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LOCAL RESULTS FOR THE GAUSS-NEWTON METHOD
ON CONSTRAINED RANK-DEFICIENT

NONLINEAR LEAST SQUARES

JERRY ERIKSSON AND MÅRTEN E. GULLIKSSON

Abstract. A nonlinear least squares problem with nonlinear constraints may
be ill posed or even rank-deficient in two ways. Considering the problem
formulated as minx 1/2‖f2(x)‖22 subject to the constraints f1(x) = 0, the
Jacobian J1 = ∂f1/∂x and/or the Jacobian J = ∂f/∂x, f = [f1; f2], may be
ill conditioned at the solution.

We analyze the important special case when J1 and/or J do not have full
rank at the solution. In order to solve such a problem, we formulate a nonlinear
least norm problem. Next we describe a truncated Gauss-Newton method. We
show that the local convergence rate is determined by the maximum of three
independent Rayleigh quotients related to three different spaces in Rn.

Another way of solving an ill-posed nonlinear least squares problem is to
regularize the problem with some parameter that is reduced as the iterates
converge to the minimum. Our approach is a Tikhonov based local linear
regularization that converges to a minimum norm problem. This approach
may be used both for almost and rank-deficient Jacobians.

Finally we present computational tests on constructed problems verifying
the local analysis.

1. Introduction

A difficult problem when solving nonlinear least squares problems with nonlinear
constraints is when the Jacobians involved become ill conditioned. This may be the
case at an iteration point when the Gauss-Newton method is used. Different sta-
bility strategies have been developed in order to get a well-defined search direction
at the same time achieving global convergence with a fast local convergence rate.
Two important ways to stabilize a Gauss-Newton method is subspace minimization
and Levenberg-Marquardt techniques; see [13] and [14]. However, these kinds of
stabilization require quite a lot of technical details both in theory and implementa-
tion. Moreover, these techniques are not directly applicable to problems where the
Jacobians are ill-conditioned or rank-deficient at the solution point.

In this paper we want to initialize another approach aiming to regularize the
original problem and develop Gauss-Newton based methods that can solve ill-
conditioned constrained problems. For the unconstrained case see [5]. It is natural
to start with the case where the Jacobians are rank-deficient in a neighbourhood
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of the solution. Thus, the analysis will be local. The methods we will consider are
a truncated Gauss-Newton method and a locally defined Tikhonov method. How-
ever, our final goal is to construct a Gauss-Newton method on a suitable regularized
problem that can solve almost any kind of ill-conditioned problem.

Examples of rank-deficient problems are underdetermined problems [16], non-
linear regression problems [1], nonlinear total least squares problems [12], and
artificial neural networks [6]. Note that all these problems may have nonlinear
(rank-deficient) constraints. Another equally important reason for looking at rank-
deficient problems is the connection with regularization [10].

Our analysis, in the linear case, can partly be found in [18], [19], [11], [3], [4],
[10] but is treated here in a way that fits a nonlinear setting. The local results
for the rank-deficient constrained nonlinear least squares problem are, to our best
knowledge, new but build on earlier work in [13], [20], [9], [5], [8].

1.1. Outline of the paper. The paper is structured as follows. First we briefly
motivate and formulate the least norm problems that are relevant for solving rank-
deficient problems.

In Section 3 we linearize the minimization problem and make the local con-
vergence analysis. This analysis is divided in two parts where we first derive the
asymptotic convergence rate and then perform a more complex local analysis. The
results from these two approaches reveal different aspects of the local behavior of
the truncated method.

The Tikhonov regularization is introduced in Section 4. In this section we begin
by describing the unconstrained regularization to show that the constrained case is
quite different. Then we conclude that a straightforward use of penalty techniques
together with Tikhonov regularization of the Jacobian is not adequate when the
constraints are rank-deficient at the solution. Therefore, we consider a more sophis-
ticated use of the linearized problem attaining a Tikhonov regularization method
that gives well-defined estimates of the Lagrange parameters.

We have chosen to use artificial test problems when performing the computa-
tional experiments as described in Section 5. Thus, we are able to verify the results
from the local convergence analysis.

Finally, we make some conclusions and describe the problems to be solved in
order to attain a complete globally convergent optimization method.

2. Reformulating the problems

2.1. The need for a reformulation. We will formulate a problem that can be
used to solve constrained problems that are rank-deficient at the solution. However,
let us for the sake of clarity first consider the unconstrained least squares problem

(1) min
x

1
2
‖f(x)‖22 = F (x),

where f : Rn → Rm is at least twice continuously differentiable and ‖ · ‖2 is the
2-norm. The first order KKT-condition for (1) is

(2) ∇xF = JT f = 0,

where J = ∂f/∂x is the Jacobian of f . A solution x̂ to (2) will be called a critical
point. The following theorem characterizes a problem that has a rank-deficient
Jacobian in a neighborhood of a critical point. The proof of the theorem can be
found in [5].
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Theorem 2.1. Let x̂ be a critical point and let the rank of J be equal to r < n in
a neighborhood of x̂. Then ∇2

xxF (x̂) is a matrix of rank r < n with its nullspace
containing the nullspace of J(x̂).

We may conclude that having J rank-deficient makes (1) an ill-posed problem
in the sense that (2) does not have a unique solution (but a local minimum to (1)
may exist though). Therefore, a reformulation of the problem is needed.

Consider now the nonlinear least squares problem with nonlinear constraints.
We formulate this problem as

min
x

1
2
‖f2(x)‖22(3)

s.t. f1(x) = 0,(4)

where f1 : Rn → Rm1 , f2 : Rn → Rm2 with, for the sake of simplicity, n ≤ m =
m1 + m2. For notational convenience we define f = [f1; f2], J = [J1; J2] = ∂f/∂x
with Ji = ∂fi/∂x, i = 1, 2. The first order KKT-conditions for this problem read

(5) JT2 f2 + JT1 λ1 = 0, f1 = 0.

