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A LOCKING-FREE
REISSNER-MINDLIN QUADRILATERAL ELEMENT

HUO-YUAN DUAN AND GUO-PING LIANG

Abstract. On arbitrary regular quadrilaterals, a new finite element method
for the Reissner-Mindlin plate is proposed, where both transverse displacement
and rotation are approximated by isoparametric bilinear elements, with local
bubbles enriching rotation, and a local reduction operator is applied to the
shear energy term. This new method gives optimal error bounds, uniform in
the thickness of the plate, for both transverse displacement and rotation with
respect to H1 and L2 norms.

1. Introduction

The Reissner-Mindlin plate bending model describes the deflection of a plate
with small to moderate thickness subject to a transverse load and allows the use of
simple C0 approximations for both transverse displacement and rotation.

However, the standard finite element method for the Reissner-Mindlin plate may
suffer from the so-called shear locking phenomenon when the thickness of the plate
goes to zero. Roughly, when the thickness becomes relatively small, the shear energy
term imposes the Kirchhoff constraint, resulting in almost zero displacements; cf.
[19], [14], [8]. Therefore, how to design locking-free elements has been and still
remains an active research subject, and a lot of elements have been proposed and
good results have been reported, where the general approach to avoid the shear-
locking phenomenon is to introduce a reduction operator into the shear energy
term; cf. [3], [5], [1], [6], [7], [10]–[17], [22]–[30], [35], [38]–[40], etc.

The MITC4 (Bathe-Dvorkin) element is such an element, and shows superior
performance; cf. [1], [29], [20]. However, only for a very restricted class of meshes,
this element and its stabilized variants were shown to be suboptimally or optimally
convergent, uniformly with respect to the plate thickness; see [2], [32], [3], [4].
These restrictions on meshes are similar to those on Q1−Q0 element for the Stokes
equation (cf. [31], [8], [34]) and those on the nonconforming quadrilateral Wilson
element (cf. [21]). In general, all these elements do not yield good approximations
on arbitrary regular quadrilaterals.

The purpose of this paper is to propose a new quadrilateral finite element method
for the Reissner-Mindlin plate, where both transverse displacement and rotation
are approximated by isoparametric bilinear elements, with local bubbles enriching
the rotation, and the shear stress is obtained by a local reduction operator onto
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a discontinuous quadrilateral variant of the rotated lowest-order Raviart-Thomas
rectangular element (cf. [8]).

This new method can accommodate arbitrary regular quadrilaterals in the usual
sense (cf. [18]), benefitting from the quadrilateral variant constructed by [40], [33]
of the rectangular Raviart-Thomas element of lowest order.

This new method may be viewed as a generalization of the MITC4 element, since
the reduction operator is a combination of the local interpolation operator Πh for
H0(curl; Ω) and the local L2 projection operator Π0

h, where Πh is applied to the
bilinear part of the rotation and Π0

h is applied to the bubble part of the rotation. As
a whole, the shear stress is discontinuous, in contrast with the tangential continuity
in the MITC4 element.

Following a general argument by [3] and a simplified version by [5], we show that
this new method gives optimal convergence in H1-norm for transverse displacement
and rotation, uniform in the thickness of the plate. Therefore, this new method is
locking-free.

Moreover, following the classical Aubin-Nitsche duality argument, we obtain the
uniform optimal L2 error bounds for both transverse displacement and rotation,
with the help of the Helmholtz-decomposition for the space (L2(Ω))2.

As far as we know, the general proof to show the L2 error bounds for the MITC4
element has been missing for many years. The main difficulty lies in how to estimate
the inconsistency term. For the MITC3 triangular element [3], [29], an approach
was given in [37]. Regarding higher-order MITC elements, the proof is basically
trivial (see [7], [15], [35]). However, the argument in [37], [7], [15], [35] cannot be
applied to the lowest-order rectangular or quadrilateral Reissner-Mindlin elements
such as the MITC4 element and its stabilized variants.

The argument we have developed for the new method of this paper is also valid
for the MITC4 element and its stabilized variants. Our argument benefits from a
local linked interpolation ([25], [26], mathematically analyzed by [38], [39]) which
helps us to establish a special Helmholtz-decomposition. Consequently, we can
bound the inconsistency term (q, β̃ −Πh β̃) by O(h2).

The rest of this paper is organized as follows. In Section 2 we recall the Reissner-
Mindlin plate model and the MITC4 element and the quadrilateral variant of the
rectangular Raviart-Thomas element of lowest order. Section 3 is concerned with
the new finite element approximation. In Section 4, we obtain error bounds in
H1-norm. In the last section, we obtain the L2 error bounds.

Throughout this paper, the letter C is a generic positive constant which is inde-
pendent of the plate-thickness t and the parameter h of the triangulation.

