# $L^{2}$-ESTIMATE FOR THE DISCRETE PLATEAU PROBLEM 

PAOLA POZZI


#### Abstract

In this paper we prove the $L^{2}$ convergence rates for a fully discrete finite element procedure for approximating minimal, possibly unstable, surfaces.

Originally this problem was studied by G. Dziuk and J. Hutchinson. First they provided convergence rates in the $H^{1}$ and $L^{2}$ norms for the boundary integral method. Subsequently they obtained the $H^{1}$ convergence estimates using a fully discrete finite element method. We use the latter framework for our investigation.


## 1. Introduction

A disk-like minimal surface or solution of the Plateau Problem is a surface in $\mathbb{R}^{n}$ which has the topology of the unit disc, spans a given boundary curve $\Gamma \in \mathbb{R}^{n}$, and either minimizes, or more generally is stationary for, the area functional. By studying the problem in detail, it turns out that an equivalent and more convenient formulation is the following characterisation.

Let $D$ be the unit disc in $\mathbb{R}^{2}$ and $\Gamma$ be a smooth Jordan curve in $\mathbb{R}^{n}$. Let $\mathcal{F}$ be the class of harmonic maps $u: \bar{D} \rightarrow \mathbb{R}^{n}$ such that $\left.u\right|_{\partial D}: \partial D \rightarrow \Gamma$ is monotone and satisfies a certain integral "three-point condition"; cf. (1). The function $u \in \mathcal{F}$ is said to be a minimal surface if $u$ is stationary in $\mathcal{F}$ for the Dirichlet energy $\mathcal{D}(u)=\frac{1}{2} \int_{D}|\nabla u|^{2}$. Such a map $u$ provides an harmonic conformal parametrisation of the corresponding minimal surface.

The formulation of the corresponding discrete problem is as follows. Let $D_{h}$ be a quasi-uniform triangulation of $D$ with grid size controlled by $h$. Let $\mathcal{F}_{h}$ be the class of discrete harmonic maps $u_{h}: \overline{D_{h}} \rightarrow \mathbb{R}^{n}$ for which $u_{h}\left(\phi_{j}\right) \in \Gamma$ whenever $\phi_{j}$ is a boundary node of $D_{h}$, and which satisfy an analogue of the previous integral "three-point condition". The function $u_{h} \in \mathcal{F}_{h}$ is said to be a discrete minimal surface if $u_{h}$ is stationary within $\mathcal{F}_{h}$ for the Dirichlet energy $\mathcal{D}\left(u_{h}\right)=\frac{1}{2} \int_{D_{h}}\left|\nabla u_{h}\right|^{2}$ (see below for a precise formulation).

The main result proved in [4] is that if $u$ is a nondegenerate minimal surface spanning $\Gamma$, then there exists a discrete minimal surface $u_{h}$, unique in a ball of "almost" constant radius $\epsilon_{0}|\log h|^{-1}$, such that $\left\|u-u_{h}\right\|_{H^{1}\left(D_{h}\right)} \leq c h$, where $c$ depends on $\Gamma$ and the nondegeneracy constant for $u$, but is independent of $h$ (see Theorem 2.2 of this paper).

[^0]In this paper, which can be considered a continuation of [3] and [4], we prove the additional estimate

$$
\left\|u-u_{h}\right\|_{L^{2}\left(D_{h}\right)} \leq c h^{2}|\log h|^{3 / 2}
$$

The author would like to thank John Hutchinson for valuable advice and encouragement during the investigation of this problem.

## 2. Preliminary estimates and theorems

In this section we will concisely recall some definitions, estimates, and theorems from the papers cited above.
2.1. The smooth energy functional. Let $D$ be the open unit disc in $\mathbb{R}^{2}$, with boundary $\partial D$. Denote by $S^{1}$ another distinct copy of the unit circle. Let $\Gamma$ be a Jordan curve in $\mathbb{R}^{n}$ with regular $C^{r}$-parametrisation $\gamma: S^{1} \rightarrow \Gamma$ where $r \geq 3$. (Note that more regularity will be required when stating the main theorems.)

The reason for introducing $S^{1}$ and fixing a parametrisation $\gamma$ is that each map $f: \partial D \rightarrow \Gamma$ can be uniquely written in the form $f=\gamma \circ s$, where $s: \partial D \rightarrow S^{1}$. It turns out that it is more convenient to make use of such a factorisation and work in the space of $\left\{s \mid s: \partial D \rightarrow S^{1}\right\}$. Recall also that we are interested in working in the class of harmonic functions and that information on the boundary alone is sufficient to completely determine such a function.

For $f: \partial D \rightarrow \mathbb{R}^{n}$, we denote by $\Phi(f): \bar{D} \rightarrow \mathbb{R}^{n}$ its unique harmonic extension to $D$, specified by

$$
\triangle \Phi(f)=0 \text { in } D, \quad \Phi(f)=f \text { on } \partial D
$$

Then $\Phi: H^{1 / 2}\left(\partial D, \mathbb{R}^{n}\right) \rightarrow H^{1}\left(D, \mathbb{R}^{n}\right)$ is a bounded linear map with bounded inverse.

