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L2-ESTIMATE FOR THE DISCRETE PLATEAU PROBLEM

PAOLA POZZI

Abstract. In this paper we prove the L2 convergence rates for a fully dis-
crete finite element procedure for approximating minimal, possibly unstable,
surfaces.

Originally this problem was studied by G. Dziuk and J. Hutchinson. First
they provided convergence rates in the H1 and L2 norms for the boundary
integral method. Subsequently they obtained the H1 convergence estimates
using a fully discrete finite element method. We use the latter framework for
our investigation.

1. Introduction

A disk-like minimal surface or solution of the Plateau Problem is a surface in
Rn which has the topology of the unit disc, spans a given boundary curve Γ ∈ Rn,
and either minimizes, or more generally is stationary for, the area functional. By
studying the problem in detail, it turns out that an equivalent and more convenient
formulation is the following characterisation.

Let D be the unit disc in R2 and Γ be a smooth Jordan curve in Rn. Let F be
the class of harmonic maps u : D → Rn such that u|∂D : ∂D → Γ is monotone
and satisfies a certain integral “three-point condition”; cf. (1). The function u ∈ F
is said to be a minimal surface if u is stationary in F for the Dirichlet energy
D(u) = 1

2

∫
D
|∇u|2. Such a map u provides an harmonic conformal parametrisation

of the corresponding minimal surface.
The formulation of the corresponding discrete problem is as follows. Let Dh be

a quasi-uniform triangulation of D with grid size controlled by h. Let Fh be the
class of discrete harmonic maps uh : Dh → Rn for which uh(φj) ∈ Γ whenever φj
is a boundary node of Dh, and which satisfy an analogue of the previous integral
“three-point condition”. The function uh ∈ Fh is said to be a discrete minimal
surface if uh is stationary within Fh for the Dirichlet energy D(uh) = 1

2

∫
Dh
|∇uh|2

(see below for a precise formulation).
The main result proved in [4] is that if u is a nondegenerate minimal surface

spanning Γ, then there exists a discrete minimal surface uh, unique in a ball of
“almost” constant radius ε0| log h|−1, such that ‖u − uh‖H1(Dh) ≤ ch, where c
depends on Γ and the nondegeneracy constant for u, but is independent of h (see
Theorem 2.2 of this paper).
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In this paper, which can be considered a continuation of [3] and [4], we prove
the additional estimate

‖u− uh‖L2(Dh) ≤ ch2| log h|3/2.
The author would like to thank John Hutchinson for valuable advice and encour-

agement during the investigation of this problem.

2. Preliminary estimates and theorems

In this section we will concisely recall some definitions, estimates, and theorems
from the papers cited above.

2.1. The smooth energy functional. Let D be the open unit disc in R2, with
boundary ∂D. Denote by S1 another distinct copy of the unit circle. Let Γ be
a Jordan curve in Rn with regular Cr-parametrisation γ : S1 → Γ where r ≥ 3.
(Note that more regularity will be required when stating the main theorems.)

The reason for introducing S1 and fixing a parametrisation γ is that each map
f : ∂D → Γ can be uniquely written in the form f = γ ◦ s, where s : ∂D → S1. It
turns out that it is more convenient to make use of such a factorisation and work
in the space of {s | s : ∂D → S1}. Recall also that we are interested in working
in the class of harmonic functions and that information on the boundary alone is
sufficient to completely determine such a function.

For f : ∂D → Rn, we denote by Φ(f) : D → Rn its unique harmonic extension
to D, specified by

4Φ(f) = 0 in D, Φ(f) = f on ∂D.

Then Φ : H1/2(∂D,Rn) → H1(D,Rn) is a bounded linear map with bounded
inverse.

We will use the Hilbert space H of functions defined by

H = {ξ : ∂D → R | |ξ|H1/2 ≤ ∞ and (1) is satisfied},
where

(1)
∫ 2π

0

ξ(φ) dφ = 0,
∫ 2π

0

ξ(φ) cosφ dφ = 0,
∫ 2π

0

ξ(φ) sinφ dφ = 0.

The norm on H is the usual norm ‖ · ‖H1/2 , which by the first condition in (1)
and Poincaré’s inequality is equivalent to | · |H1/2 . The corresponding affine space
of maps s : ∂D → S1 such that s(φ) = φ + σ(φ) for some σ ∈ H is denoted
by H. We also need the Banach space T defined by T = H ∩ C0(∂D,R) with
norm ‖ξ‖T = ‖ξ‖H1/2 + ‖ξ‖C0. The corresponding affine space T is defined by
T = H ∩ C0(∂D, S1). With some abuse of notation we write ‖s‖ = 1 + ‖σ‖ for
various norms ‖ · ‖ on σ.

The energy functional E is defined on H by

(2) E(s) =
1
2

∫
D

|∇Φ(γ ◦ s)|2 = D(Φ(γ ◦ s)).

Finiteness of E follows from (8).
We say that the harmonic function u = Φ(γ ◦ s) is a minimal surface spanning

Γ if s is monotone and stationary for E; i.e.,

(3) 〈E′(s), ξ〉 = 0 ∀ξ ∈ T.
We have the following regularity result (see [4, Proposition 2.1]).
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Proposition 2.1. If γ ∈ Ck,α, where k ≥ 1 and 0 < α < 1, and s ∈ T is monotone
and stationary for E, then

‖s‖Ck,α ≤ c = c(‖γ‖Ck,α , ‖|γ′|−1‖L∞).