2. Preliminaries

2.1. The Reissner-Mindlin plate model. Let Ω be the region occupied by the
plate. Let w and φ denote the transverse displacement of Ω and the rotation of
fibers normal to Ω. Assuming a clamped boundary condition, the Reissner-Mindlin
plate model ([8], [23]) is to find (w, φ) ∈ H1

0 (Ω)× (H1
0 (Ω))2 such that

(2.1) a(φ, ψ) + (q,5 v − ψ) = (f, v)

and

(2.2) q = λ t−2 (5w − φ) ∈ H0(curl; Ω)
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for all (v, ψ) ∈ H1
0 (Ω) × (H1

0 (Ω))2, where q is known as the shear stress, f is the
transverse load, t is the thickness of the plate, λ = Eκ/2(1+ν) is the shear modulus
with E the Young’s modulus, ν the Poisson ratio, and κ the shear correction factor.
a(φ, ψ) is a coercive bilinear form, defined by

a(φ, ψ) =
E

12(1− ν2)

∫
Ω

(1 − ν) ε(φ) : ε(ψ) + ν div φ div ψ

with ε(φ) = (5φ+5φT )/2 the linear strain tensor,

(2.3) H0(curl; Ω) = {s ∈ (L2(Ω))2; curl s ∈ L2(Ω), s · τ|∂Ω = 0},

where τ is the unit tangent to the boundary.

Remark 2.1. When t goes to zero, the Reissner-Mindlin plate degenerates into the
classical Kirchhoff-Love model, the solution (w0, φ0) of which satisfies the well-
known Kirchhoff constraint (cf. [14], [8])

(2.4) 5w0 = φ0.

In the standard displacement-based linear finite element method, for small but
nonvanishing t, the shear energy term will force the approximations (wh, φh) to
nearly satisfy the Kirchhoff constraint, implying that (wh, φh) is nearly zero. This
purely numerical phenomenon is known as shear-locking.

2.2. The MITC4 element. Let Ω be a convex polygon, and let Th be a trian-
gulation of Ω into rectangles. Let S(K) := RT[0](K) be the rotated lowest-order
Raviart-Thomas rectangular element (cf. [8]), and letQ1(K) be the space of bilinear
polynomials.

Then, the MITC4 element is defined as follows (cf. [1], [2], [29]):

Sh = {s ∈ H0(curl; Ω); s|K ∈ S(K), ∀K ∈ Th},(2.5)

Wh = {v ∈ H1
0 (Ω); v|K ∈ Q1(K), ∀K ∈ Th},(2.6)

Hh = (Wh)2.(2.7)

Introduce the standard interpolation operator Πh : χ ∈ H0(curl; Ω) ∩ (H1(Ω))2

→ Πh χ ∈ Sh as follows:

(2.8)
∫
e

(Πh χ− χ) · τe = 0, ∀ edge e,

where τe is the unit tangent to edge e. The MITC4 finite element method is to find
(wh, φh) ∈Wh ×Hh such that

(2.9) a(φh, ψ) + (qh,5 v − ψ) = (f, v)

and

(2.10) qh = λ t−2 (5wh −Πh φh) ∈ Sh

for all (v, ψ) ∈Wh ×Hh.

Remark 2.2. When the family of meshes {Th} is obtained by uniform refinement of
a starting rectangular mesh in such a way that at each step every element is divided
uniformly in sixteen rectangles, [3] obtained a uniform error bound O(h1/2), where
φ is required to be in (H5/2(Ω))2.
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For quadrilaterals, in addition to the above similar assumption, assuming that
the distance between the midpoints of two diagonals of each quadrilateral K ∈ Th
is not greater than a constant multiple of h2

K (hK is the diameter of K), [4], [22],
[35] proposed stabilized variants of (2.9) and (2.10) and obtained a uniform optimal
error bound O(h). However, in these papers, the L2 error bounds are not available
for both transverse displacement and rotation.

2.3. A quadrilateral variant of RT[0]. Recently, [40], [33] proposed a variant
of the lowest-order Raviart-Thomas rectangular element RT[0]. This variant can
accommodate arbitrary regular quadrilaterals and satisfies the well-known property
of commuting diagrams.

Let Th be the regular triangulation of Ω into convex quadrilaterals; cf. [18].
FK : K̂ = [−1, 1] × [−1, 1] → K is the standard invertible mapping, with inverse
F−1
K , where K̂ is the reference square in the ξη-plane.
The rotated version of the quadrilateral flux element constructed by [40], [33] is

as follows:

(2.11) DL(K) = span{(1, 0)T , (0, 1)T , (−y, x)T ,5 (N1 ◦ F−1
K )},

where N1 = (1 + ξ)(1 + η)/4 is one of local base functions of the isoparametric
bilinear space Q1(K), and the degrees of freedom for DL(K) are the moments on
the edges of the tangential components.

Similar to (2.8), with S(K) := DL(K), define Πh as

(2.12)
∫
e

(Πh χ− χ) · τe = 0, ∀ edge e ∈ ∂K, ∀K ∈ Th.

We have the interpolation property

(2.13) ||χ−Πh χ||0 ≤ C h |χ|1

and we have the property of commuting diagrams

(2.14) curl Πh χ = Ph curl χ,

where Ph is the standard local L2 orthogonal projection operator onto Mh = {v ∈
L2(Ω); v|K ∈ P0(K), ∀K ∈ Th}, with P0(K) the space of constants.