We will use the Hilbert space $H$ of functions defined by

$$
H=\left\{\xi:\left.\partial D \rightarrow \mathbb{R}| | \xi\right|_{H^{1 / 2}} \leq \infty \text { and }(1) \text { is satisfied }\right\}
$$

where

$$
\begin{equation*}
\int_{0}^{2 \pi} \xi(\phi) d \phi=0, \quad \int_{0}^{2 \pi} \xi(\phi) \cos \phi d \phi=0, \quad \int_{0}^{2 \pi} \xi(\phi) \sin \phi d \phi=0 \tag{1}
\end{equation*}
$$

The norm on $H$ is the usual norm $\|\cdot\|_{H^{1 / 2}}$, which by the first condition in (1) and Poincaré's inequality is equivalent to $|\cdot|_{H^{1 / 2}}$. The corresponding affine space of maps $s: \partial D \rightarrow S^{1}$ such that $s(\phi)=\phi+\sigma(\phi)$ for some $\sigma \in H$ is denoted by $\mathcal{H}$. We also need the Banach space $T$ defined by $T=H \cap C^{0}(\partial D, \mathbb{R})$ with norm $\|\xi\|_{T}=\|\xi\|_{H^{1 / 2}}+\|\xi\|_{C^{0}}$. The corresponding affine space $\mathcal{T}$ is defined by $\mathcal{T}=\mathcal{H} \cap C^{0}\left(\partial D, S^{1}\right)$. With some abuse of notation we write $\|s\|=1+\|\sigma\|$ for various norms $\|\cdot\|$ on $\sigma$.

The energy functional $E$ is defined on $\mathcal{H}$ by

$$
\begin{equation*}
E(s)=\frac{1}{2} \int_{D}|\nabla \Phi(\gamma \circ s)|^{2}=\mathcal{D}(\Phi(\gamma \circ s)) \tag{2}
\end{equation*}
$$

Finiteness of $E$ follows from (8).
We say that the harmonic function $u=\Phi(\gamma \circ s)$ is a minimal surface spanning $\Gamma$ if $s$ is monotone and stationary for $E$; i.e.,

$$
\begin{equation*}
\left\langle E^{\prime}(s), \xi\right\rangle=0 \quad \forall \xi \in T \tag{3}
\end{equation*}
$$

We have the following regularity result (see [4, Proposition 2.1]).

Proposition 2.1. If $\gamma \in C^{k, \alpha}$, where $k \geq 1$ and $0<\alpha<1$, and $s \in \mathcal{T}$ is monotone and stationary for $E$, then

$$
\|s\|_{C^{k, \alpha}} \leq c=c\left(\|\gamma\|_{C^{k, \alpha}},\left\|\left|\gamma^{\prime}\right|^{-1}\right\|_{L^{\infty}}\right)
$$

We next recall some properties of the energy functional from [3, Section 3.3]. Using the notation

$$
\begin{equation*}
u=\Phi(\gamma \circ s), \quad v=\Phi\left(\gamma^{\prime} \circ s \xi\right), \quad w=\Phi\left(\gamma^{\prime \prime} \circ s \xi^{2}\right) \tag{4}
\end{equation*}
$$

we get by formal computation that

$$
\begin{gather*}
E(s)=\frac{1}{2} \int_{D}|\nabla u|^{2},  \tag{5}\\
\left\langle E^{\prime}(s), \xi\right\rangle=\left.\frac{d}{d t}\right|_{t=0} E(s+t \xi)=\frac{1}{2} \int_{D} \nabla u \nabla v,  \tag{6}\\
E^{\prime \prime}(s)(\xi, \xi)=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} E(s+t \xi)=\int_{D} \nabla u \nabla w+\int_{D}|\nabla v|^{2}, \tag{7}
\end{gather*}
$$

with an analogous expression for $E^{\prime \prime}(s)(\xi, \eta)$ obtained by bilinearity in the case of distinct variations.

Proposition 2.2. If $\gamma$ is $C^{r}$ the energy functional $E: \mathcal{T} \rightarrow \mathbb{R}$ is $C^{r-1}$. Let $s=i d+\sigma$. Then

$$
\begin{aligned}
& E(s) \leq c\left(\|\gamma\|_{C^{1}}\right)\left(1+|\sigma|_{H^{1 / 2}}^{2}\right) \\
&\left|d^{j} E(s)\left(\xi_{1}, \ldots, \xi_{j}\right)\right| \leq c\left(\|\gamma\|_{C^{j}+1}\right)\left(1+|\sigma|_{H^{1 / 2}}^{2}\right)\left\|\xi_{1}\right\|_{T} \cdot \ldots \cdot\left\|\xi_{j}\right\|_{T}
\end{aligned}
$$

for $1 \leq j \leq r-1$.
Proof. See [2, Proposition 2.1].
The functional $E$ is not differentiable on $\mathcal{H}$, but if $\gamma$ and $s$ are as smooth as is necessary for the following estimates, then we have

$$
\begin{gather*}
E(s) \leq c\|\gamma\|_{C^{1}}^{2}\|s\|_{H^{1 / 2}}^{2}  \tag{8}\\
\left|\left\langle E^{\prime}(s), \xi\right\rangle\right| \leq c\|\gamma\|_{C^{2}}^{2}\|s\|_{C^{1}}^{2}\|\xi\|_{H^{1 / 2}}  \tag{9}\\
\left|E^{\prime \prime}(s)(\xi, \eta)\right| \leq c\|\gamma\|_{C^{2}}^{2}\|s\|_{C^{1}}^{2}\|\xi\|_{H^{1 / 2}}\|\eta\|_{H^{1 / 2}} \tag{10}
\end{gather*}
$$

In particular this will be used in case $s$ is stationary for $E$.
It is important to consider the behaviour of the second derivatives of $E$ near a stationary point $s \in \mathcal{T}$. The second derivative $E^{\prime \prime}(s)$ can be interpreted as a self-adjoint bounded map $\nabla^{2} E(s): H \rightarrow H$. Let

$$
\begin{equation*}
H=H^{-} \oplus H^{0} \oplus H^{+}, \quad \xi=\xi^{-}+\xi^{0}+\xi^{+} \quad \text { if } \xi \in H \tag{11}
\end{equation*}
$$

be the orthogonal decomposition generated by the eigenfunctions of $\nabla^{2} E(s)$ having negative, zero, and positive eigenvalues, respectively.