We next recall some properties of the energy functional from [3, Section 3.3].
Using the notation

(4) u = Φ(γ ◦ s), v = Φ(γ′ ◦ s ξ), w = Φ(γ′′ ◦ s ξ2),

we get by formal computation that

(5) E(s) =
1
2

∫
D

|∇u|2 ,

(6) 〈E′(s), ξ〉 =
d

dt

∣∣∣
t=0

E(s+ tξ) =
1
2

∫
D

∇u∇v ,

(7) E′′(s)(ξ, ξ) =
d2

dt2

∣∣∣
t=0

E(s+ tξ) =
∫
D

∇u∇w +
∫
D

|∇v|2 ,

with an analogous expression for E′′(s)(ξ, η) obtained by bilinearity in the case of
distinct variations.

Proposition 2.2. If γ is Cr the energy functional E : T → R is Cr−1. Let
s = id+ σ. Then

E(s) ≤ c(‖γ‖C1)(1 + |σ|2H1/2 ),

|djE(s)(ξ1, . . . , ξj)| ≤ c(‖γ‖Cj+1)(1 + |σ|2H1/2 )‖ξ1‖T · . . . · ‖ξj‖T
for 1 ≤ j ≤ r − 1.

Proof. See [2, Proposition 2.1]. �

The functional E is not differentiable on H, but if γ and s are as smooth as is
necessary for the following estimates, then we have

E(s) ≤ c‖γ‖2C1‖s‖2H1/2 ,(8)

|〈E′(s), ξ〉| ≤ c‖γ‖2C2‖s‖2C1‖ξ‖H1/2 ,(9)

|E′′(s)(ξ, η)| ≤ c‖γ‖2C2‖s‖2C1‖ξ‖H1/2‖η‖H1/2 .(10)

In particular this will be used in case s is stationary for E.
It is important to consider the behaviour of the second derivatives of E near

a stationary point s ∈ T . The second derivative E′′(s) can be interpreted as a
self-adjoint bounded map ∇2E(s) : H → H . Let

(11) H = H− ⊕H0 ⊕H+, ξ = ξ− + ξ0 + ξ+ if ξ ∈ H,
be the orthogonal decomposition generated by the eigenfunctions of ∇2E(s) having
negative, zero, and positive eigenvalues, respectively.

For s monotone and stationary for E, we say s is nondegenerate if H0 = {0}.
The corresponding minimal surface u = Φ(γ ◦ s) is also said to be nondegenerate.
If s is nondegenerate, it follows that there exists a λ > 0 such that for ξ ∈ H
(12) E′′(s)(ξ, ξ+ − ξ−) = E′′(s)(ξ+, ξ+)− E′′(s)(ξ−, ξ−) ≥ λ‖ξ‖2H1/2 .

We call λ a nondegeneracy constant for s.
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2.2. The discrete energy functional. Let Gh be a quasi-uniform triangulation
of D with grid size comparable to h. Let

Dh =
⋃
{G |G ∈ Gh},

∂Dh =
⋃
{Ej | 1 ≤ j ≤M} where the Ej are the boundary edges,

Bh = {φ1, . . . , φM} be the set of boundary nodes.

The projection π : ∂D → ∂Dh is defined by

(13) π
(
ei((1−t)φj+tφj+1)

)
= (1− t)eiφj + teiφj+1 ,

for 0 ≤ t ≤ 1, 1 ≤ j ≤M .
In order to have a discrete analogue Eh of the functional E, we define the fol-

lowing discrete analogues of H1(D,Rn), H1/2(∂D,Rn), H , T , H and T :

Xn
h = {uh ∈ C0(Dh,Rn) | uh ∈ P1(G) for G ∈ Gh},(14)

xnh = {fh ∈ C0(∂Dh,Rn) | fh ∈ P1(Ej) for 1 ≤ j ≤M},(15)

Hh = {ξh ∈ C0(∂D,R) | ξh ∈ P1(π−1(Ej)) if 1 ≤ j ≤M, ξh satisfies (1)},(16)

Hh = {sh ∈ C0(∂D, S1) | sh(φ) = φ+ σh(φ) for some σh ∈ Hh}.(17)

Thus Hh ⊂ T ⊂ H , Hh ⊂ T ⊂ H, and the space of variations at sh ∈ Hh is
naturally identified with Hh. We write Xh = X1

h and xh = x1
h.

We have the following inverse-type estimates.

Proposition 2.3. If ξh ∈ Hh, then

‖ξh‖H1 ≤ ch−1/2‖ξh‖H1/2 ,(18)

‖ξh‖H1/2 ≤ ‖ξh‖T ≤ c| lnh|1/2‖ξh‖H1/2(19)

for h small.

Proof. The first estimate is standard. The second is in [1, Proposition 5.3]. �

Suppose f ∈ C0(∂D,Rn). We define the “linear interpolants”

Ihf ∈ xnh , Ihf
(
(1− t)eiφj + teφj+1

)
= (1 − t)f(eφj ) + tf(eφj+1),

I∂Dh f ∈ C0(∂D,Rn), I∂Dh f
(
ei((1−t)φj+tφj+1)

)
= (1 − t)f(eφj ) + tf(eφj+1),

where 0 ≤ t ≤ 1, 1 ≤ j ≤ M . Here and elsewhere, φM+1 = φ1. Note the different
domains ∂Dh and ∂D of Ihf and I∂Dh f , respectively. Note also that the image of
Ih(γ ◦ s) is a polygonal approximation to Γ and that Ih(γ ◦ s)(φj) = γ ◦ s(φj) ∈ Γ
for φj ∈ Bh. Finally,

(20) I∂Dh f = Ihf ◦ π.
Another type of approximation operator we require is a map ph : T (T ) →

Hh (Hh), which acts like an interpolation operator and preserves the normalisation
condition (1). The proof of the following is essentially given in [1, Proposition 5.2].