Remark 2.3. Note that other quadrilateral variants do not satisfy (2.14) generally;
cf. [37], [8]. We will use (2.14) to derive the L2 error bounds for the new method
of this paper.

Define

(2.15) Γh = {s ∈ (L2(Ω))2; s|K ∈ S(K), ∀K ∈ Th}.

We can introduce a standard local L2 projection operator Π0
h : χ ∈ (L2(Ω))2 →

Π0
h χ ∈ Γh as follows:

(2.16)


∫
K

(Π0
h χ− χ) s = 0, ∀s ∈ S(K), ∀K ∈ Th,

||χ−Π0
h χ||0 ≤ C h |χ|1, if χ ∈ (H1(Ω))2.



A LOCKING-FREE REISSNER-MINDLIN QUADRILATERAL ELEMENT 1659

3. Finite element approximation

In this section, we will propose a new quadrilateral finite element method for
problem (2.1) and (2.2).

Let bK be the usual bubble on K; i.e., bK ◦ FK = (1− ξ2)(1− η2)/16 ∈ H1
0 (K̂),

and S(K) := DL(K) defined as in (2.11). We introduce

Bh = {s; s|K ∈ S(K) bK ⊂ (H1
0 (K))2, ∀K ∈ Th},(3.1)

Sh = {s ∈ H0(curl; Ω); s|K ∈ S(K), ∀K ∈ Th},(3.2)

Wh = {v ∈ H1
0 (Ω); v|K ∈ Q1(K), ∀K ∈ Th},(3.3)

H+
h = (Wh)2 ⊕Bh,(3.4)

Γh = {s ∈ (L2(Ω))2; s|K ∈ S(K), ∀K ∈ Th},(3.5)

where Wh,H+
h ,Γh will be used for approximating subspaces of transverse displace-

ment and rotation and shear stress, respectively. The degrees of freedom associated
with these finite dimensional spaces are depicted in Figures 1 and 2.
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The new finite element method is to find (φh + φbh, wh) ∈ H+
h ×Wh such that

(3.6)

1
1 + α

a(φh, ψh) +
α

1 + α
a(φh + φbh, ψh + ψbh)

+(qh,5 vh − (Πhψh +
α

1 + α
Π0
hψ

b
h)) = (f, vh)

∀(ψh + ψbh, vh) ∈ H+
h ×Wh
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and

(3.7) qh = λ t−2 (5wh − (Πhφh +
α

1 + α
Π0
hφ

b
h)) ∈ Γh,

where α > 0 is a constant which is specified in Theorem 3.1, and φh ∈ (Wh)2,
φbh ∈ Bh.

Theorem 3.1. If 0 < α < 1, then for all ψh + ψbh ∈ H+
h , we have

(3.8)
1

1 + α
a(ψh, ψh) +

α

1 + α
a(ψh + ψbh, ψh + ψbh) ≥ C {||ψh||21 + ||ψbh||21}.

As a consequence, problem (3.6) and (3.7) has a unique solution (φh +φbh, wh,qh).

Proof. In light of

(3.9) a(ψh + ψbh, ψh + ψbh) ≥ 1
2
a(ψbh, ψ

b
h)− a(ψh, ψh),

put 0 < α < 1, we conclude that (3.8) holds. �

Remark 3.1. In fact, any α in (0,
ε

1− ε ), (1 > ε > 0) can ensure (3.8); i.e., α may

be any fixed positive constant. We may even take α = +∞. In fact, for all ψh 6= 0
and ψbh 6= 0, let

(3.10) σ = sup
0 6=ψh∈(Wh)2, 0 6=ψbh∈Bh

|a(ψh, ψbh)|
a(ψh, ψh)1/2a(ψbh, ψ

b
h)1/2

.

We have a(ψh + ψbh, ψh + ψbh) ≥ (1 − σ){a(ψh, ψh) + a(ψbh, ψ
b
h)}. Only when some

functions in (Wh)2 and Bh satisfy ψh ≡ ψbh (scaled by a multiplicative constant),
there hold σ = 1; but, in this case, it is always true that ψh ≡ ψbh ≡ 0. Of course,
if ψh = 0 or ψbh = 0, then (3.8) is trivial.

Note that in the case α = +∞, the method of (3.6) and (3.7) becomes

a(φh + φbh, ψh + ψbh) + (qh,5 vh − (Πhψh + Π0
hψ

b
h)) = (f, vh)

∀(ψh + ψbh, vh) ∈ H+
h ×Wh

and
qh = λ t−2 (5wh − (Πhφh + Π0

hφ
b
h)) ∈ Γh.

Obviously, if α = 0 and Bh is dropped, method (3.6) and (3.7) is none other
than the MITC4 method with Th composed of rectangles.

4. Error estimates

In this section, we derive the H1 error bounds for both transverse displacement
and rotation.