For $s$ monotone and stationary for $E$, we say $s$ is nondegenerate if $H^{0}=\{0\}$. The corresponding minimal surface $u=\Phi(\gamma \circ s)$ is also said to be nondegenerate. If $s$ is nondegenerate, it follows that there exists a $\lambda>0$ such that for $\xi \in H$

$$
\begin{equation*}
E^{\prime \prime}(s)\left(\xi, \xi^{+}-\xi^{-}\right)=E^{\prime \prime}(s)\left(\xi^{+}, \xi^{+}\right)-E^{\prime \prime}(s)\left(\xi^{-}, \xi^{-}\right) \geq \lambda\|\xi\|_{H^{1 / 2}}^{2} \tag{12}
\end{equation*}
$$

We call $\lambda$ a nondegeneracy constant for $s$.
2.2. The discrete energy functional. Let $\mathcal{G}_{h}$ be a quasi-uniform triangulation of $D$ with grid size comparable to $h$. Let

$$
\begin{aligned}
D_{h} & =\bigcup\left\{G \mid G \in \mathcal{G}_{h}\right\} \\
\partial D_{h} & =\bigcup\left\{E_{j} \mid 1 \leq j \leq M\right\} \quad \text { where the } E_{j} \text { are the boundary edges, } \\
\mathcal{B}_{h} & =\left\{\phi_{1}, \ldots, \phi_{M}\right\} \quad \text { be the set of boundary nodes. }
\end{aligned}
$$

The projection $\pi: \partial D \rightarrow \partial D_{h}$ is defined by

$$
\begin{equation*}
\pi\left(e^{i\left((1-t) \phi_{j}+t \phi_{j+1}\right)}\right)=(1-t) e^{i \phi_{j}}+t e^{i \phi_{j+1}} \tag{13}
\end{equation*}
$$

for $0 \leq t \leq 1,1 \leq j \leq M$.
In order to have a discrete analogue $E_{h}$ of the functional $E$, we define the following discrete analogues of $H^{1}\left(D, \mathbb{R}^{n}\right), H^{1 / 2}\left(\partial D, \mathbb{R}^{n}\right), H, T, \mathcal{H}$ and $\mathcal{T}$ :

$$
\begin{gather*}
X_{h}^{n}=\left\{u_{h} \in C^{0}\left(D_{h}, \mathbb{R}^{n}\right) \mid u_{h} \in P_{1}(G) \text { for } G \in \mathcal{G}_{h}\right\}  \tag{14}\\
x_{h}^{n}=\left\{f_{h} \in C^{0}\left(\partial D_{h}, \mathbb{R}^{n}\right) \mid f_{h} \in P_{1}\left(E_{j}\right) \text { for } 1 \leq j \leq M\right\}  \tag{15}\\
H_{h}=\left\{\xi_{h} \in C^{0}(\partial D, \mathbb{R}) \mid \xi_{h} \in P_{1}\left(\pi^{-1}\left(E_{j}\right)\right) \text { if } 1 \leq j \leq M, \xi_{h} \text { satisfies (1) }\right\},  \tag{16}\\
\mathcal{H}_{h}=\left\{s_{h} \in C^{0}\left(\partial D, S^{1}\right) \mid s_{h}(\phi)=\phi+\sigma_{h}(\phi) \text { for some } \sigma_{h} \in H_{h}\right\} \tag{17}
\end{gather*}
$$

Thus $H_{h} \subset T \subset H, \mathcal{H}_{h} \subset \mathcal{T} \subset \mathcal{H}$, and the space of variations at $s_{h} \in \mathcal{H}_{h}$ is naturally identified with $H_{h}$. We write $X_{h}=X_{h}^{1}$ and $x_{h}=x_{h}^{1}$.

We have the following inverse-type estimates.
Proposition 2.3. If $\xi_{h} \in H_{h}$, then

$$
\begin{gather*}
\left\|\xi_{h}\right\|_{H^{1}} \leq c h^{-1 / 2}\left\|\xi_{h}\right\|_{H^{1 / 2}}  \tag{18}\\
\left\|\xi_{h}\right\|_{H^{1 / 2}} \leq\left\|\xi_{h}\right\|_{T} \leq c|\ln h|^{1 / 2}\left\|\xi_{h}\right\|_{H^{1 / 2}} \tag{19}
\end{gather*}
$$

for $h$ small.
Proof. The first estimate is standard. The second is in [1, Proposition 5.3].
Suppose $f \in C^{0}\left(\partial D, \mathbb{R}^{n}\right)$. We define the "linear interpolants"

$$
\begin{aligned}
I_{h} f \in x_{h}^{n}, \quad I_{h} f\left((1-t) e^{i \phi_{j}}+t e^{\phi_{j+1}}\right) & =(1-t) f\left(e^{\phi_{j}}\right)+t f\left(e^{\phi_{j+1}}\right), \\
I_{h}^{\partial D} f \in C^{0}\left(\partial D, \mathbb{R}^{n}\right), \quad I_{h}^{\partial D} f\left(e^{i\left((1-t) \phi_{j}+t \phi_{j+1}\right)}\right) & =(1-t) f\left(e^{\phi_{j}}\right)+t f\left(e^{\phi_{j+1}}\right),
\end{aligned}
$$

where $0 \leq t \leq 1,1 \leq j \leq M$. Here and elsewhere, $\phi_{M+1}=\phi_{1}$. Note the different domains $\partial D_{h}$ and $\partial D$ of $I_{h} f$ and $I_{h}^{\partial D} f$, respectively. Note also that the image of $I_{h}(\gamma \circ s)$ is a polygonal approximation to $\Gamma$ and that $I_{h}(\gamma \circ s)\left(\phi_{j}\right)=\gamma \circ s\left(\phi_{j}\right) \in \Gamma$ for $\phi_{j} \in \mathcal{B}_{h}$. Finally,

$$
\begin{equation*}
I_{h}^{\partial D} f=I_{h} f \circ \pi \tag{20}
\end{equation*}
$$

Another type of approximation operator we require is a map $p_{h}: T(\mathcal{T}) \rightarrow$ $H_{h}\left(\mathcal{H}_{h}\right)$, which acts like an interpolation operator and preserves the normalisation condition (1). The proof of the following is essentially given in [1] Proposition 5.2].

