n, the number of free variables is linear in n. At n = 82, the numbers of free
variables are 13 and 18, respectively; there is still no problem in the substitution
of S values for all 213 and 218 cases. However, a more careful analysis reveals
the relations between the signs to be quite simple. Substituting these followed by
further reductions leads to an explicit solution for signs but no Golay pair for the
first pattern and an inconsistency for the second pattern.

7. Search results

The result of our searches is summarized in the following table. For all lengths
other than 1, 2, 4, and 80, complete lists of canonical pairs were compiled
by the search program. The total numbers of pairs agree exactly with those ob-
tained by compositions from the primitive pairs. At length 80, the search was
restricted to canonical pairs for which no conjugate is H-regular. The total number
of pairs is that determined by composition from the two primitive pairs at length
10 and the single primitive pair of length 20. (The superscript s indicates work
done at SFU.)
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Length # of pairs Equivalence Primitive
classes pairs

1 4 1 1
2 8 1 0
4 32 1 0
8 192 5 0
10 128 2 2
16 1536 36 0
20 1088 25 1
26 64 1 1
32 15, 360 336 0
34 0 0 0
40 9728 220 0
50 0 0 0
52 512s 12s 0s

58 0 0 0
64 184, 320s 3840s 0s

68 0 0 0
74 0s 0s 0s

80 102, 912s ? 0s

82 0s 0s 0s

Running times. Following is a list of running times drawn from the literature
and from our own experiments showing the evolution from the first searches to our
present work:

Length Time Year Reference
26 75 hrs. 1962 Jauregui [10]

26 1 min. 1977 Andres [1], [2],
58 4 mos.? U. Manitoba

32 8 min. 1995 Djokovic [4],
40 35 hrs. U. Waterloo

40 5 sec. 2001 SFU
58 6 min.
74 1 day
82 2 wks.

8. Final notes

A partial search was conducted at n = 100, finding 96 canonical pairs at three
separateH values. A total number of 128, matching the value suggested by previous
authors using theoretical considerations, seems likely. Each has 64 conjugates. The
recurring patterns indicated have been tested for lengths of the form 2p (prime
p ≡ 1 (mod 4)) up to n = 500. The further reductions outlined for length 82 were
repeated with the same results—the first pattern has an explicit solution for signs
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yielding no Golay pair; the second has no solution for signs. The exact equations
leading to failures are predictable.

The likelihood of finding new primitive pairs becomes more remote. Can more re-
strictions be identified? Complete searches using present methods for some lengths
over 100 should soon be possible. Further improvements in the method may be
found.

The theory of composition can be further developed. An extension of the method
used for lengths of the form 2kn should lead to closed forms for numbers of Golay
pairs at other length combinations.

The method of repeated reductions modulo 2 and 4 may apply well in other
problems where variables take only ±1 values.
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