Proposition 2.4. There is a bounded linear operator ph : T → Hh, such that (in
particular)

(21) ‖ξ − phξ‖Hs ≤ chk−s‖ξ‖Hk
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for s = 0, 1
2 , 1 and k = 1, 3

2 , 2. Moreover,

(22) ‖ξ − phξ‖C0,1 ≤ ch‖ξ‖C2, ‖phξ‖C0,1 ≤ c‖ξ‖C0,1 ,

(23) ‖ξ − phξ‖C0 ≤ ch2‖ξ‖C2 , ‖ξ − phξ‖C0 ≤ ch‖ξ‖C1.

If s ∈ T and s(φ) = φ + σ(φ), then phs is defined by phs(φ) = φ + phσ(φ) and
s− phs = σ − phσ. Hence phs satisfies estimates similar to those for phξ.

For fh ∈ xh the discrete harmonic extension Φhfh ∈ Xh is defined by

(24) 4hΦhfh = 0 in Dh, Φhfh = fh on ∂Dh.

Here 4h is the discrete Laplacian and so the first equation in (24) is interpreted as∫
Dh
∇(Φhfh)∇ψh = 0 for all ψh in Xh such that ψh = 0 on ∂Dh. If fh ∈ xnh the

discrete harmonic extension Φhfh is defined componentwise.
For sh ∈ Hh the discrete energy functional Eh is defined by

(25) Eh(sh) =
1
2

∫
Dh

|∇ΦhIh(γ ◦ sh)|2 = Dh(ΦhIh(γ ◦ sh)).

Note that Eh is of course not the restriction of E to Hh. The discrete harmonic
function uh = ΦhIh(γ ◦ sh) is said to be a discrete minimal surface spanning Γ, or
a solution of the discrete Plateau Problem for Γ, if

(26) 〈E′h(sh), ξh〉 = 0 ∀ξh ∈ Hh.

Note that we do not require monotonicity of sh, as in the case for s in (3). The
derivatives of Eh are given by

Eh(sh) =
1
2

∫
Dh

|∇uh|2,

〈E′h(sh), ξh〉 =
1
2

∫
Dh

∇uh∇vh,

E′′h(sh)(ξh, ξh) =
∫
Dh

∇uh∇wh +
∫
Dh

|∇vh|2,

where

uh = ΦhIh(γ ◦ sh), vh = ΦhIh(γ′ ◦ sh ξh), wh = ΦhIh(γ′′ ◦ sh ξ2
h).

2.3. The negative space. Let us define H−1/2(∂D) to be the dual space of
H1/2(∂D) with the usual operator norm. There is a natural imbeddingH1/2(∂D) ↪→
H−1/2(∂D) given by

〈ζ, η〉 =
∫
∂D

ζη ∀η ∈ H1/2(∂D),

where 〈·, ·〉 is the dual pairing of H−1/2(∂D) and H1/2(∂D). Thus

‖ζ‖H−1/2(∂D) = sup
‖η‖

H1/2(∂D)
=1

∫
∂D

ζη.

We will need the interpolation result

(27) ‖ζ‖L2(∂D) ≤ c‖ζ‖1/2H−1/2(∂D)
‖ζ‖1/2

H1/2(∂D)
,

which follows from the relevant definitions.
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2.4. Preliminary estimates. We will make use of the following estimates.

Proposition 2.5. Suppose f, g : ∂D→ R. Then

|fg|H1/2 ≤ ‖f‖C0 |g|H1/2 + |f |H1/2 ‖g‖C0,(28)

‖fg‖H1/2 ≤ c‖f‖C0,1 ‖g‖H1/2 ,(29)

|fg|H1 ≤ ‖f‖C0 |g|H1 + |f |H1 ‖g‖C0,(30)

‖fg‖H1 ≤ c‖f‖C0,1 ‖g‖H1 ,(31)

‖fg‖H3/2 ≤ c‖f‖C2 ‖g‖H3/2 .(32)

Proof. These follow by direct computation. See [4, Proposition 3.1]. �

The following proposition will typically be applied in case g is γ, γ′ or γ′′ (and
in particular is C1), and where either s1 = s0 and s2 = phs0, or s1 = phs0 and
s2 = phs0 + ηh for some ηh ∈ Hh.

Proposition 2.6. Suppose si = id + σi : ∂D → S1 for i = 1, 2, and g : S1 → R.
Then

|g ◦ s1 − g ◦ s2|H1/2 ≤ c‖g‖C2 (‖s1‖C0,1 + ‖s1 − s2‖C0) ‖s1 − s2‖H1/2 ,

|g ◦ s1 − g ◦ s2|H1 ≤ c‖g‖C2 ‖s1‖C0,1 ‖s1 − s2‖H1 .