Proposition 2.4. There is a bounded linear operator $p_{h}: T \rightarrow H_{h}$, such that (in particular)

$$
\begin{equation*}
\left\|\xi-p_{h} \xi\right\|_{H^{s}} \leq c h^{k-s}\|\xi\|_{H^{k}} \tag{21}
\end{equation*}
$$

for $s=0, \frac{1}{2}, 1$ and $k=1, \frac{3}{2}, 2$. Moreover,

$$
\begin{array}{cl}
\left\|\xi-p_{h} \xi\right\|_{C^{0,1}} \leq c h\|\xi\|_{C^{2}}, & \left\|p_{h} \xi\right\|_{C^{0,1}} \leq c\|\xi\|_{C^{0,1}} \\
\left\|\xi-p_{h} \xi\right\|_{C^{0}} \leq c h^{2}\|\xi\|_{C^{2}}, & \left\|\xi-p_{h} \xi\right\|_{C^{0}} \leq c h\|\xi\|_{C^{1}} \tag{23}
\end{array}
$$

If $s \in \mathcal{T}$ and $s(\phi)=\phi+\sigma(\phi)$, then $p_{h} s$ is defined by $p_{h} s(\phi)=\phi+p_{h} \sigma(\phi)$ and $s-p_{h} s=\sigma-p_{h} \sigma$. Hence $p_{h} s$ satisfies estimates similar to those for $p_{h} \xi$.

For $f_{h} \in x_{h}$ the discrete harmonic extension $\Phi_{h} f_{h} \in X_{h}$ is defined by

$$
\begin{equation*}
\triangle_{h} \Phi_{h} f_{h}=0 \text { in } D_{h}, \quad \Phi_{h} f_{h}=f_{h} \text { on } \partial D_{h} \tag{24}
\end{equation*}
$$

Here $\triangle_{h}$ is the discrete Laplacian and so the first equation in (24) is interpreted as $\int_{D_{h}} \nabla\left(\Phi_{h} f_{h}\right) \nabla \psi_{h}=0$ for all $\psi_{h}$ in $X_{h}$ such that $\psi_{h}=0$ on $\partial D_{h}$. If $f_{h} \in x_{h}^{n}$ the discrete harmonic extension $\Phi_{h} f_{h}$ is defined componentwise.

For $s_{h} \in \mathcal{H}_{h}$ the discrete energy functional $E_{h}$ is defined by

$$
\begin{equation*}
E_{h}\left(s_{h}\right)=\frac{1}{2} \int_{D_{h}}\left|\nabla \Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right|^{2}=\mathcal{D}_{h}\left(\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right) \tag{25}
\end{equation*}
$$

Note that $E_{h}$ is of course not the restriction of $E$ to $\mathcal{H}_{h}$. The discrete harmonic function $u_{h}=\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)$ is said to be a discrete minimal surface spanning $\Gamma$, or a solution of the discrete Plateau Problem for $\Gamma$, if

$$
\begin{equation*}
\left\langle E_{h}^{\prime}\left(s_{h}\right), \xi_{h}\right\rangle=0 \quad \forall \xi_{h} \in H_{h} . \tag{26}
\end{equation*}
$$

Note that we do not require monotonicity of $s_{h}$, as in the case for $s$ in (3). The derivatives of $E_{h}$ are given by

$$
\begin{aligned}
E_{h}\left(s_{h}\right) & =\frac{1}{2} \int_{D_{h}}\left|\nabla u_{h}\right|^{2} \\
\left\langle E_{h}^{\prime}\left(s_{h}\right), \xi_{h}\right\rangle & =\frac{1}{2} \int_{D_{h}} \nabla u_{h} \nabla v_{h} \\
E_{h}^{\prime \prime}\left(s_{h}\right)\left(\xi_{h}, \xi_{h}\right) & =\int_{D_{h}} \nabla u_{h} \nabla w_{h}+\int_{D_{h}}\left|\nabla v_{h}\right|^{2}
\end{aligned}
$$

where

$$
u_{h}=\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right), \quad v_{h}=\Phi_{h} I_{h}\left(\gamma^{\prime} \circ s_{h} \xi_{h}\right), \quad w_{h}=\Phi_{h} I_{h}\left(\gamma^{\prime \prime} \circ s_{h} \xi_{h}^{2}\right)
$$

2.3. The negative space. Let us define $H^{-1 / 2}(\partial D)$ to be the dual space of $H^{1 / 2}(\partial D)$ with the usual operator norm. There is a natural imbedding $H^{1 / 2}(\partial D) \hookrightarrow$ $H^{-1 / 2}(\partial D)$ given by

$$
\langle\zeta, \eta\rangle=\int_{\partial D} \zeta \eta \quad \forall \eta \in H^{1 / 2}(\partial D)
$$

where $\langle\cdot, \cdot\rangle$ is the dual pairing of $H^{-1 / 2}(\partial D)$ and $H^{1 / 2}(\partial D)$. Thus

$$
\|\zeta\|_{H^{-1 / 2}(\partial D)}=\sup _{\|\eta\|_{H^{1 / 2}(\partial D)}=1} \int_{\partial D} \zeta \eta
$$

We will need the interpolation result

$$
\begin{equation*}
\|\zeta\|_{L^{2}(\partial D)} \leq c\|\zeta\|_{H^{-1 / 2}(\partial D)}^{1 / 2}\|\zeta\|_{H^{1 / 2}(\partial D)}^{1 / 2} \tag{27}
\end{equation*}
$$

which follows from the relevant definitions.
2.4. Preliminary estimates. We will make use of the following estimates.