Lemma 4.1. Let w̃ ∈ Wh, φ̃+ φ̃b ∈ H+
h , and q̃ = λ t−2 (5 w̃−(Πhφ̃+

α

1 + α
Π0
hφ̃

b))

∈ Γh. Then

(4.1)
||φ̃− φh||1 + ||φ̃b + φ̃− (φbh + φh)||1 + t ||q̃− qh||0
≤ C {||φ̃− φ||1 + ||φ̃b + φ̃− φ||1 + t ||q̃− q||0 + h ||q||0}.
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Proof. For all ψh + ψbh ∈ H+
h , vh ∈Wh, from (2.1) to get

(4.2)
1

1 + α
a(φ, ψh) +

α

1 + α
a(φ, ψbh +ψh) + (q,5 vh− (ψh +

α

1 + α
ψbh)) = (f, vh)

which can be written as
(4.3)

1
1 + α

a(φ, ψh) +
α

1 + α
a(φ, ψbh + ψh) + (q,5 vh − (Πhψh +

α

1 + α
Π0
hψ

b
h))

= (f, vh) + (q, ψh +
α

1 + α
ψbh − (Πhψh +

α

1 + α
Π0
hψ

b
h)).

Subtracting (4.3) from (3.6), we have

(4.4)

1
1 + α

a(φ− φh, ψh) +
α

1 + α
a(φ − (φbh + φh), ψbh + ψh)

+(q− qh,5 vh − (Πhψh +
α

1 + α
Π0
hψ

b
h))

= (q, ψh +
α

1 + α
ψbh − (Πhψh +

α

1 + α
Π0
hψ

b
h)).

For any φ̃+ φ̃b ∈ H+
h , w̃ ∈ Wh, let q̃ = λ t−2 (5 w̃ − (Πhφ̃+

α

1 + α
Π0
hφ̃

b)) ∈ Γh,

from (4.4) to get

(4.5)

1
1 + α

a(φ̃− φh, ψh) +
α

1 + α
a(φ̃b + φ̃− (φbh + φh), ψbh + ψh)

+(q̃− qh,5 vh − (Πhψh +
α

1 + α
Π0
hψ

b
h))

=
1

1 + α
a(φ̃− φ, ψh) +

α

1 + α
a(φ̃b + φ̃− φ, ψbh + ψh)

+(q̃− q,5 vh − (Πhψh +
α

1 + α
Π0
hψ

b
h))

+(q, ψh +
α

1 + α
ψbh − (Πhψh +

α

1 + α
Π0
hψ

b
h)).

In (4.5), let ψh = φ̃ − φh ∈ (Wh)2, ψbh = φ̃b − φbh ∈ Bh, vh = w̃ − wh ∈ Wh, we
have

(4.6) q̃− qh = λ t−2 (5 vh − (Πhψh +
α

1 + α
Π0
hψ

b
h))

from which we have
(4.7)

1
1 + α

a(φ̃− φh, φ̃− φh) +
α

1 + α
a(φ̃b + φ̃− (φbh + φh), φ̃b + φ̃− (φbh + φh))

+
t2

λ
(q̃− qh, q̃− qh)

=
1

1 + α
a(φ̃− φ, φ̃− φh) +

α

1 + α
a(φ̃b + φ̃− φ, φ̃b + φ̃− (φbh + φh))

+
t2

λ
(q̃− q, q̃− qh)

+(q, φ̃− φh +
α

1 + α
(φ̃b − φbh)− (Πh(φ̃− φh) +

α

1 + α
Π0
h(φ̃b − φbh))).
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Therefore,

1
1 + α

||φ̃− φh||21 +
α

1 + α
||φ̃b + φ̃− (φbh + φh)||21 +

t2

λ
||q̃− qh||20

≤ C
{

1
1 + α

||φ̃− φ||1 ||φ̃− φh||1

+
α

1 + α
||φ̃b + φ̃− φ||1 ||φ̃b + φ̃− (φbh + φh)||1

}
+
t2

λ
||q̃− q||0 ||q̃− qh||0

+ ||q||0 ||φ̃− φh −Πh(φ̃− φh) +
α

1 + α
(φ̃b − φbh −Π0

h(φ̃b − φbh))||0,

(4.8)

where

(4.9)

||φ̃− φh −Πh(φ̃− φh) +
α

1 + α
(φ̃b − φbh −Π0

h(φ̃b − φbh))||0

≤ C h {||φ̃− φh||1 + ||φ̃b − φbh||1}

≤ C h {||φ̃− φh||1 + ||φ̃b + φ̃− (φbh + φh)||1}

from (4.8) and (4.9) to get (4.1). �

On Wh, we introduce the standard Lagrangian interpolation operator Ih as fol-
lows (cf. [18]):

(4.10)


Ih : w ∈ H1

0 (Ω) ∩H2(Ω)→ Ih w ∈Wh;

Ih w(b) = w(b), for all vertex b;

||Ih w − w||0 + h |Ih w − w|1 ≤ C h2 ||w||2.

On (Wh)2, the corresponding interpolation operator is denoted by Ih = (Ih)2.

Lemma 4.2 ([40], [33]). It holds that

(4.11) 5Wh ⊂ Sh ⊂ Γh.

Proof. This lemma was shown by [40], [33]. For the readers’ convenience, here the
proof is recalled.