We will call a solution to (5) a critical point. We assume that rank(J) = r ≤ n and
rank(J1) = s ≤ m1 in a neighborhood of the critical point of interest.

It is easy to state the KKT-conditions when J, J1 both have full rank in a neigh-
borhood of the solution. If either J or J1 is not of full rank at a critical point, we
say that the problem is rank-deficient (or ill posed). We will motivate this state-
ment further before going into the different problem reformulations. It is natural
to consider the constrained problem (3–4) ill posed if (5) does not have a locally
unique solution. This will be the case if the matrix

(6) K =
[
∇2
xxL JT1
J1 0

]
, ∇2

xxL = JT2 J2 + λT1 � f ′′1 + fT2 � f ′′2

is singular. Here we have introduced the operator � defined as

yT � g′′ =
m∑
j=1

yjg
′′
j

for y ∈ Rm and g : Rn → Rm a twice continuously differentiable function. We have
the following lemma from [8].

Lemma 2.1. Define PN (J1) as the projection on the nullspace of the Jacobian of
f1, J1. The matrix K in (6) is singular if and only if JT1 or PN (J1)∇2

xxLPN (J1) is
rank-deficient.

We will assume that m1 < r. This assumption may be regarded as a constraint
qualification when J is rank-deficient and seems not to be a severe restriction in
practice. The assumption is implicitly used in the following theorem also from [8].

Theorem 2.2. Assume that J is rank-deficient in a neighborhood of a critical
point. Then ∇2

xxL in (6) is singular with N (J) ⊂ N (∇2
xxL) and R(∇2

xxL) =
R(JT ). Moreover, PN (J1)∇2

xxLPN (J1) (and thus K) is singular with a nullspace
in N (J1) ∩ N (J).

Theorem 2.2 makes it clear that J or J1 rank-deficient in a neighborhood of a
critical point gives an ill-posed problem.
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2.2. Reformulation to minimum norm problems. Now we turn to the ques-
tion of reformulating our problems and start with the unconstrained problem. In
the unconstrained case it is natural to find the minimum norm solution when J is
rank-deficient since it is of interest that the solution is of reasonable size with a
residual as small as possible. Therefore, we may use the minimum norm problem

min
x

1
2
‖x− xc‖22(7)

s.t. min
x

1
2
‖f(x)‖22(8)

as a regularized version of (1). The center xc is chosen from a priori information
and should ideally be an approximation of the solution.

One possible extension of (7–8) to the constrained problem when only J is rank-
deficient is to consider

min
x

1
2
‖x− xc‖22(9)

s.t. min
x

1
2
‖f2(x)‖22(10)

s.t. f1(x) = 0.(11)

Problem (9–11) is to be understood as minimizing ‖x − xc‖2 where x is in the
solution set of problem (3). If in addition the constraints are ill posed in the sense
that J1 is rank-deficient in a neighborhood of a critical point, we formulate the
problem as

min
x

1
2
‖x− xc‖22(12)

s.t. min
x

1
2
‖f2(x)‖22(13)

s.t. min
x

1
2
‖f1(x)‖22.(14)

Again these three minimization problems are to be thought of as finding the min-
imum distance to xc subject to x being in the solution set of the two inner mini-
mization problems.

3. A truncated Gauss-Newton method

A locally defined truncated Gauss-Newton method for (12–14) is attained if we
linearize f1, f2, and x around the current iterate xk; i.e., at iteration k we solve the
linearized problem

min
p

1
2
‖p+ xk − xc‖22(15)

s.t. min
p

1
2
‖J2(xk)p+ f2(xk)‖22(16)

s.t. min
p

1
2
‖J1(xk)p+ f1(xk)‖22,(17)

where xc is chosen by the user and xc = 0 if no a priori information is known.
In this section we will analyze the local convergence when (15–17) is used for

attaining the new approximation xk+1 = xk+pk where pk is the solution of (15–17).
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We will do this analysis in two different ways since the two approaches will show
different aspects of the method. First we use the formulation used in Section 3.1
and derive expressions for the local asymptotic convergence rate by differentiation.
Secondly, we use the perturbation theory in [19] and attain estimates for the local
convergence with a remainder term.

3.1. A solution based on projections and pseudoinverses. In this section we
derive a solution of (15–17) by using pseudo inverses of J and J1. The solution will
then be used in an asymptotic convergence analysis.

Let us simplify (15–17) by skipping the arguments and indices giving

min
p

1
2
‖p− pc‖22(18)

s.t. min
p

1
2
‖J2p+ f2‖22(19)

s.t. min
p

1
2
‖J1p+ f1‖22,(20)

where pc = 0 is one possible choice.
The solution to (20) is given by p = −J+

1 f1 + PN (J1)p1, where PN (J1) is the
orthogonal projection onto the null space of J1. When we substitute this into (19),
the second minimization problem in (18) gives

p1 = (J2PN (J1))+(J2J
+
1 f1 − f2) + PN (J2)p2.

Since pc = PN (J)pc + PR(JT )pc and N (J) = N (J1) ∩ N (J2), we have

(21) p = −J+
1 f1 + (J2PN (J1))+(J2J

+
1 f1 − f2) + PN (J)pc.

The three terms of p are contained in three orthogonal subspaces R(JT1 ), N (J1) ∩
R(JT ), and N (J), respectively. In Figure 1 we have these three spaces together
with two other important subspaces.