Proof. This follows by direct computation. See [4, Proposition 3.3]. �

Proposition 2.7. If f ∈ Hs(∂D,Rn), where s = 1, 3/2, then

|Φ(f)− ΦhIh(f)|H1(Dh) ≤ chs−1/2|f |Hs(∂D),

|ΦhIh(f)|H1(Dh) ≤ |f |H1/2(∂D) + chs−1/2|f |Hs(∂D).

Proof. See [4, Proposition 3.4]. Standard methods are used. �

Proposition 2.8. If f ∈ Hs(∂D,Rn), where s = 1, 3/2, then

‖Φ(f)− ΦhIh(f)‖L2(Dh) ≤ chs+1/2|f |Hs(∂D) + ‖f − I∂Dh (f)‖L2(∂D),

‖ΦhIh(f)‖L2(Dh) ≤ ‖f‖L2(∂D) + chs|f |Hs(∂D).

Proof. See [5, Theorem 1]. An Aubin-Nitsche type of argument is used. �

Proposition 2.9. Suppose u is harmonic in D, with trace u|∂D in L2(∂D) or in
H1(∂D), as appropriate. Then

‖u‖L2(D\Dh) ≤ ch‖u‖L2(∂D),(33)

‖∇u‖L2(D\Dh) ≤ ch|u|H1(∂D),(34)

‖u− u ◦ π‖L2(∂D) ≤ ch2|u|H1(∂D),(35) ∥∥∥∂u
∂ν

∥∥∥
L2(∂Dh)

≤ c|u|H1(∂D).(36)

Proof. See [4, Proposition 3.7]. �
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2.5. Main theorems. The following theorems and lemma are the starting points
for the proof of the L2-estimate. Recall γ ∈ Cr. Define

H3/2(∂D) = {ξ ∈ H1/2(∂D) : ξ′ ∈ H1/2(∂D)},
where ξ′ is the distributional derivative of ξ. Define the seminorm

|ξ|H3/2(∂D) = |ξ′|H1/2(∂D)

and the norm
‖ξ‖H3/2(∂D) = |ξ|H3/2(∂D) + ‖ξ‖L2(∂D).

Lemma 2.1. Assume r ≥ 5 and s is a nondegenerate stationary point for E.
Suppose ξ ∈ H. Then the “adjoint” problem

(37) d2E(s)(φξ , η) =
∫
∂D

ξη ∀ η ∈ H

has a unique solution φξ ∈ H. Moreover, φξ ∈ H3/2(∂D) and

(38) |φξ|H3/2(∂D) ≤ c|ξ|H1/2(∂D).

The constant c depends on s.

Proof. See [2, Lemma 4.2]. �

Theorem 2.1. Assume γ ∈ C4. Let s be a monotone nondegenerate stationary
point for E, with nondegeneracy constant λ. Then there exist positive constants h0

and c0 depending on ‖γ‖C4 and ‖|γ′|−1‖L∞, and on λ in the case of h0, such that
if 0 < h ≤ h0, then there exists sh ∈ Hh which is stationary for Eh and satisfies

(39) ‖s− sh‖H1/2 ≤ c0λ−1h .

Moreover, there exists ε0 = ε0(‖γ‖C4, ‖|γ′|−1‖L∞ , λ) > 0 such that sh is the unique
stationary point for Eh, satisfying

(40) ‖s− sh‖H1/2 ≤ ε0| log h|−1.

Proof. See [4, Theorem 5.4]. �

Corollary 2.1. Under the same hypotheses and using the same notation of Theo-
rem 2.1, we have

(41) ‖s− sh‖T ≤ ch| lnh|1/2,
where c is independent of h.

Proof. Recall that in the proof of Theorem 2.1 ([4, (118)]) the estimate

(42) ‖phs− sh‖H1/2 ≤ ch
was established, and therefore by Proposition 2.3,

(43) ‖phs− sh‖T ≤ c| lnh|1/2‖phs− sh‖H1/2 ≤ ch| lnh|1/2.
Hence

‖s− sh‖T ≤ ‖s− phs‖T + ‖phs− sh‖T
≤ ‖s− phs‖H1/2 + ‖s− phs‖C0 + ‖phs− sh‖T
≤ ch3/2 + ch2 + ch| lnh|1/2 ≤ ch| lnh|1/2,

by Proposition 2.4 and the observation above. �
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Theorem 2.2. Assume γ ∈ C4. Let u be a nondegenerate minimal surface span-
ning Γ with nondegeneracy constant λ. Then there exist positive constants h0 and
c0 depending on ‖γ‖C4 and ‖|γ′|−1‖L∞, and on λ in the case of h0, such that if
0 < h ≤ h0, then there is a discrete minimal surface uh satisfying

(44) ‖u− uh‖H1(Dh) ≤ c0λ−1h .

Moreover, there exists ε0 = ε0(‖γ‖C4, ‖|γ′|−1‖L∞ , λ) > 0 such that if u = Φ(γ ◦ s)
and uh = ΦhIh(γ ◦ sh), then uh is the unique discrete minimal surface satisfying

(45) ‖s− sh‖H1/2 ≤ ε0| log h|−1.

Proof. See [4, Theorem 5.5]. �

3. The L2
-estimates

Finally we are able to start discussing the L2-estimate. We want to prove the
following theorems.

Theorem 3.1. With the same hypotheses and notation as in Theorem 2.1 and the
additional assumption that γ ∈ C5, we have that

‖s− sh‖L2(∂D) ≤ ch3/2| lnh|3/4,

where the constant c does not depend on h.