For any K ∈ Th, with four vertices (xi, yi) (1 ≤ i ≤ 4) and for any v ∈ Wh,
let v|K =

∑4
i=1 vi (Ni ◦ F−1

K ), where vi, 1 ≤ i ≤ 4, are nodal values of v and Ni

(1 ≤ i ≤ 4) are the corresponding bilinear polynomials on K̂, i.e., the four local
base functions of Q1(K).

To show (4.11), we only need to show 5 (Ni ◦ F−1
K ) ∈ S(K). Note that

1 =
4∑
i=1

Ni ◦ F−1
K , x =

4∑
i=1

xi (Ni ◦ F−1
K ), y =

4∑
i=1

yi (Ni ◦ F−1
K ),
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we have

(4.12)



4∑
i=2

5 (Ni ◦ F−1
K ) = −5 (N1 ◦ F−1

K ),

4∑
i=2

xi5 (Ni ◦ F−1
K ) = (1, 0)T − x15 (N1 ◦ F−1

K ),

4∑
i=2

yi5 (Ni ◦ F−1
K ) = (0, 1)T − y15 (N1 ◦ F−1

K ),

in light of the regularity of Th, we know that the coefficient matrix of (4.12) is
nonsingular, and we solve (4.12) to get the conclusion. �

Lemma 4.3. For any w ∈ H1
0 (Ω) ∩ H2(Ω), the following property of commuting

diagrams holds:

(4.13) Πh5w = 5 Ih w.

Proof. For any given edge e, let the two endpoints of e be A,B. We then have
(4.14)∫
e

Πh5w · τe =
∫
e

5w · τe = w(A) − w(B) = Ihw(A) − Ihw(B) =
∫
e

5 Ihw · τe.

Note that 5Wh ⊂ Sh because of Lemma 4.2, we know that (4.13) is valid. �
Lemma 4.4. Let w ∈ H1

0 (Ω) ∩ H2(Ω), φ ∈ (H1
0 (Ω) ∩ H2(Ω))2. Let w̃ = Ih w ∈

Wh, φ̃ = Ihφ ∈ (Wh)2, and let φ̃b ∈ Bh be defined by
α

1 + α
Π0
hφ̃

b = Πh(φ − φ̃).

Then, for q̃ = λ t−2 (5 w̃ − (Πhφ̃+
α

1 + α
Π0
hφ̃

b)) ∈ Γh and q = λ t−2 (5w − φ), it

holds that

(4.15) q̃ = Πh q.

Proof. In fact,

(4.16)

Πh q = λ t−2 (Πh5w −Πh φ) = λ t−2 (5 w̃ −Πh φ)

= λ t−2 (5 w̃ − (Πhφ̃+
α

1 + α
Π0
hφ̃

b))

+λ t−2 (
α

1 + α
Π0
hφ̃

b −Πh(φ− φ̃))

= q̃

because of
α

1 + α
Π0
h φ̃

b = Πh (φ− φ̃). �

Lemma 4.5. Let φ̃ = Ihφ ∈ (Wh)2 and let φ̃b ∈ Bh be defined by
α

1 + α
Π0
hφ̃

b =

Πh(φ− φ̃). We have

(4.17) ||φ− (φ̃b + φ̃)||1 ≤ C h ||φ||2.

Proof. We first show

(4.18) ||φ̃b||0,K ≤ C ||Π0
hφ̃

b||0,K .
In fact, since φ̃b|K ∈ S(K)bK , let φ̃b = sbK , s ∈ S(K). Note that bK ≤ C,
(4.19)

||φ̃b||20,K =
∫
K

b2K |s|2 ≤ C
∫
K

|s|2 bK = C (Π0
h φ̃

b, s)0,K ≤ C ||Π0
hφ̃

b||0,K ||s||0,K
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and that ||s||0,K and ||sbK ||0,K = ||φ̃b||0,K are equivalent norms on S(K). We
obtain (4.18).

Next, we show

(4.20) ||φ̃b||0,K ≤ C h2
K ||φ||2,K .

In fact,

||Π0
hφ̃

b||0,K =
1 + α

α
||Πh(φ− φ̃)||0,K

≤ C{||Πh(φ− φ̃)− (φ− φ̃)||0,K + ||φ− φ̃||0,K}
≤ C hK |φ− φ̃|1,K + C h2

K |φ|2,K ≤ C h2
K |φ|2,K .

Hence, (4.20) is true. Finally,

||φ− (φ̃b + φ̃)||1 ≤ ||φ− φ̃||1 + ||φ̃b||1 ≤ C h ||φ||2

where we have used ||φ − φ̃||1 ≤ C h ||φ||2 and ||φ̃b||1 ≤ C (||φ̃b||0 + |φ̃b|1) ≤
C h−1 ||φ̃b||0 ≤ C h ||φ||2. �

Theorem 4.1. Let (φ,w,q) ∈ (H1
0 (Ω))2 ×H1

0 (Ω) ×H0(curl; Ω) be the solution of
(2.1) and (2.2), and let (φh + φbh, wh,qh) ∈ H+

h ×Wh × Γh be the solution of (3.6)
and (3.7). Then

(4.21)
||φ− φh||1 + ||w − wh||1 + t ||q− qh||0 + ||φ− (φh + φbh)||1
≤ C h {t ||q||1 + ||φ||2 + ||q||0}.