N(J)

R(JT) ∩ N(J1)

R(JT )

N(J1)

R(JT
1 )

Figure 1. Decomposition of Rn.
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3.2. The asymptotic convergence rate. The asymptotic linear convergence rate
is determined by the spectral radius of ∇(x̂+p(x̂)); see [15]. However, we will start
by using differentials to obtain a simple form of d(x + p(x)). Then this result is
easily formulated with differentials and we are able to state and prove our main
theorem in this section.

From (21) we have that the search direction p is composed of three mutually
orthogonal directions as p = p1 + p2 + p3 where

p1 = −J+
1 f1,(22)

p2 = −M+(f2 − J2J
+
1 f1),(23)

p3 = −PN (J)(x− xc),(24)

and we have defined M = J2PN (J1). We will use the following theorem to derive
the differentials at x̂.

Theorem 3.1. If J is differentiable at x and of constant rank in a neighbourhood
of x, then J+ and PN (J) are differentiable at x and the differentials can be written

d(J+) = −J+(dJ)J+ + PN (J)(dJ)T (JJT )+ + (JTJ)+(dJ)TPN (JT )

and
d(PN (J)) = J+dJPN (J) − PN (J)(dJ)TJ+T .

Proof. See [17] and [7]. �
We will study the three last terms of the right-hand side of

(25) d(x+ p(x)) = dx+ d(p1) + d(p2) + d(p3)

separately.
The first of these becomes

(26) d(p1) = −J+
1 J1dx− (JT1 J1)+(dJ1)TPR(JT1 )f1,

since J+
1 f1 = 0 at the solution. The differential of p2 is more complicated. We have

d(p2) = d(p2a) + d(p2b) = −M+d(f2 − J2J
+
1 f1)− d(M+)(f2 − J2J

+
1 f1).

Furthermore,

d(p2a) = −M+(J2dx− d(J2)J+
1 f1 − J2d(J+

1 )f1 − J2J
+
1 J1dx)

= −M+(Mdx− J2d(J+
1 )f1)

= −PR(MT )dx+M+J2d(J+
1 )f1,(27)

where we utilize that J+
1 f1 = 0. Moreover

d(p2b) = d(M+)(f2 − J2J
+
1 f1)

= −M+d(M)M+f2(28)

+ PN (M)d(M)(MMT )+f2(29)

+ (MTM)+d(M)TPN (MT )f2.(30)

The terms (28) and (29) are zero due to the first order KKT-condition. The term
(30) becomes (MTM)+u, where

u = (d(J2)PN (J1))TPN (MT )f2(31)

+ J+
1 (d(J1))PN (J1)J

T
2 f2(32)

+ PN (J1)d(J1)TJ+T
1 JT2 f2.(33)
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The term (32) equals zero since (J2PN (J1))T f2 = 0 at the solution.
The final term in (25) becomes

d((PN (J))(x− xc)) = J+(dJ)(PN (J))(x− xc)(34)

− (PN (J))(dJ)TJ+T (x− xc)(35)
+ PN (J)dx.(36)

Due to the first order conditions, (34) is zero.
To derive the local convergence rates, we will go from differentials to deriva-

tives by d(g(x)) = ∇g(x)dx, where g(x) = x + p(x) and d(J)T f = (f �f ′′)dx.
The following theorem describes fully the asymptotic behaviour of the truncated
method.

Theorem 3.2. Assume that the {pk} are generated by solving (18) and that xk+1 =
xk + pk converges to x̂. Then

lim sup
k→∞

‖xk+1 − x̂‖
‖xk − x̂‖

≤ K

with

(37) K = max{Kf1 ,Kf2 ,Kx},
where

(38) Kf1 = max
v∈R(JT1 )

|vT (f1�f
′′

1 )v|
vTJT1 J1v

,

(39) Kf2 = max
v∈R(MT )

|vT (f2�f
′′

2 + λ1�f
′′

1 )v|
vTJT2 J2v

,

and

(40) Kx = max
v∈N (J)

|vT (γ�f ′′)v|
vT v

.

Proof. First observe that from (25), (26), (27), and (36) it follows that

dx− J+
1 J1dx− PR(MT )dx− PN (J)dx = 0.

The three directions p1, p2, and p3 are mutually orthogonal and can be treated
independently of each other.

From (26) we get ∇(p1) = −J+
1 J1− (JT1 J1)+(f1�f

′′

1 ), and the largest eigenvalue
is given by (38).

The next component ∇(p2) consists of three terms, (31),(33), and (27). The
term (31) implies that ∇(p2b) = (MTM)+(PN (J1)(f2� f

′′

2 ) + PN (J1)(λ1� f
′′

1 )),
where λ1 = J+T

1 JT2 f2.
�

3.3. A local convergence analysis. The asymptotic analysis above does not
give any information about the actual relation between xk+1 − x̂ and xk − x̂ or
the influence of any second order information. In this section we derive other
local results based on perturbation analysis of the linearized problem. We start
by introducing a convenient formulation of the linearized problem and then use a
perturbation analysis in order to state the local convergence results.
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3.3.1. The augmented system. We begin by considering the linearization of (20)
(skipping indices and arguments)

minp∈Rn 1
2‖J2p+ f2‖22

s.t. J1p+ f1 = 0,

where we initially do not assume rank-deficiency. In order to attain a suitable form
of this problem, we introduce the Lagrange function

L(p, λ1) =
1
2
‖J2p+ f2‖22 + λT1 (J1p+ f1).

For a critical point we will have
∂L
∂p

= JT2 (J2p+ f2) + JT1 λ1 = 0,

∂L
∂λ1

= J1p+ f1 = 0,

or if we define r2 = J2p+ f2,

(41)

 0 0 J1

0 I J2

JT1 JT2 0

 λ1

r2

p

 =

 f1

f2

0

 .
Equation (41) is the augmented system for linear least squares (see [2]), and we
formulate this as

(42) Sy = d,

where S and d are given in (41). We call the matrix S the system matrix. It is
easily seen that S is rank-deficient if and only if J1 or J is rank-deficient further
motivating the approach taken.