Proposition 2.5. Suppose $f, g: \partial D \rightarrow \mathbb{R}$. Then

$$
\begin{align*}
|f g|_{H^{1 / 2}} & \leq\|f\|_{C^{0}}|g|_{H^{1 / 2}}+|f|_{H^{1 / 2}}\|g\|_{C^{0}}  \tag{28}\\
\|f g\|_{H^{1 / 2}} & \leq c\|f\|_{C^{0,1}}\|g\|_{H^{1 / 2}}  \tag{29}\\
|f g|_{H^{1}} & \leq\|f\|_{C^{0}}|g|_{H^{1}}+|f|_{H^{1}}\|g\|_{C^{0}}  \tag{30}\\
\|f g\|_{H^{1}} & \leq c\|f\|_{C^{0,1}}\|g\|_{H^{1}}  \tag{31}\\
\|f g\|_{H^{3 / 2}} & \leq c\|f\|_{C^{2}}\|g\|_{H^{3 / 2}} \tag{32}
\end{align*}
$$

Proof. These follow by direct computation. See [4, Proposition 3.1].
The following proposition will typically be applied in case $g$ is $\gamma, \gamma^{\prime}$ or $\gamma^{\prime \prime}$ (and in particular is $C^{1}$ ), and where either $s_{1}=s_{0}$ and $s_{2}=p_{h} s_{0}$, or $s_{1}=p_{h} s_{0}$ and $s_{2}=p_{h} s_{0}+\eta_{h}$ for some $\eta_{h} \in H_{h}$.

Proposition 2.6. Suppose $s_{i}=i d+\sigma_{i}: \partial D \rightarrow S^{1}$ for $i=1,2$, and $g: S^{1} \rightarrow \mathbb{R}$. Then

$$
\begin{aligned}
& \left|g \circ s_{1}-g \circ s_{2}\right|_{H^{1 / 2}} \leq c\|g\|_{C^{2}}\left(\left\|s_{1}\right\|_{C^{0,1}}+\left\|s_{1}-s_{2}\right\|_{C^{0}}\right)\left\|s_{1}-s_{2}\right\|_{H^{1 / 2}}, \\
& \left|g \circ s_{1}-g \circ s_{2}\right|_{H^{1}} \leq c\|g\|_{C^{2}}\left\|s_{1}\right\|_{C^{0,1}}\left\|s_{1}-s_{2}\right\|_{H^{1}} .
\end{aligned}
$$

Proof. This follows by direct computation. See [4, Proposition 3.3].
Proposition 2.7. If $f \in H^{s}\left(\partial D, \mathbb{R}^{n}\right)$, where $s=1,3 / 2$, then

$$
\begin{aligned}
\left|\Phi(f)-\Phi_{h} I_{h}(f)\right|_{H^{1}\left(D_{h}\right)} & \leq c h^{s-1 / 2}|f|_{H^{s}(\partial D)} \\
\left|\Phi_{h} I_{h}(f)\right|_{H^{1}\left(D_{h}\right)} & \leq|f|_{H^{1 / 2}(\partial D)}+c h^{s-1 / 2}|f|_{H^{s}(\partial D)}
\end{aligned}
$$

Proof. See 4, Proposition 3.4]. Standard methods are used.
Proposition 2.8. If $f \in H^{s}\left(\partial D, \mathbb{R}^{n}\right)$, where $s=1,3 / 2$, then

$$
\begin{aligned}
\left\|\Phi(f)-\Phi_{h} I_{h}(f)\right\|_{L^{2}\left(D_{h}\right)} & \leq c h^{s+1 / 2}|f|_{H^{s}(\partial D)}+\left\|f-I_{h}^{\partial D}(f)\right\|_{L^{2}(\partial D)} \\
\left\|\Phi_{h} I_{h}(f)\right\|_{L^{2}\left(D_{h}\right)} & \leq\|f\|_{L^{2}(\partial D)}+c h^{s}|f|_{H^{s}(\partial D)}
\end{aligned}
$$

Proof. See [5, Theorem 1]. An Aubin-Nitsche type of argument is used.
Proposition 2.9. Suppose $u$ is harmonic in $D$, with trace $\left.u\right|_{\partial D}$ in $L^{2}(\partial D)$ or in $H^{1}(\partial D)$, as appropriate. Then

$$
\begin{align*}
\|u\|_{L^{2}\left(D \backslash D_{h}\right)} & \leq c h\|u\|_{L^{2}(\partial D)},  \tag{33}\\
\|\nabla u\|_{L^{2}\left(D \backslash D_{h}\right)} & \leq c h|u|_{H^{1}(\partial D)},  \tag{34}\\
\|u-u \circ \pi\|_{L^{2}(\partial D)} & \leq c h^{2}|u|_{H^{1}(\partial D)},  \tag{35}\\
\left\|\frac{\partial u}{\partial \nu}\right\|_{L^{2}\left(\partial D_{h}\right)} & \leq c|u|_{H^{1}(\partial D)} . \tag{36}
\end{align*}
$$

Proof. See 4, Proposition 3.7].
2.5. Main theorems. The following theorems and lemma are the starting points for the proof of the $L^{2}$-estimate. Recall $\gamma \in C^{r}$. Define

$$
H^{3 / 2}(\partial D)=\left\{\xi \in H^{1 / 2}(\partial D): \xi^{\prime} \in H^{1 / 2}(\partial D)\right\}
$$

where $\xi^{\prime}$ is the distributional derivative of $\xi$. Define the seminorm

$$
|\xi|_{H^{3 / 2}(\partial D)}=\left|\xi^{\prime}\right|_{H^{1 / 2}(\partial D)}
$$

and the norm

$$
\|\xi\|_{H^{3 / 2}(\partial D)}=|\xi|_{H^{3 / 2}(\partial D)}+\|\xi\|_{L^{2}(\partial D)}
$$