Proof. Using the triangle-inequality, from Lemma 4.1 we have

(4.22)

||φ− φh||1 + t||q− qh||0 + ||φ− (φh + φbh)||1
≤ ||φ− φ̃||1 + t||q̃− q||0 + ||φ− (φ̃ + φ̃b)||1
+||φ̃− φh||1 + ||φ̃+ φ̃b − (φh + φbh)||1 + t||q̃− qh||0
≤ C {||φ̃− φ||1 + ||φ̃b + φ̃− φ||1 + t||q̃− q||0 + h ||q||0}

where, taking φ̃ = Ih φ ∈ (Wh)2, from Lemmas 4.4 and 4.5, we have

(4.23) ||φ̃− φ||1 + t||q̃− q||0 + ||φ̃b + φ̃− φ||1 ≤ C h {||φ||2 + t||q||1}.

It follows from (4.23) and (4.22) that

(4.24) ||φ− (φh + φbh)||1 + ||φ− φh||1 + t||q− qh||0 ≤ C h {t||q||1 + ||φ||2 + ||q||0}.

Note that

(4.25)

5 (w − wh) =
t2

λ
(q− qh) + φ− (Πh φh +

α

1 + α
Π0
hφ

b
h)

=
t2

λ
(q− qh) + φ−Πh φ

+Πh (φ − φh)− (φ− φh)

+φ− φh −
α

1 + α
Π0
hφ

b
h.



A LOCKING-FREE REISSNER-MINDLIN QUADRILATERAL ELEMENT 1665

We have
(4.26)

|w − wh|1 ≤ t2

λ
||q− qh||0 + ||φ−Πh φ||0

+||Πh (φ− φh)− (φ− φh)||0 + ||φ− φh||0 +
α

1 + α
||Π0

hφ
b
h||0

≤ C h {t ||q||1 + ||φ||2 + ||q||0}

where we have used ||Π0
h φ

b
h||0 ≤ ||φbh||0 ≤ C h {t ||q||1 + ||φ||2 + ||q||0} because of

(4.24). �

Remark 4.1. Note that when Ω is a convex polygon, the solution of (2.1) and (2.2)
satisfies the prior regularity estimation (cf. [30], [23], [8])

(4.27) ||φ||2 + ||q||0 + t ||q||1 ≤ C ||f ||0.
From Theorem 4.1 we have

(4.28) ||φ− φh||1 + ||w − wh||1 + t ||q− qh||0 + ||φ− (φh + φbh)||1 ≤ C h ||f ||0.
Therefore, the method (3.6) and (3.7) is locking-free.

5. L2
error bound

This section is concerned with the L2 error bounds for both transverse displace-
ment and rotation. The domain Ω is a convex polygon.

Introduce
H(div; Ω) = {s ∈ (L2(Ω))2; div s ∈ L2(Ω)}

with the norm || · ||2H(div;Ω) = || · ||20 + || div ·||20.

Lemma 5.1 (cf. [8], [34]). For every q ∈ (L2(Ω))2, the following Helmholtz-
decomposition holds:

(5.1) q = 5u+ curl p, u ∈ H1
0 (Ω), p ∈ H1(Ω)/<.

Lemma 5.2. Let Q2(K), K ∈ Th, be the space of isoparametric biquadratic poly-
nomials, and let ϕi, 1 ≤ i ≤ 4, be the four base functions of Q2(K) corresponding
to the four midpoints of ∂K = {ei, 1 ≤ i ≤ 4}. Then, for any given ψh ∈ (Wh)2,
there exists a v0 ∈ H1

0 (Ω) such that

v0|K ∈ span{ϕi, 1 ≤ i ≤ 4},(5.2)

(ψh −5 v0) · τei =
1
|ei|

∫
ei

ψh · τei , 1 ≤ i ≤ 4,(5.3)

|v0|1,K ≤ C hK |ψh|1,K ,(5.4)

||v0||0 ≤ C h |v0|1 ≤ C h2 |ψh|1.(5.5)

Proof. Formulas (5.2)–(5.4) can be obtained through the argument in [38], [39].
Regarding (5.5), since v0 vanishes on ∂Ω and vanishes at all the nodes of the
triangulation and v0|K ∈ Q2(K), a standard scaling argument on each element K
yields ||v0||0 ≤ C h |v0|1. �

Corollary 5.1. Let Πh ψh ∈ Sh be the interpolant to ψh ∈ (Wh)2. Then

(5.6) ψh −Πh ψh −5 v0 ∈ H0(curl;K)
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where
H0(curl;K) = {s ∈ (L2(K))2; curl s ∈ L2(K), s · τ |∂K = 0}

with τ the tangent to ∂K, and v0 is constructed as in Lemma 5.2.

The following result is well known (cf. [34], [18]).

Lemma 5.3. For any given v ∈ H1
0 (K), K ∈ Th. Then

(5.7) ||v||0,K ≤ C hK |v|1,K .