We now turn to the connection between (42) and the minimization problem (18)
in the case where S may be rank-deficient.

Theorem 3.3. The solution p in the solution of the least norm problem

min
y

1
2
‖y − yc‖22(43)

s.t.min
y

1
2
‖Sy − d‖22,(44)

where yc = [0; 0; pc], is equivalent to the solution of the minimization problem (15–
17). Moreover, the solution of (43)–(44) is given by y = S+d + PN (S)yc, where
PN (S) is the projection on the null space of S.

Proof. First we prove the equivalence between the solution of (15)–(17) and p in
(42). The inner-most minimization problem (17) can be solved by doing a complete
orthogonal transformation of J1 [2]; i.e.,

QT1 J1P1 =
[
L11 0
0 0

]
,

where L11 is lower triangular. If p1 = PT1 p is partitioned into [p11; p12] and QT1 f1 =
[f11; f12], we get p11 = −L−1

11 f11 and p = P11p11 + P12p12. Note that R(P11) =
R(JT1 ) and R(P12) = N (J1). Our second minimization problem (16) becomes a
problem in p12 and looks like

min
p12

1
2
‖J21p11 + J22p12 + f2‖22,
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where we have defined
J2P1 =

[
J21 J22

]
.

Again we can use a complete orthogonal transformation

QT2 J22P2 =
[
L22 0
0 0

]
,

where L22 is lower triangular. By defining

QT2 J21P2 =
[
L21

L31

]
, QT2 f2 =

[
f21

f31

]
, p12 = P2

[
p̄21

p̄22

]
= P21p̄21 + P22p̄22,

we get the problem

min
p̄21

1
2
‖
[
L21

L31

]
p11 +

[
L22

0

]
p̄21 +

[
f21

f31

]
‖22

with the solution p̄21 = −L−1
22 (f21 − L21p11). We rewrite this in a more compact

form as

(45)
[
p11

p̄21

]
=
[
L11 0
L21 L22

]−1 [ −f11

−f21

]
.

Finally we have the outer-most minimization problem that must have a solution in
N (J). Since N (J) = R(P12P22), we get

p = P11p11 + P12P21p̄21 + P12P22P
T
22P

T
12pc

corresponding to p in (21).
Consider now the minimization problem (44) and perform the complete orthog-

onal transformations on J ; i.e.,

[
QT1 0
0 QT2

] [
J1

J2

]
P1

[
Is 0
0 P2

]
=


L11 0 0
0 0 0
L21 L22 0
L31 0 0


and [

QT1 0
0 QT2

] [
f1

f2

]
=


f11

f12

f21

f22

 .
The problem (44) is transformed into

1
2
‖



0 L11 0 0
0 0 0 0

I L21 L22 0
I L31 0 0

LT11 0 LT21 LT31

0 0 LT22 0
0 0 0 0





λ11

λ12

r11

r12

p11

p̄21

p3


−



f11

f12

f21

f22

0
0
0


‖22.

We immediately get r11 = 0 and (45) is attained, again proving the first part of the
theorem.

By substituting z = y − yc, we want to find the minimum norm solution of
min ‖Sz − d + Syc‖2 that is given by z = S+(d − Syc). Therefore, we have y =
S+d+(I−S+S)yc and I−S+S = PN (S) gives the second result in the theorem. �
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3.4. A local convergence analysis using perturbation analysis. Having es-
tablished the connection between the minimization problem and the minimum norm
solution of the augmented system (42), we can use the perturbation analysis in [20]
on (42) to analyze the local convergence behaviour more closely.

Assume that x̂ is a local minimum to our nonlinear problem (12). Write the
pseudoinverse of the system matrix

S =

 0 0 J1

0 I J2

JT1 JT2 0


as (see [20] for details)

S+ =
[
H BT

B −B2B
T
2

]
,

where B = [B1, B2]. The special form −B2B
T
2 of the lower right block in S+ is

attained by looking more closely on S+S; see [20]. By expressing S+ in the normal
form (or any other rank revealing form) (see the proof of Theorem 3.3), it is easy
to show that  λk

rk
pk

 = −S+

[
−fk

0

]
+
[

0
PN (J)(xk − xc)

]
is the solution to (43) and

pk = −Bkfk + PN (Jk)(xk − xc) =
[
−Bk,PN (Jk)

] [ fk
xk − xc

]
=
[
−Bk,PN (Jk)

]
yk

with an obvious definition for yk.
The following lemma will be very useful.

Lemma 3.1. Partition the matrix B in S+ as B = [B1, B2]. Then

[0, B2] = B2B
T
2 J

T , B1 = B1(J+
1 )TJT1 .

Moreover, we have that [
B,PN (J)

] [ J
I

]
= I;

i.e., BJ = PR(JT ).

Proof. Since S+S = I − PN (S), we have H11 H12 BT1
HT

12 H22 BT2
B1 B2 −B2B

T
2

 0 0 J1

0 I J2

JT1 JT2 0

 =

 I − PN (JT1 ) 0 0
0 I 0
0 0 I − PN (J)

 .
Pure identification gives the first and last part of the lemma. From the derivation of
the solution in the linear case we know that B1 = J+

1 −B2J2J
+
1 and since (J1J

+
1 )T

is an orthogonal projection onto R(J1), the second part of the lemma is true. �

Define qk = xk − x̂ as the quantity we are interested in. Using the Taylor
expansion

y(x̂) = y(xk − qk) = yk −
[
Jk
I

]
qk +

[
rk
0

]
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where

rk =
∫ 1

0

(1− τ)

 qTk f
′′
1 (xk − τqk)qk

...
qTk f

′′
m(xk − τqk)qk

 dτ,
we get [

Bk,PN (Jk)

]
ŷ =

[
Bk,PN (Jk)

]
yk − qk +Bkrk.