Theorem 3.2. With the same hypotheses and notation as in Theorem 2.2 and the
additional assumption that γ ∈ C5, we have that

‖u− uh‖L2(Dh) ≤ ch2| lnh|3/2,

where the constant c does not depend on h.

The approach will initially be that of [2]; i.e., we will use Lemma 2.1 to esti-
mate ‖s− sh‖H−1/2(∂D). Then by means of the inequality (27), an estimate for
‖s− sh‖L2(∂D) will follow. Finally, using trace theory results and Proposition 2.8,
we will obtain Theorem 3.2.

Before beginning the proofs, we consider some estimates which will often be
used.

Proposition 3.1. Using the notation and the hypotheses of Theorem 3.1 and
Lemma 2.1, we have

‖sh‖C0,1(∂D) ≤ c| lnh|1/2,(46)

|γ ◦ sh − γ ◦ s|H1/2(∂D) ≤ ch,(47)

|γ ◦ phs− γ ◦ s|H1/2(∂D) ≤ ch3/2,(48)

|γ ◦ phs− γ ◦ sh|H1/2(∂D) ≤ ch,(49)

|γ ◦ sh − γ ◦ phs|H1(∂D) ≤ ch1/2,(50)

|γ ◦ phs− γ ◦ s|H1(∂D) ≤ ch,(51)

|γ ◦ s− γ ◦ sh|H1(∂D) ≤ ch1/2,(52)
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|γ′ ◦ sh − γ′ ◦ s|H1/2(∂D) ≤ ch,(53)

|γ′ ◦ sh − γ′ ◦ s|H1(∂D) ≤ ch1/2,(54)

|(γ′ ◦ sh − γ′ ◦ s)phφξ|H1/2(∂D) ≤ ch| lnh|1/2|ξ|H1/2(∂D),(55)

|(γ′ ◦ sh − γ′ ◦ s)phφξ|H1(∂D) ≤ ch1/2| lnh|1/2|ξ|H1/2(∂D),(56) (∑
j

|γ ◦ sh|2H2(π−1(Ej))

)1/2

≤ c| lnh|,(57)

(∑
j

|(γ′ ◦ sh)phφξ|2H2(π−1(Ej))

)1/2

≤ c| lnh||ξ|H1/2(∂D).(58)

Proof. First note that if we consider the space V = {v|v is piecewise (arcwise) linear
on S1}, where S1 has a fixed grid controlled by h, by using a rescaling argument
and the fact that on a finite dimensional space all norms are comparable, we get
[v]C0,1 ≤ h−1‖v‖C0 ∀v ∈ V (where [·]C0,1 is the C0,1- seminorm). Therefore

‖sh‖C0,1 ≤ ‖sh − phs‖C0 + [sh − phs]C0,1 + c‖s‖C0,1 by Prop. 2.4

≤ c| lnh|1/2h+ ch−1h| lnh|1/2 + c‖s‖C0,1 by (43)

≤ c| lnh|1/2 for h small.

For (47), using Proposition 2.6, (41), and Theorem 2.1, we compute

|γ ◦ sh − γ ◦ s|H1/2 ≤ c‖γ‖C2 (‖s‖C0,1 + ‖sh − s‖C0) ‖s− sh‖H1/2 ≤ ch.

In the same way we obtain (53).
For (48) we compute

|γ ◦ phs− γ ◦ s|H1/2

≤ c‖γ‖C2 (‖s‖C0,1 + ‖s− phs‖C0) ‖s− phs‖H1/2 by Prop. 2.6

≤ c‖γ‖C2 (‖s‖C0,1 + ch2‖s‖C2)h3/2 ‖s‖C2 ≤ ch3/2 by Prop. 2.4.

Now (49) follows from the triangle inequality, (47), and (48).
For (50) we compute

|γ ◦ sh − γ ◦ phs|H1

≤ c‖γ‖C2 ‖phs‖C0,1 ‖sh − phs‖H1 by (33)

≤ c‖γ‖C2 ‖s‖C0,1h−1/2 ‖sh − phs‖H1/2 by Prop. 2.4 and 2.3

≤ c‖γ‖C2 ‖s‖C0,1 h−1/2h ≤ ch1/2 by (42).

For (51) we use (33) and Proposition 2.4 to compute

|γ ◦ phs− γ ◦ s|H1 ≤ c‖γ‖C2 ‖s‖C0,1 ‖s− phs‖H1

≤ c‖γ‖C2 ‖s‖C0,1 h ‖s‖H2 ≤ ch.

Estimate (52) follows from the triangle inequality, (50), and (51). Estimate (54)
is established in a similar way.
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For (55) we compute

|(γ′ ◦ sh − γ′ ◦ s)phφξ|H1/2

≤ ‖γ′ ◦ sh − γ′ ◦ s‖C0 |phφξ|H1/2

+ |γ′ ◦ sh − γ′ ◦ s|H1/2 ‖phφξ‖C0 by Prop. 2.5

≤ ‖γ‖C2‖s− sh‖C0 (‖phφξ − φξ‖H1/2 + ‖φξ‖H1/2)

+ |γ′ ◦ sh − γ′ ◦ s|H1/2 ‖phφξ‖H1/2 | lnh|1/2 by Prop. 2.3

≤ c‖γ‖C2h | lnh|1/2 (h‖φξ‖H3/2‖φξ‖H3/2)

+ c‖γ‖C3h | lnh|1/2‖phφξ‖H1/2 by (41), Prop. 2.4, and (53)

≤ c‖γ‖C3h | lnh|1/2 (h|ξ|H1/2

+ |ξ|H1/2 ) ≤ ch| lnh|1/2|ξ|H1/2 by Lemma 2.1.