Theorem 5.1. For any ψh ∈ (Wh)2, let Πh ψh ∈ Sh be the interpolant. Then, the
following Helmholtz-decomposition holds:

(5.8) ψh −Πh ψh = 5 r + curlh s,

where curlh is the curl operator element-by-element, r ∈ H1
0 (Ω), s ∈ H1(K)/<,

∀K ∈ Th, and we have

||r||0 ≤ C h2 |ψh|1,(5.9)

|s|1,h ≤ C h2 | curl ψh|1,h,(5.10)

where |s|1,h =
(∑

K∈Th ||curl s||20,K
)1/2.

Proof. As in Lemma 5.2 and Corollary 5.1, we can find a v0 ∈ H1
0 (Ω) such that

ψh −Πh ψh −5 v0 ∈ H0(curl;K), ∀K ∈ Th,(5.11)

||v0||0 ≤ C h2 |ψh|1.(5.12)

On each K ∈ Th, let the Helmholtz-decomposition for ψh −Πh ψh −5 v0 be

(5.13) ψh −Πh ψh −5 v0 = 5 rK + curl sK , rK ∈ H1
0 (K), sK ∈ H1(K)/<.

Note that (5 rK , curl sK)0,K = 0 and ψh − Πh ψh − 5 v0 ∈ H0(curl;K) and the
property of commuting diagrams (2.14) and Lemma 5.2 hold, from (5.13) we have

(5.14)

||curl sK ||20,K = (ψ −Πh ψh −5 v0, curl sK)0,K

= (curl (ψh −Πh ψh −5 v0), sK)0,K

= (curl ψh − Ph curl ψh, sK)0,K

= (curl ψh − Ph curl ψh, sK − Ph sK)0,K

≤ C h2
K | curl ψh|1,K |sK |1,K ,

that is,

||curl sK ||0,K ≤ C h2
K | curl ψh|1,K ,(5.15)

|rK |1,K ≤ {||ψh −Πh ψh||0,K + ||5 v0||0,K} ≤ C hK |ψh|1,K .(5.16)

It follows from Lemma 5.3 that

(5.17) ||rK ||0,K ≤ C hK |rK |1,K ≤ C h2
K |ψh|1,K .

Define r0 ∈ H1
0 (Ω) and s ∈ L2(Ω) as follows:

(5.18) r0|K = rK , s|K = sK , ∀K ∈ Th.

Then letting r = v0 + r0 ∈ H1
0 (Ω), we have the conclusion. �
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Theorem 5.2. Let q ∈ H(div; Ω), β ∈ (H2(Ω) ∩H1
0 (Ω))2, and β̃ = Ihβ ∈ (Wh)2.

Then

(5.19) (q, β̃ −Πhβ̃) ≤ C h2 ||q||H(div;Ω) ||β||2.

Proof. From Lemma 5.1, the Helmholtz-decomposition for q is as follows:

(5.20) q = 5u+ curl p, u ∈ H1
0 (Ω), p ∈ H1(Ω)/<.

Note that Ω is a convex polygon and q ∈ H(div; Ω), we have u ∈ H2(Ω).
From Theorem 5.1, β̃ −Πhβ̃ can be written as

(5.21) β̃ −Πhβ̃ = 5 r + curlh s, r ∈ H1
0 (Ω), s ∈ H1(K)/<, ∀K ∈ Th

where

||r||0 ≤ C h2 |β̃|1 ≤ C h2 ||β||2,(5.22)

|s|1,h ≤ C h2 | curl β̃|1,h ≤ C h2 ||β||2.(5.23)

Note that

(5.24) (q, β̃ −Πhβ̃) = (5u,5 r) + (5u, curlh s) + (curl p, β̃ −Πhβ̃),

from (5.22) and (5.23), we have

(5u,5 r) = −(∆u, r) ≤ || div q||0 ||r||0 ≤ C h2 || div q||0 ||β||2,(5.25)

(5u, curlh s) ≤ |u|1 |s|1,h ≤ C h2 |u|1 ||β||2.(5.26)

On the other hand, in light of

(5.27) (curl p, β̃ −Πhβ̃) = (curl p, β −Πh β) + (curl p,Πh(β − β̃)− (β − β̃)),

using the property of the commuting of diagrams (2.14), we have

(curl p, β −Πh β) = (p, curl (β −Πh β)) = (p, curl β − Ph curl β)

= (p− Ph p, curl β − Ph curl β)

≤ C h2 ||p||1 ||β||2,

(5.28)

(curl p,Πh(β − β̃)− (β − β̃)) ≤ C h ||p||1 ||β − β̃||1 ≤ C h2 ||p||1 ||β||2.(5.29)

Summarizing from (5.24) to (5.29), we get (5.19). �

Corollary 5.2. For any q ∈ H(div; Ω), β ∈ (H1
0 (Ω) ∩H2(Ω))2 and ψh ∈ Sh, we

have

(q, β −Πh β) ≤ C h2 ||q||H(div;Ω) ||β||2,(5.30)

(q, ψh −Πh ψh) ≤ C h ||q||H(div;Ω) |β − ψh|1 + C h2 ||q||H(div;Ω) ||β||2.(5.31)

Proof. Let β̃ = Ihβ ∈ (Wh)2. Note that

(5.32) (q, β −Πh β) = (q, β̃ −Πh β̃) + (q,Πh(β̃ − β)− (β̃ − β)),

in light of the standard interpolation properties of Ih and Πh and Theorem 5.2, we
conclude that (5.30) holds. Note that

(5.33) (q, ψh −Πh ψh) = (ψh − β −Πh (ψh − β),q) + (β −Πh β,q).