Rearranging terms, we find that

(46) qk+1 = qk −Bkf̂ + PN (Jk)(x̂− xc) +Bkrk

and we want to relate this to qk. The term PN (Jk)(x̂− xc) has been analyzed in [5]
and we have

PN (Jk)(x̂− xc) = PN (J)(Jk − Ĵ)T ((Ĵ+)T (x̂− xc)).

The remaining part is then Bkf̂ and in order to simplify the notation, we skip the
index k.

Lemma 3.2. If δJ = J − Ĵ , then

Bf̂ = B1(J+
1 )T (δJ)T f̂1 +B2B

T
2

[
(δJ1)T λ̂1 + (δJ2)T f̂2

]
.

Proof. We have

Bf̂ = [B1, B2]f̂ = B1f̂1 + [0, B2]

[
λ̂1

f̂2

]
.

From Lemma 3.1 and ĴT1 f̂1 = 0 we have

B1f̂1 = B1(J+
1 )TJT1 f̂1 = B1(J+

1 )T (δJ1)T f̂1.

In the same way, from Lemma 3.1 and ĴT1 λ̂1 + ĴT2 f̂2 = 0 we find the second term
of Bf̂ in the lemma. �

We immediately get the following theorem describing the local convergence of
our truncated Gauss-Newton method.

Theorem 3.4. Assume that the {pk} are generated by solving (43) or (18) and
that xk+1 = xk +pk converges to x̂. If x̂ is the solution of (12) and λ̂1 is the vector
λ1 from (43) at x̂, then

qk+1 = KGNqk +Bkrk,

where qk = xk − x̂,

KGN = −B1(J+
1 )T (H̄T

1 � f̂1)−B2B
T
2 (H̄T

1 � λ̂1 + H̄T
2 � f̂2) + PN(J)(H̄ � γ̂),

γ̂ = (Ĵ+)T (x̂− xc), and

H̄1 =


∫ 1

0 f
′′
1 (x̂+ τqk)dτ

...∫ 1

0
f ′′p (x̂+ τqk)dτ

 , H̄2 =


∫ 1

0 f
′′
p+1(x̂+ τqk)dτ

...∫ 1

0
f ′′m(x̂+ τqk)dτ


with H̄ = [H̄1; H̄2].
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Proof. The theorem is evident from the earlier discussion if we use the fact that

(Jk − Ĵ)T =
∫ 1

0

[f ′′1 (x̂ + τqk)qk, . . . , f ′′m(x̂+ τqk)qk]dτ.

�

4. Tikhonov regularization

For an unconstrained ill-posed nonlinear least squares problem it is possible to
use the regularized problem

min
x

1
2
‖f(x)‖22 +

1
2
µ2‖x− xc‖22.

If this problem is linearized, a Gauss-Newton method is attained where the search
direction p can be found by solving the linear problem

(47) min
x

1
2
‖Jp+ f‖22 +

1
2
µ2‖p− pc‖22.

The augmented system corresponding to (47) is

(48)
[

I J
−JT µ2I

] [
r
p

]
=
[
−f
µ2pc

]
.

Note the skew symmetric structure of the system matrix. By using the SVD of J ,
it is easy to show that if p(µ) solves (47), then p(0) = limµ→0 p(µ) solves the least
norm problem

minp 1
2‖p− pc‖22

s.t. minp 1
2‖Jp+ f‖22.

In other words, for an exactly rank-deficient matrix J we get the solution to the
corresponding truncated problem and locally a Tikhonov method has exactly the
same properties as a truncated Gauss-Newton method.

Unfortunately, it is not that easy in the constrained case. One possible general-
ization of the Tikhonov regularization in (47) is to consider the penalty problem

min
x

1
2

1
µ2
‖f1(x)‖22 +

1
2
‖f2(x)‖22 +

1
2
µ2‖x− xc‖22.

A Gauss-Newton method based on this formulation gives the weighted linear least
squares problem

(49) min
x

1
2

1
µ2
‖J1p+ f1‖22 +

1
2
‖J2p+ f2‖22 +

1
2
µ2‖p− pc‖22.

The augmented system corresponding to this regularized problem looks like

(50)


1
µ2
I 0 J1

0 I J2

−JT1 −JT2 µ2I


 λ1

r2

p

 =

 f1

f2

µ2pc

 .
We have the following theorem.

Theorem 4.1. Let p(µ) be the solution of (49). Then limµ→0 p(µ) = p(0) where
p(0) is the solution of (18).
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Proof. Consider the augmented system in (50) and make a transformation of J to
the normal form just as in the proof of Theorem 3.3. Then we get

1
µ2
Ip−s L11 0 0

1
µ2
Ip−s 0 0 0

I L21 L22 0
I L31 0 0

−LT11 0 −LT21 −LT31 µ2I
0 0 −LT22 0 µ2I
0 0 0 0 µ2I





λ11

λ12

r11

r12

p11

p̄21

p3


=



−f11

−f12

−f21

−f22

µ2c1
µ2c2
µ2c3


.