Lemma 2.1. Assume $r \geq 5$ and $s$ is a nondegenerate stationary point for $E$. Suppose $\xi \in H$. Then the "adjoint" problem

$$
\begin{equation*}
d^{2} E(s)\left(\phi_{\xi}, \eta\right)=\int_{\partial D} \xi \eta \quad \forall \eta \in H \tag{37}
\end{equation*}
$$

has a unique solution $\phi_{\xi} \in H$. Moreover, $\phi_{\xi} \in H^{3 / 2}(\partial D)$ and

$$
\begin{equation*}
\left|\phi_{\xi}\right|_{H^{3 / 2}(\partial D)} \leq c|\xi|_{H^{1 / 2}(\partial D)} \tag{38}
\end{equation*}
$$

The constant $c$ depends on $s$.
Proof. See 2, Lemma 4.2].
Theorem 2.1. Assume $\gamma \in C^{4}$. Let $s$ be a monotone nondegenerate stationary point for $E$, with nondegeneracy constant $\lambda$. Then there exist positive constants $h_{0}$ and $c_{0}$ depending on $\|\gamma\|_{C^{4}}$ and $\left\|\left|\gamma^{\prime}\right|^{-1}\right\|_{L^{\infty}}$, and on $\lambda$ in the case of $h_{0}$, such that if $0<h \leq h_{0}$, then there exists $s_{h} \in \mathcal{H}_{h}$ which is stationary for $E_{h}$ and satisfies

$$
\begin{equation*}
\left\|s-s_{h}\right\|_{H^{1 / 2}} \leq c_{0} \lambda^{-1} h \tag{39}
\end{equation*}
$$

Moreover, there exists $\epsilon_{0}=\epsilon_{0}\left(\|\gamma\|_{C^{4}},\left\|\left|\gamma^{\prime}\right|^{-1}\right\|_{L^{\infty}}, \lambda\right)>0$ such that $s_{h}$ is the unique stationary point for $E_{h}$, satisfying

$$
\begin{equation*}
\left\|s-s_{h}\right\|_{H^{1 / 2}} \leq \epsilon_{0}|\log h|^{-1} \tag{40}
\end{equation*}
$$

Proof. See [4, Theorem 5.4].
Corollary 2.1. Under the same hypotheses and using the same notation of Theorem [2.1] we have

$$
\begin{equation*}
\left\|s-s_{h}\right\|_{T} \leq c h|\ln h|^{1 / 2} \tag{41}
\end{equation*}
$$

where $c$ is independent of $h$.
Proof. Recall that in the proof of Theorem [2.1 (4, (118)]) the estimate

$$
\begin{equation*}
\left\|p_{h} s-s_{h}\right\|_{H^{1 / 2}} \leq c h \tag{42}
\end{equation*}
$$

was established, and therefore by Proposition 2.3,

$$
\begin{equation*}
\left\|p_{h} s-s_{h}\right\|_{T} \leq c|\ln h|^{1 / 2}\left\|p_{h} s-s_{h}\right\|_{H^{1 / 2}} \leq c h|\ln h|^{1 / 2} \tag{43}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\left\|s-s_{h}\right\|_{T} & \leq\left\|s-p_{h} s\right\|_{T}+\left\|p_{h} s-s_{h}\right\|_{T} \\
& \leq\left\|s-p_{h} s\right\|_{H^{1 / 2}}+\left\|s-p_{h} s\right\|_{C^{0}}+\left\|p_{h} s-s_{h}\right\|_{T} \\
& \leq c h^{3 / 2}+c h^{2}+c h|\ln h|^{1 / 2} \leq c h|\ln h|^{1 / 2}
\end{aligned}
$$

by Proposition 2.4 and the observation above.

Theorem 2.2. Assume $\gamma \in C^{4}$. Let $u$ be a nondegenerate minimal surface spanning $\Gamma$ with nondegeneracy constant $\lambda$. Then there exist positive constants $h_{0}$ and $c_{0}$ depending on $\|\gamma\|_{C^{4}}$ and $\left\|\left|\gamma^{\prime}\right|^{-1}\right\|_{L^{\infty}}$, and on $\lambda$ in the case of $h_{0}$, such that if $0<h \leq h_{0}$, then there is a discrete minimal surface $u_{h}$ satisfying

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H^{1}\left(D_{h}\right)} \leq c_{0} \lambda^{-1} h \tag{44}
\end{equation*}
$$

Moreover, there exists $\epsilon_{0}=\epsilon_{0}\left(\|\gamma\|_{C^{4}},\left\|\left|\gamma^{\prime}\right|^{-1}\right\|_{L^{\infty}}, \lambda\right)>0$ such that if $u=\Phi(\gamma \circ s)$ and $u_{h}=\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)$, then $u_{h}$ is the unique discrete minimal surface satisfying

$$
\begin{equation*}
\left\|s-s_{h}\right\|_{H^{1 / 2}} \leq \epsilon_{0}|\log h|^{-1} \tag{45}
\end{equation*}
$$

Proof. See 4, Theorem 5.5].

## 3. The $L^{2}$-estimates

Finally we are able to start discussing the $L^{2}$-estimate. We want to prove the following theorems.