We immediately have (5.31). �
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Remark 5.1. The key point to showing the L2 error bounds in Theorem 5.3 be-
low is Theorem 5.2. In fact, the main difficulty in deriving the L2 error bound
for the method in which the reduction operator involves Πh is how to bound the
inconsistency term (5.19) (or (5.30), (5.31)). For the MITC3 element, a different
approach to showing (5.19) is given by [37]. Of course, if Sh includes the space
of higher-order polynomials (at least linear), (5.19) is trivial (cf. [15], [7], [35]).
However, the approaches in [37], [15], [7], [35] are not applicable here.

Theorem 5.3. Let Ω be a convex polygon. Let (w, φ) and (wh, φh + φbh) be the
exact and approximate solutions, respectively. Then

(5.34) ||w − wh||0 + ||φ− φh||0 + ||φbh||0 ≤ C h2 ||f ||0.

Proof. Consider the dual problem: Find (β, z) ∈ (H1
0 (Ω))2 ×H1

0 (Ω) such that

(5.35) a(β, ψ) + (5 v − ψ, γ) = (ψ, φ− (φh +
α

1 + α
φbh)) + (w − wh, v)

and

(5.36) γ = λ t−2(5 z − β) ∈ H0(curl; Ω)

for all (ψ, v) ∈ (H1
0 (Ω))2 ×H1

0 (Ω).
From [30], [23], [8], [9] we know that

(5.37) ||β||2+||z||2+t ||γ||1+||γ||H(div;Ω) ≤ C {||φ−(φh+
α

1 + α
φbh)||0+||w−wh||0}.

Take ψ = φ − (φh +
α

1 + α
φbh), v = w − wh, and (β̃ + β̃b, z̃) ∈ H+

h × Wh, γ̃ =

λ t−2 (5 z̃ − (Πh β̃ +
α

1 + α
Π0
hβ̃

b)) ∈ Γh. In light of q = λt−2(5w − φ) and qh =

λt−2(5wh − (Πhφh +
α

1 + α
Π0
hφ

b
h)), we have

(5.38)

||φ− (φh +
α

1 + α
φbh)||20 + ||w − wh||20

= a(β, φ − (φh +
α

1 + α
φbh)) +

t2

λ
(q− qh, γ)

+(φh +
α

1 + α
φbh − (Πh φh +

α

1 + α
Π0
hφ

b
h), γ)

=
1

1 + α
a(β − β̃, φ− φh) +

α

1 + α
a(β − (β̃ + β̃b), φ− (φh + φbh))

+
t2

λ
(q− qh, γ − γ̃) + (q, β̃ +

α

1 + α
β̃b − (Πhβ̃ +

α

1 + α
Π0
hβ̃

b
h))

+(φh +
α

1 + α
φbh − (Πh φh +

α

1 + α
Π0
hφ

b
h), γ),

where we have used (4.4) with vh = z̃ and ψh + ψbh = β̃ + β̃b.
Equation (5.38) indicates that we only need to estimate the last two terms in

(5.38). To do so, let z̃ = Ihz ∈ Wh, β̃ = Ihβ ∈ (Wh)2, and β̃b be defined by
α

1 + α
Π0
hβ̃

b = Πh(β − β̃). From Lemmas 4.4 and 4.5, we have

(5.39) γ̃ = Πhγ, ||γ̃ − γ||0 ≤ Ch |γ|1, ||β̃b||1 ≤ Ch ||β||2.
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In light of Corollary 5.2 and Theorem 4.1, we have

|(φh +
α

1 + α
φbh − (Πhφh +

α

1 + α
Π0
hφ

b
h), γ)|

≤ |(φh −Πh φh, γ)|+ C h ||γ||0 |φbh|1
≤ C h |φ− φh|1 ||γ||0 + C h2 ||γ||H(div;Ω)||φ||2 + C h2 ||f ||0 ||γ||0
≤ C h2 ||f ||0 ||γ||H(div;Ω),

(5.40)

|(q, β̃ +
α

1 + α
β̃b − (Πhβ̃ +

α

1 + α
Π0
hβ̃

b
h))|

≤ |(q, β̃ −Πhβ̃)|+ C h ||q||0 |β̃b|1 ≤ C h2 ||q||H(div;Ω) ||β||2.
(5.41)

Therefore, from (5.38)–(5.41) and (5.37), we conclude that

(5.42) ||φ − (φh +
α

1 + α
φbh)||0 + ||w − wh||0 ≤ C h2 ||f ||0.

Finally, in light of Lemma 5.3 and Theorem 4.1, we know that

(5.43) ||φbh||0 ≤ C h |φbh|1 ≤ C h2 ||f ||0,
which completes the proof. �
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