If we solve for

(51) λ12 =
1
µ2
f12,

then we are left with a problem whose solution has a well-defined limit. We see
that λ11 tends to the Lagrange parameters for the constraints L11p1 = −f11,
limµ→0 r12 = 0, limµ→0 [p11; p̄21] is the solution to (45), and limµ→0 p3 will be such
that ‖p − pc‖2 is minimized just as for p3 in (18) (compare to the unconstrained
Tikhonov regularized case). �

This looks very promising but the approach seems inappropriate in a Gauss-
Newton method for exactly rank-deficient problems (in the almost rank-deficient
case this form of regularization is quite possible). The reason is very simple. Assume
that we use the weighted problem (49) with a very small µ on a rank-deficient
problem. Then the local convergence rate (see [9]) will be determined by

qk+1 = −BkMBTk (H̄ � λ̂) qk + PN(Jk)(H̄ � γ̂) qk + 1/2Bkrk
where qk = xk − x̂ and the other quantities are defined in Theorem 3.4. Moreover,
[λ1; r2] from (50) will not be a good estimate of the Lagrange parameter λ̂. The
vector λ1 will be very large because λ12 is large in (51) (unless f12 is very small
which is unlikely). Therefore, we cannot generally get convergence with this kind
of method and we will show this in the computational experiments.

There is another way to regularize the linearized problem that will make the
Gauss-Newton method locally convergent. Consider the augmented system (43).
This is no more than the least norm problem to an underdetermined linear system
of equations and it is perfectly adequate, at least from a theoretical point of view,
to use the regularized problem

(52) min
y

1
2
‖Sy − d‖22 +

1
2
µ2‖y − yc‖22,

where yc = [0; 0; pc] in order to correspond to (18). A more interesting formulation
of problem (52) is attained by using the augmented system as a linear least squares
problem, i.e.

min
λ1,r2,p

1
2
‖


0 0 J1

0 I J2

JT1 JT2 0
µI 0 0
0 µI 0
0 0 µI


 λ1

r2

p

+


f1

f2

0
0
0
−µpc

 ‖
2
2.
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It is clearly seen how JT1 and J are regularized quite similarly to the unconstrained
case in (48). We have the following theorem showing that (52) gives the correct
least norm solution.

Theorem 4.2. If y(µ) is the solution to (52), then limµ→0 y(µ) = y(0) where y(0)
is the solution to (43). Moreover, p(0) in y(0) is the solution to (15)–(17).

Proof. It is well known that

lim
µ→0

(STS + µ2I)−1 = S+

and the normal equations for (52) will, in the limit, give the solution y(0) = S+d+
diag(0, 0,PN(J)pc). �

This theorem gives a possibility to construct a Tikhonov method for the nonlinear
problem (12). The local properties as µ → 0+ of the method are the same as for
the truncation method. It is possible to do a more detailed analysis of the local
convergence properties for a small µ > 0 but we will not do this here. Moreover,
there are difficulties concerning efficiency and global convergence that are far from
trivial.

5. Computational experiments

In this section the theoretical results for the three different local approaches pro-
posed will be verified by computational experiments. We will use artificial problems
for which we can determine the local behaviour of the problems.

5.1. Generation of artificial problems. In [8] it is shown that (12) can be
divided into three minimization problems which in turn can be analyzed separately.
The following lemma describes the actual form of f and f1 when we assume that
J and J1 have constant rank in a neighbourhood of the critical point.

Lemma 5.1. Assume that rank(J1) = s ≤ m1 and rank(J) = r ≤ n in a neigh-
bourhood of a critical point to (12). Then there exist functions h1 : Rr → Rm1 ,
h2 : Rr → Rm2 , z : Rn → Rr such that f2(x) = h2(z(x)) and f1(x) = h1(z(x)).
The Jacobians of h = [h1;h2] and z are of full rank in a neighbourhood of a critical
point to the constrained problem (12). Moreover, there exist functions c : Rs → Rp,
d : Rr → Rs, whose Jacobians are of full rank, such that h1(z) = c(d(z)).

Using the lemma, we can formulate the constrained problem (12) as

min
x

1
2
‖x− xc‖22(53)

s.t min
x

1
2
‖h2(z(x))‖22(54)

s.t. min
x

1
2
‖c(d(z(x)))‖22(55)

around any critical point where J1 or J are rank-deficient. Problem (53)–(55) can
be solved at three levels. First we have d̂ as the solution of

(56) min
d

1
2
‖c(d)‖22
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and the inner minimization problem (54) becomes

min
x

1
2
‖h2(z(x))‖22(57)

s.t. d(z(x)) = d̂.(58)

This problem decouples into

min
z

1
2
‖h2(z)‖22(59)

s.t. d(z) = d̂(60)

with a solution ẑ and the final problem is

min
x

1
2
‖x− xc‖22(61)

s.t. z(x) = ẑ.(62)

When constructing a problem with known local properties, it is sufficient to
consider the second order Taylor expansions of h, z, c and d. The functions f1 and
f2 are then attained from the chain rule. We have

z(x̂+ ∆x) = z(x̂) + E∆x+
1
2

 ∆xT z
′′

1 ∆x
...

∆xT z
′′

r ∆x

+ o(‖∆x‖2),(63)

d(ẑ + ∆z) = d(ẑ) +D∆z +
1
2

 ∆zTd
′′

1 ∆z
...

∆zTd
′′

s∆z

+ o(‖∆z‖2),(64)

and

c(d̂+ ∆d) = c(d̂) + C∆d+
1
2

 ∆dT c
′′

1 ∆d
...

∆dT c
′′

p∆d

+ o(‖∆d‖2),(65)

which implies that

d(z(x̂+ ∆x)) = d

z(x̂) + E∆x+
1
2

 ∆xT z
′′

1 ∆x
...

∆xT z
′′

r ∆x




= d(z(x)) +DE∆x+
1
2
D

 ∆xT z
′′

1 ∆x
...

∆xT z
′′

r ∆x



+
1
2

 (E∆x)T d
′′

1 (E∆x)
...

(E∆x)T d
′′

s (E∆x)

 ,
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and

c(d(z(x̂+ ∆x))) = c(d(z(x̂))) + CDE∆x+
1
2
CD

 ∆xT z
′′

1 ∆x
...

∆xT z
′′

r ∆x



+
1
2
C

 (E∆x)T d
′′

1 (E∆x)
...