Theorem 3.1. With the same hypotheses and notation as in Theorem 2.1 and the additional assumption that $\gamma \in C^{5}$, we have that

$$
\left\|s-s_{h}\right\|_{L^{2}(\partial D)} \leq c h^{3 / 2}|\ln h|^{3 / 4}
$$

where the constant $c$ does not depend on $h$.
Theorem 3.2. With the same hypotheses and notation as in Theorem 2.2 and the additional assumption that $\gamma \in C^{5}$, we have that

$$
\left\|u-u_{h}\right\|_{L^{2}\left(D_{h}\right)} \leq c h^{2}|\ln h|^{3 / 2}
$$

where the constant $c$ does not depend on $h$.
The approach will initially be that of [2]; i.e., we will use Lemma 2.1 to estimate $\left\|s-s_{h}\right\|_{H^{-1 / 2}(\partial D)}$. Then by means of the inequality (27), an estimate for $\left\|s-s_{h}\right\|_{L^{2}(\partial D)}$ will follow. Finally, using trace theory results and Proposition 2.8 we will obtain Theorem 3.2

Before beginning the proofs, we consider some estimates which will often be used.

Proposition 3.1. Using the notation and the hypotheses of Theorem 3.1 and Lemma 2.1, we have

$$
\begin{align*}
\left\|s_{h}\right\|_{C^{0,1}(\partial D)} & \leq c|\ln h|^{1 / 2},  \tag{46}\\
\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{1 / 2}(\partial D)} & \leq c h  \tag{47}\\
\left|\gamma \circ p_{h} s-\gamma \circ s\right|_{H^{1 / 2}(\partial D)} & \leq c h^{3 / 2}  \tag{48}\\
\left|\gamma \circ p_{h} s-\gamma \circ s_{h}\right|_{H^{1 / 2}(\partial D)} & \leq c h  \tag{49}\\
\left|\gamma \circ s_{h}-\gamma \circ p_{h} s\right|_{H^{1}(\partial D)} & \leq c h^{1 / 2}  \tag{50}\\
\left|\gamma \circ p_{h} s-\gamma \circ s\right|_{H^{1}(\partial D)} & \leq c h  \tag{51}\\
\left|\gamma \circ s-\gamma \circ s_{h}\right|_{H^{1}(\partial D)} & \leq c h^{1 / 2} \tag{52}
\end{align*}
$$

$$
\begin{align*}
\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1 / 2}(\partial D)} & \leq c h  \tag{53}\\
\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1}(\partial D)} & \leq c h^{1 / 2},  \tag{54}\\
\left|\left(\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1 / 2}(\partial D)} & \leq c h|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}  \tag{55}\\
\left|\left(\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} & \leq c h^{1 / 2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}  \tag{56}\\
\left(\sum_{j}\left|\gamma \circ s_{h}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{1 / 2} & \leq c|\ln h|  \tag{57}\\
\left(\sum_{j}\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{1 / 2} & \leq c|\ln h||\xi|_{H^{1 / 2}(\partial D)} \tag{58}
\end{align*}
$$

Proof. First note that if we consider the space $V=\{v \mid v$ is piecewise (arcwise) linear on $\left.S^{1}\right\}$, where $S^{1}$ has a fixed grid controlled by $h$, by using a rescaling argument and the fact that on a finite dimensional space all norms are comparable, we get $[v]_{C^{0,1}} \leq h^{-1}\|v\|_{C^{0}} \forall v \in V$ (where $[\cdot]_{C^{0,1}}$ is the $C^{0,1}$ - seminorm). Therefore

$$
\begin{aligned}
\left\|s_{h}\right\|_{C^{0,1}} & \leq\left\|s_{h}-p_{h} s\right\|_{C^{0}}+\left[s_{h}-p_{h} s\right]_{C^{0,1}}+c\|s\|_{C^{0,1}} & & \text { by Prop. } 2.4] \\
& \leq c|\ln h|^{1 / 2} h+c h^{-1} h|\ln h|^{1 / 2}+c\|s\|_{C^{0,1}} & & \text { by (43) } \\
& \leq c|\ln h|^{1 / 2} & & \text { for } h \text { small. }
\end{aligned}
$$

For (47), using Proposition [2.6, (41), and Theorem 2.1, we compute

$$
\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{1 / 2}} \leq c\|\gamma\|_{C^{2}}\left(\|s\|_{C^{0,1}}+\left\|s_{h}-s\right\|_{C^{0}}\right)\left\|s-s_{h}\right\|_{H^{1 / 2}} \leq c h
$$

In the same way we obtain (53).
For (48) we compute

$$
\begin{array}{lll}
\left|\gamma \circ p_{h} s-\gamma \circ s\right|_{H^{1 / 2}} & \\
\quad \leq c\|\gamma\|_{C^{2}}\left(\|s\|_{C^{0,1}}+\left\|s-p_{h} s\right\|_{C^{0}}\right)\left\|s-p_{h} s\right\|_{H^{1 / 2}} & \text { by Prop. [2.6 } \\
\quad \leq c\|\gamma\|_{C^{2}}\left(\|s\|_{C^{0,1}}+c h^{2}\|s\|_{C^{2}}\right) h^{3 / 2}\|s\|_{C^{2}} \leq c h^{3 / 2} & \text { by Prop. } 2.4
\end{array}
$$

Now (49) follows from the triangle inequality, (47), and (48).
For (50) we compute

$$
\begin{array}{rlrl}
\left|\gamma \circ s_{h}-\gamma \circ p_{h} s\right|_{H^{1}} & & \\
& \leq c\|\gamma\|_{C^{2}}\left\|p_{h} s\right\|_{C^{0,1}}\left\|s_{h}-p_{h} s\right\|_{H^{1}} & & \text { by (33) } \\
& \leq c\|\gamma\|_{C^{2}}\|s\|_{C^{0,1}} h^{-1 / 2}\left\|s_{h}-p_{h} s\right\|_{H^{1 / 2}} & & \text { by Prop. 2.4 and 2.3 } \\
& \leq c\|\gamma\|_{C^{2}}\|s\|_{C^{0,1}} h^{-1 / 2} h \leq c h^{1 / 2} & & \text { by (42). }
\end{array}
$$

For (51) we use (33) and Proposition 2.4 to compute

$$
\begin{aligned}
\left|\gamma \circ p_{h} s-\gamma \circ s\right|_{H^{1}} & \leq c\|\gamma\|_{C^{2}}\|s\|_{C^{0,1}}\left\|s-p_{h} s\right\|_{H^{1}} \\
& \leq c\|\gamma\|_{C^{2}}\|s\|_{C^{0,1}} h\|s\|_{H^{2}} \leq c h
\end{aligned}
$$

Estimate (52) follows from the triangle inequality, (50), and (51). Estimate (54) is established in a similar way.