Note that we have also used the fact that ‖ · ‖H3/2 is equivalent to | · |H3/2 on
H ∩H3/2(∂D).

For (56) we compute

|(γ′ ◦ sh − γ′ ◦ s)phφξ|H1

≤ ‖γ′ ◦ sh − γ′ ◦ s‖C0 |phφξ|H1

+ |γ′ ◦ sh − γ′ ◦ s|H1 ‖phφξ‖C0 by Prop. 2.5

≤ ‖γ‖C2‖s− sh‖C0 (‖phφξ − φξ‖H1 + |φξ|H3/2 )

+ c|γ′ ◦ sh − γ′ ◦ s|H1 ‖phφξ‖H1/2 | lnh|1/2 by Prop. 2.3

≤ c‖γ‖C2h | lnh|1/2|ξ|H1/2 + c‖γ‖C3h1/2| lnh|1/2|ξ|H1/2 by (54) and (41)

≤ ch1/2| lnh|1/2|ξ|H1/2 .

To prove the last two inequalities, we exploit the fact that the second derivatives
of sh and phφξ vanish on each arc segment π−1(Ej) (recall that the Ej are the
boundary edges). More precisely, on each arc segment we have that (γ ◦ sh)′′ =
γ′′◦sh (s′h)2 and ((γ′ ◦ sh)phφξ)′′ = γ′′′◦sh (s′h)2phφξ + 2γ′′◦sh s′h phφ′ξ. Therefore
it follows from (46) that(∑

j

|γ ◦ sh|2H2(π−1(Ej))

) 1
2

≤
(∑

j

‖γ′′ ◦ sh (s′h)2‖2L2(π−1(Ej))

) 1
2 ≤ c‖sh‖2C0,1 ≤ c| lnh|.

Using (46), Proposition 2.4, and Lemma 2.1, we finally obtain(∑
j

|(γ′ ◦ sh)phφξ|2H2(π−1(Ej))

) 1
2

≤ c‖sh‖2C0,1 ‖phφξ‖L2 + c‖sh‖C0,1 |phφξ|H1

≤ c| lnh| ‖phφξ‖H1 ≤ c| lnh| (‖phφξ − φξ‖H1 + ‖φξ‖H1)

≤ c| lnh||φξ|H3/2 ≤ c| lnh||ξ|H1/2 .

�
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Proof of Theorem 3.1. As remarked above, the first step consists in finding an es-
timate for ‖s− sh‖H−1/2(∂D). By Lemma 2.1 we have∫

∂D

ξ(sh − s) = d2E(s)(φξ , sh − s)

= d2E(s)(φξ − phφξ, sh − s) + d2E(s)(phφξ, sh − s)
≡ A+B.

First we estimate

|A| = |d2E(s)(φξ − phφξ, sh − s)|
≤ c‖s− sh‖H1/2(∂D) ‖φξ − phφξ‖H1/2(∂D) by (10)

≤ ch2|φξ|H3/2(∂D) ≤ ch2|ξ|H1/2(∂D)

by Theorem 2.1, Proposition 2.4, and Lemma 2.1. Then we calculate

|B| = |d2E(s)(phφξ, sh − s)|
≤ |d2E(s)(phφξ, sh − s) + dE(s)(phφξ)

− dE(sh)(phφξ)|+ |dE(sh)(phφξ)|
≤ c‖s− sh‖2T ‖phφξ‖T + |dE(sh)(phφξ)| by Taylor’s theorem and Prop. 2.2

≤ ch2| lnh|3/2‖phφξ‖H1/2 + |dE(sh)(phφξ)| by (41) and Prop. 2.3

≤ ch2| lnh|3/2|ξ|H1/2 + |dE(sh)(phφξ)| by Prop. 2.4 and Lemma 2.1.

Now we want to give an estimate for |dE(sh)(phφξ)|. Since sh is stationary for
Eh, we know that dEh(sh)(ξh) = 0 for all ξh ∈ Hh. Hence

dE(sh)(phφξ) = dE(sh)(phφξ)− dEh(sh)(phφξ)

=
∫
D

∇u∇v −
∫
Dh

∇uh∇vh,

where

u = Φ(γ ◦ sh), uh = ΦhIh(γ ◦ sh),

v = Φ((γ′ ◦ sh)phφξ), vh = ΦhIh((γ′ ◦ sh)phφξ).

Next write

dE(sh)(phφξ) =
∫
Dh

∇u∇v −
∫
Dh

∇uh∇vh +
∫
D\Dh

∇u∇v

=
∫
Dh

∇(u− uh)∇(vh − v) +
∫
Dh

∇(u − uh)∇v

+
∫
Dh

∇u∇(v − vh) +
∫
D\Dh

∇u∇v ≡ I1 + I2 + I3 + I4.