(E∆x)T d
′′

s (E∆x)

+
1
2

 (E∆x)T c
′′

1 (E∆x)
...

(E∆x)T c
′′

p (E∆x)

 .

We define f1(x) = c(d(z(x))) and get J1 = CDE. In a similar way we can define
f2(x) = h2(z(x)) and J2 = A2E, with h2 ∈ Rq and A2 ∈ Rq×n.

The main advantage of generating artificial test problems is that we create prob-
lems with exactly known local properties. Thus, for the present constrained prob-
lem we can determine the curvatures, Kf1 ,Kf2 and Kx for each problem f1(x) =
c(d(z(x))) and f2(x) = h2(z(x)).

A new test problem is generated by the six steps below. The inputs to the
generator are the problem sizes m1,m2, n, the ranks s, r, and the desired curvatures
Kf1 ,Kf2 , and Kx. The outputs from the generator are the functions f1, f2 and
their first and second derivatives. Since the solution x̂ is generated and known, it
is easy to choose suitable starting points and to measure the convergence rate. The
matrices and vectors are generated randomly in the interval [−1, 1]. The steps 2–4
are for the first order KKT-conditions and the steps 5–6 create second derivatives
such that the second order conditions are fulfilled; see [8].

(1) Generate the Jacobians A ∈ Rm2×r, C ∈ Rm1×s, D ∈ Rs×r and E ∈ Rr×n
giving J1 = CDE and J2 = A2E.

(2) To generate the first order condition JT1 f1 = 0, we choose a residual for
the constraints c such that CT c = 0. This means that c(0) = c in (65) and
that d(0) = d in (64).

(3) To fulfill the second first order condition JT2 f2 + JT1 λ1 = 0, we generate λ1

and f2 such that PR(JT1 )J2
T f2 = −J1

Tλ1 and PN (J1)J2
T f2 = 0.

(4) Generate the center xc and the Lagrange parameter λ. Take x̂ = xc +
STATλ. Thus, z(0) = 0 in (63).

(5) Generate the symmetric second derivates of z, c, d and h.
(6) Solve the generalized eigenvalue problems (38)–(40) and scale the second

derivatives to get the wanted curvatures and the expected convergence rate.

5.2. Test results. We have made a test with m2 = 16,m1 = 4, s = 2, r = 5, n = 7
and Kf1 = 0.3, Kf2 = 0.1, and Kx = 0.2. Thus, K = 0.3 and we can expect a linear
convergence rate equal to 0.3. The actual convergence rate is computed as

% =
‖xk+1 − x̂‖2
‖xk − x̂‖2

during the iterations.
The results for the truncated method are given in Table 1. It is apparent that

the method behaves as predicted by our analysis. There is no problem with local
convergence and all three separate directions, p1, p2, p3, decrease almost equally
fast. For this test problem the actual convergence rate becomes almost identical to
the predicted one (0.3).
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Table 1. This table gives the results for the truncated method.
The three leftmost columns show how the norm of the steps de-
creases towards zero. The fourth and fifth columns verify that the
iterates go to the correct solution and that the actual convergence
rate tends to the predicted rate, respectively.

‖p1‖ ‖p2‖ ‖p3‖ ‖x− x̂‖ %
3.3486e-05 8.1224e-05 7.4975e-06 8.3818e-05 2.7051e-05
1.0040e-05 1.1180e-04 6.1877e-06 2.9516e-05 3.5214e-01
3.0107e-06 3.7127e-05 8.4157e-06 8.6793e-06 2.9406e-01
9.0302e-07 1.0960e-05 2.6591e-06 2.6351e-06 3.0360e-01
2.7086e-07 3.3173e-06 7.9964e-07 7.8795e-07 2.9902e-01
8.1250e-08 9.9267e-07 2.4036e-07 2.3663e-07 3.0031e-01
2.4373e-08 2.9803e-07 7.2081e-08 7.0956e-08 2.9986e-01
7.3116e-09 8.9374e-08 2.1623e-08 2.1287e-08 3.0000e-01

Table 2. The results for the Tikhonov method based on (49). At
the beginning of the iterations the method seems to converge but
then it diverges.

‖λ− λ̂‖ ‖f − f̂‖ ‖PTN(J)(x−xc)‖
‖(x−xc)‖ % µ

2.3990e+00 3.2572e-03 1.3375e-01 1.5334e+00 2.5000e-02
4.3825e+00 2.2501e-01 7.1319e-02 7.8218e-01 6.2500e-03
1.6212e+00 3.7991e-02 1.2255e-01 1.2159e+00 1.5625e-03
4.4842e-01 2.6574e-03 9.5353e-02 8.1887e-01 3.9063e-04
2.4020e-01 1.6006e-04 4.2653e-02 9.6258e-01 9.7656e-05
4.5417e-03 4.8893e-06 5.2934e-02 9.7717e-01 2.4414e-05
1.0010e-02 4.7836e-08 8.9964e-02 9.9082e-01 6.1035e-06
1.9429e-02 2.6003e-06 1.6048e-01 9.4481e-01 1.5259e-06

The next test is performed using the Tikhonov method based on (49) where we
choose µk+1 = µk/4. The information from the iterations is shown in Table 2. As
the theory reveals, it is not possible to get convergence, although there is some
progress for a few iterations.

The next method to test is the modified Tikhonov method described in the end
of Section 4; see (52). Now the convergence is much better, as shown in Table 3.
The method converges with the actual convergence rate not far from the theoretical.
However, the way of decreasing µ is not obvious. It is certainly possible to decrease
µ so that an even greater agreement with the theory is achieved.