Estimate of I1. We have

|I1| =
∣∣∣ ∫

Dh

∇(u − uh)∇(v − vh)
∣∣∣ ≤ |u− uh|H1(Dh) |v − vh|H1(Dh).
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For the first term we calculate

|u − uh|H1(Dh) = |Φ(γ ◦ sh)− ΦhIh(γ ◦ sh)|H1(Dh)

≤ |Φ(γ ◦ sh − γ ◦ s)− ΦhIh(γ ◦ sh − γ ◦ s)|H1(Dh)

+ |Φ(γ ◦ s)− ΦhIh(γ ◦ s)|H1(Dh)

≤ ch1/2|γ ◦ sh − γ ◦ s|H1(∂D) + ch|γ ◦ s|H3/2(∂D) by Prop. 2.7

≤ ch+ ch‖γ‖C2‖s‖H3/2 ≤ ch by (52).

For the second term we compute

|v − vh|H1(Dh) =
∣∣Φ((γ′ ◦ sh)phφξ

)
− ΦhIh

(
(γ′ ◦ sh)phφξ

)∣∣
H1(Dh)

≤
∣∣Φ((γ′ ◦ sh)phφξ − (γ′ ◦ s)phφξ

)
− ΦhIh

(
(γ′ ◦ sh)phφξ − (γ′ ◦ s)phφξ

)∣∣
H1(Dh)

+
∣∣Φ((γ′ ◦ s)phφξ)− ΦhIh

(
(γ′ ◦ s)phφξ

)∣∣
H1(Dh)

≤ ch1/2|(γ′ ◦ sh)phφξ − (γ′ ◦ s)phφξ|H1(∂D)

+
∣∣Φ((γ′ ◦ s)(phφξ − φξ))− ΦhIh

(
(γ′ ◦ s)(phφξ − φξ)

)∣∣
H1(Dh)

+
∣∣Φ((γ′ ◦ s)φξ)− ΦhIh

(
(γ′ ◦ s)φξ

)∣∣
H1(Dh)

by Prop. 2.7

≤ ch| lnh|1/2|ξ|H1/2(∂D) + ch1/2|(γ′ ◦ s)(phφξ − φξ)|H1(∂D)

+ ch|(γ′ ◦ s)φξ|H3/2(∂D) by (56) and by Prop. 2.7

≤ ch| lnh|1/2|ξ|H1/2(∂D) + ch1/2‖γ′ ◦ s‖C0,1 ‖phφξ − φξ‖H1(∂D)

+ ch‖γ′ ◦ s‖C2 ‖φξ‖H3/2(∂D) by Prop. 2.5

≤ ch| lnh|1/2|ξ|H1/2(∂D) + ch|φξ|H3/2(∂D) by Prop. 2.4

≤ ch| lnh|1/2|ξ|H1/2(∂D) by Lemma 2.1.

Therefore we get

|I1| ≤ ch2| lnh|1/2|ξ|H1/2(∂D).

Estimate of I2. From integration by parts we obtain

I2 =
∫
Dh

∇(u − uh)∇v =
∫
∂Dh

(u− uh)
∂v

∂ν
.

Therefore, by (36),

|I2| ≤
∥∥∥∂v
∂ν

∥∥∥
L2(∂Dh)

‖u− uh‖L2(∂Dh) ≤ c|v|H1(∂D) ‖u− uh‖L2(∂Dh).

The first term is estimated by

|v|H1(∂D) = |(γ′ ◦ sh)phφξ|H1(∂D)

≤ |(γ′ ◦ sh − γ′ ◦ s)phφξ|H1(∂D) + |(γ′ ◦ s)phφξ|H1(∂D)

≤ ch1/2| lnh|1/2|ξ|H1/2(∂D) + c‖γ′ ◦ s‖C0,1‖phφξ‖H1(∂D) by (56) and Prop. 2.5

≤ ch1/2| lnh|1/2|ξ|H1/2(∂D) + c
(
ch1/2|ξ|H1/2(∂D) + |ξ|H1/2(∂D)

)
≤ c|ξ|H1/2(∂D).
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For the second term we have

‖u− uh‖L2(∂Dh) = ‖Φ(γ ◦ sh)− ΦhIh(γ ◦ sh)‖L2(∂Dh)

≤ ‖Φ(γ ◦ sh) ◦ π − Ih(γ ◦ sh) ◦ π‖L2(∂D)

≤ ‖Φ(γ ◦ sh) ◦ π − (γ ◦ sh)‖L2(∂D) + ‖(γ ◦ sh)− I∂Dh (γ ◦ sh)‖L2(∂D)

≤ ch2|γ ◦ sh|H1(∂D) + ch2
(∑

j

|γ ◦ sh|2H2(π−1(Ej))

)1/2

.

For the last inequality we have used (35) and standard interpolation results. We
have |u|H1(∂D) = |γ ◦ sh|H1(∂D) ≤ |γ ◦ sh − γ ◦ s|H1(∂D) + |γ ◦ s|H1(∂D) ≤ c by (52).
Together with (57) we obtain

‖Φ(γ ◦ sh)− ΦhIh(γ ◦ sh)‖L2(∂Dh) ≤ ch2| lnh|.
Hence

|I2| ≤ ch2| lnh||ξ|H1/2(∂D).