Finally, we have tested the truncated method for a larger problem using the
dimensions m2 = 300,m1 = 200, s = 20, r = 80, and n = 100. The problem
generated has the same curvatures as in the previous tests. Thus K = 0.3, and
we can expect a linear convergence rate equal to 0.3. As is shown in Table 4, the
method converges with a rate rather close to the expected. Since this problem is
larger, more iteration steps are required to get a rate very close to 0.3. This test
shows that our proposed truncated method is able to solve medium-size problems
efficiently and also large problems if sufficient computing resources are available.



1882 JERRY ERIKSSON AND M. E. GULLIKSSON

Table 3. The results using (52). The method converges with a
rate close to the predicted.

‖λ− λ̂‖ ‖f − f̂‖ ‖PN(J)(x−xc)‖
‖(x−xc)‖ % µ

7.2191e-01 3.0416e-03 2.3702e-03 8.1085e-02 2.5000e-02
4.7359e-01 2.9494e-03 1.8117e-02 9.0462e-01 6.2500e-03
1.5348e-01 2.3147e-04 2.1066e-02 1.2731e-01 1.5625e-03
3.7197e-02 2.1237e-05 3.9038e-03 5.9200e-01 3.9063e-04
4.5656e-03 9.4829e-07 4.1990e-04 1.4707e-01 9.7656e-05
2.0869e-03 8.0415e-08 5.6042e-04 3.8261e-01 2.4414e-05
5.3742e-04 7.1754e-09 4.4660e-05 2.6717e-01 6.1035e-06
1.7114e-04 6.4529e-10 3.4224e-05 3.0841e-01 1.5259e-06

Table 4. The results using the truncated method for a larger problem.

‖λ− λ̂‖ ‖f − f̂‖ ‖PN(J)(x−xc)‖
‖(x−xc)‖ % µ

5.6141e-06 1.1475e-05 9.6687e-06 6.9204e-06 3.1833e-01
1.7514e-06 4.1997e-06 2.4801e-06 1.8938e-06 2.7366e-01
4.9831e-07 9.9228e-07 7.2683e-07 5.9346e-07 3.1336e-01
1.5484e-07 3.4532e-07 1.9981e-07 1.6924e-07 2.8518e-01
4.5084e-08 9.0651e-08 5.9999e-08 5.2195e-08 3.0840e-01
1.3820e-08 2.9808e-08 1.7203e-08 1.5206e-08 2.9134e-01
4.0767e-09 8.2799e-09 5.1782e-09 4.6413e-09 3.0322e-01
1.2385e-09 2.6265e-09 1.5166e-09 1.3681e-09 2.9778e-01

6. Conclusions and future work

We have considered local properties for the Gauss-Newton method on rank-
deficient nonlinear least squares problems with rank-deficient nonlinear constraints.

The local convergence properties for a truncated Gauss-Newton method is well
understood. It seems quite possible to construct a Gauss-Newton method that has
global convergence as well as fast local convergence.

The Tikhonov regularization based on the least norm problem for the augmented
system may be used for rank-deficient problems. Moreover, this approach seems
suitable also in the case of an ill-posed problem where the Jacobians are almost (not
exactly) rank-deficient. Exciting future work could be to explore this Tikhonov
regularization. In the unconstrained case it is necessary to have a clear gap in
the singular values in order to be able to analyze the problem properly. A similar
assumption is most probably needed in the constrained case even if the matter is
more complex. Other important and difficult questions to be answered are the
choice of regularization parameter, merit function and an efficient solution of the
linear least squares problem (52).
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17. P.-Å. Wedin, Perburbation theory for pseudo-inverses, BIT 13 (1973), 217–232. MR 49:1755
18. , Notes on the constrained linear least squares problem. A new approach based on

generalized inverses, Technical Report UMINF 75.79, Inst. of Info. Proc., Univ. of Ume̊a,
1979.

19. , Perturbation theory and condition numbers for generalized and constrained linear
least squares problems, Tech. Report UMINF 125.85, Inst. of Info. Proc., Univ. of Ume̊a,
Ume̊a, Sweden, 1985.

20. , On the use of a quadratic merit function for constrained nonlinear least squares,
Tech. report, Inst. of Info. Proc., Univ. of Ume̊a, Ume̊a, Sweden, 1987.

Department of Computing Science, Ume̊a, Sweden

E-mail address: jerry@cs.umu.se

Department of Engineering, Physics, and Mathematics, Mid-Sweden University,

Sundsvall, Sweden

E-mail address: marten@fmi.mh.se

http://www.ams.org/mathscinet-getitem?mr=57:14541
http://www.ams.org/mathscinet-getitem?mr=84g:65048
http://www.ams.org/mathscinet-getitem?mr=49:1753
http://www.ams.org/mathscinet-getitem?mr=99m:93057
http://www.ams.org/mathscinet-getitem?mr=97m:90063
http://www.ams.org/mathscinet-getitem?mr=99a:65037
http://www.ams.org/mathscinet-getitem?mr=51:2270
http://www.ams.org/mathscinet-getitem?mr=93b:65001
http://www.ams.org/mathscinet-getitem?mr=58:3446
http://www.ams.org/mathscinet-getitem?mr=42:8686
http://www.ams.org/mathscinet-getitem?mr=91h:65086
http://www.ams.org/mathscinet-getitem?mr=49:1755

	1. Introduction
	1.1. Outline of the paper

	2. Reformulating the problems
	2.1. The need for a reformulation
	2.2. Reformulation to minimum norm problems

	3. A truncated Gauss-Newton method
	3.1. A solution based on projections and pseudoinverses
	3.2. The asymptotic convergence rate
	3.3. A local convergence analysis
	3.4. A local convergence analysis using perturbation analysis

	4. Tikhonov regularization
	5. Computational experiments
	5.1. Generation of artificial problems
	5.2. Test results

	6. Conclusions and future work
	References