Estimate of I3. Again by integration by parts we get

|I3| =
∣∣∣ ∫

Dh

∇u∇(v − vh)
∣∣∣ ≤ ∥∥∥∂u

∂ν

∥∥∥
L2(∂Dh)

‖v − vh‖L2(∂Dh)

≤ c|u|H1(∂D) ‖v − Ih((γ′ ◦ sh)phφξ)‖L2(∂Dh) by (36)

≤ c|γ ◦ sh|H1(∂D) ‖v ◦ π − Ih((γ′ ◦ sh)phφξ) ◦ π‖L2(∂D)

≤ c
(
‖v ◦ π − v‖L2(∂D) + ‖v − I∂Dh ((γ′ ◦ sh)phφξ)‖L2(∂D)

)
by (52)

≤ ch2|v|H1(∂D) + c‖(γ′ ◦ sh)phφξ − I∂Dh ((γ′ ◦ sh)phφξ)‖L2(∂D) by (35)

≤ ch2|v|H1(∂D) + ch2
(∑

j

|(γ′ ◦ sh)phφξ|2H2(π−1(Ej))

)1/2

by standard interpolation results. By the calculation above we have that |v|H1(∂D) =
|(γ′ ◦ sh)phφξ|H1(∂D) ≤ c|ξ|H1/2(∂D). Together with (58) we obtain

|I3| ≤ ch2| lnh||ξ|H1/2(∂D).

Estimate of I4.

|I4| =
∣∣∣ ∫

D\Dh
∇u∇v

∣∣∣ ≤ |u|H1(D\Dh) |v|H1(D\Dh)

≤ ch2|u|H1(∂D) |v|H1(∂D) by (34)

= ch2|γ ◦ sh|H1(∂D) |(γ′ ◦ sh)phφξ|H1(∂D) ≤ ch2|ξ|H1/2(∂D),

by what we remarked above.
From the estimates for I1, I2, I3 and I4, we finally obtain

|dE(sh)(phφξ)| ≤ |I1|+ |I2|+ |I3|+ |I4| ≤ ch2| lnh||ξ|H1/2(∂D).

This leads to

|B| ≤ ch2| lnh|3/2|ξ|H1/2(∂D) + |dE(sh)(phφξ)| ≤ ch2| lnh|3/2|ξ|H1/2(∂D),

and therefore we can write∫
∂D

ξ(sh − s) ≤ |A|+ |B| ≤ ch2| lnh|3/2|ξ|H1/2(∂D).



1776 PAOLA POZZI

It follows that

(59) ‖s− sh‖H−1/2 = sup
‖ξ‖

H1/2(∂D)
=1

∫
∂D

ξ(sh − s) ≤ ch2| lnh|3/2.

The claim of Theorem 3.1 now follows from Theorem 2.1 and (27). �

Proof of Theorem 3.2. Following the notation of Theorem 2.2, let

u = Φ(γ ◦ s), uh = ΦhIh(γ ◦ sh).

We want to give an estimate for ‖u− uh‖L2(Dh). Write

‖u− uh‖L2(Dh)

≤ ‖Φ(γ ◦ s)− Φ(γ ◦ sh)‖L2(Dh) + ‖Φ(γ ◦ sh)− ΦhIh(γ ◦ sh)‖L2(Dh)

≡ C +D.

We have that

C = ‖Φ(γ ◦ s)− Φ(γ ◦ sh)‖L2(Dh) ≤ ‖Φ(γ ◦ s)− Φ(γ ◦ sh)‖L2(D)

≤ c‖γ ◦ s− γ ◦ sh‖H−1/2(∂D) by trace theory results

≤ c‖γ′(s)(sh − s)‖H−1/2(∂D)

+ c
∥∥∥(s− sh)2

∫ 1

0

(1 − q)γ′′(s+ q(sh − s))dq
∥∥∥
H−1/2(∂D)

by Taylor

≤ c‖sh − s‖H−1/2(∂D) + c‖sh − s‖C0 ‖sh − s‖H−1/2(∂D)

≤ ch2| lnh|3/2 + h3| lnh|2 ≤ ch2| lnh|3/2 by (59) and (41).

Finally,

D = ‖Φ(γ ◦ sh)− ΦhIh(γ ◦ sh)‖L2(Dh)

≤ ‖Φ(γ ◦ sh − γ ◦ s)− ΦhIh(γ ◦ sh − γ ◦ s)‖L2(Dh)

+ ‖Φ(γ ◦ s)− ΦhIh(γ ◦ s)‖L2(Dh)

≤ ch3/2|γ ◦ sh − γ ◦ s|H1(∂D)

+ c‖(γ ◦ sh − γ ◦ s)− I∂Dh (γ ◦ sh − γ ◦ s)‖L2(∂D)

+ ch2|γ ◦ s|H3/2(∂D) + c‖γ ◦ s− I∂Dh (γ ◦ s)‖L2(∂D) by Prop. 2.8

≤ ch2 + c‖(γ ◦ sh − γ ◦ s)− I∂Dh (γ ◦ sh − γ ◦ s)‖L2(∂D)

by (52) and standard interpolation results

≤ ch2 + ch2
(∑

j

|γ ◦ sh − γ ◦ s|2H2(π−1(Ej))

)1/2

≤ ch2| lnh| by (57).

Theorem 3.2 now follows immediately from the estimates obtained for the terms C
and D. �

Final remarks. In [3, Section 6] J. Hutchinson and G. Dziuk analyse the
problem of the classical Enneper surface with parameter R and calculate the order
of convergence between the smooth and the discrete solution. They study three
different cases corresponding to different choices of R, and in each case a different
grid is used in order to make the comparison more realistic. These experiments
confirm the L2 convergence rate established in Theorem 3.2.
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