For (55) we compute

$$
\begin{array}{rlrl}
\left|\left(\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1 / 2}} & & \\
& \leq & \left\|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right\|_{C^{0}}\left|p_{h} \phi_{\xi}\right|_{H^{1 / 2}} & \\
& +\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1 / 2}}\left\|p_{h} \phi_{\xi}\right\|_{C^{0}} & & \text { by Prop. 2.5 } \\
& \leq\|\gamma\|_{C^{2}}\left\|s-s_{h}\right\|_{C^{0}}\left(\left\|p_{h} \phi_{\xi}-\phi_{\xi}\right\|_{H^{1 / 2}}+\left\|\phi_{\xi}\right\|_{H^{1 / 2}}\right) & & \\
& +\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1 / 2}}\left\|p_{h} \phi_{\xi}\right\|_{H^{1 / 2}}|\ln h|^{1 / 2} & & \text { by Prop. 2.3. } \\
\leq & c\|\gamma\|_{C^{2}} h|\ln h|^{1 / 2}\left(h\left\|\phi_{\xi}\right\|_{H^{3 / 2}}\left\|\phi_{\xi}\right\|_{H^{3 / 2}}\right) & & \\
& +c\|\gamma\|_{C^{3}} h|\ln h|^{1 / 2}\left\|p_{h} \phi_{\xi}\right\|_{H^{1 / 2}} & & \text { by (41), Prop. (2.4, and (153) } \\
& \leq c\|\gamma\|_{C^{3}} h|\ln h|^{1 / 2}\left(h|\xi|_{H^{1 / 2}}\right. & & \\
& \left.+|\xi|_{H^{1 / 2}}\right) \leq c h|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}} & & \text { by Lemma 2.1. }
\end{array}
$$

Note that we have also used the fact that $\|\cdot\|_{H^{3 / 2}}$ is equivalent to $|\cdot|_{H^{3 / 2}}$ on $H \cap H^{3 / 2}(\partial D)$.

For (56) we compute

$$
\begin{array}{rlrl}
\left|\left(\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1}} & & \\
& \leq & \left\|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right\|_{C^{0}}\left|p_{h} \phi_{\xi}\right|_{H^{1}} & \\
& +\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1}}\left\|p_{h} \phi_{\xi}\right\|_{C^{0}} & & \text { by Prop. [2.5] } \\
& \leq\|\gamma\|_{C^{2}}\left\|s-s_{h}\right\|_{C^{0}}\left(\left\|p_{h} \phi_{\xi}-\phi_{\xi}\right\|_{H^{1}}+\left|\phi_{\xi}\right|_{H^{3 / 2}}\right) & & \\
& +c\left|\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right|_{H^{1}}\left\|p_{h} \phi_{\xi}\right\|_{H^{1 / 2}}|\ln h|^{1 / 2} & & \text { by Prop. [2.3) } \\
& \leq c\|\gamma\|_{C^{2} h}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}}+c\|\gamma\|_{C^{3}} h^{1 / 2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}} & & \text { by (154) and (41) } \\
& \leq c h^{1 / 2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}} . & &
\end{array}
$$

To prove the last two inequalities, we exploit the fact that the second derivatives of $s_{h}$ and $p_{h} \phi_{\xi}$ vanish on each arc segment $\pi^{-1}\left(E_{j}\right)$ (recall that the $E_{j}$ are the boundary edges). More precisely, on each arc segment we have that $\left(\gamma \circ s_{h}\right)^{\prime \prime}=$ $\gamma^{\prime \prime} \circ s_{h}\left(s_{h}^{\prime}\right)^{2}$ and $\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)^{\prime \prime}=\gamma^{\prime \prime \prime} \circ s_{h}\left(s_{h}^{\prime}\right)^{2} p_{h} \phi_{\xi}+2 \gamma^{\prime \prime} \circ s_{h} s_{h}^{\prime} p_{h} \phi_{\xi}^{\prime}$. Therefore it follows from (46) that

$$
\begin{aligned}
& \left(\sum_{j}\left|\gamma \circ s_{h}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq\left(\sum_{j}\left\|\gamma^{\prime \prime} \circ s_{h}\left(s_{h}^{\prime}\right)^{2}\right\|_{L^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{\frac{1}{2}} \leq c\left\|s_{h}\right\|_{C^{0,1}}^{2} \leq c|\ln h|
\end{aligned}
$$

Using (46), Proposition 2.4 and Lemma 2.1 we finally obtain

$$
\begin{aligned}
& \left(\sum_{j}\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq c\left\|s_{h}\right\|_{C^{0,1}}^{2}\left\|p_{h} \phi_{\xi}\right\|_{L^{2}}+c\left\|s_{h}\right\|_{C^{0,1}}\left|p_{h} \phi_{\xi}\right|_{H^{1}} \\
& \quad \leq c|\ln h|\left\|p_{h} \phi_{\xi}\right\|_{H^{1}} \leq c|\ln h|\left(\left\|p_{h} \phi_{\xi}-\phi_{\xi}\right\|_{H^{1}}+\left\|\phi_{\xi}\right\|_{H^{1}}\right) \\
& \quad \leq c\left|\operatorname { l n } h \left\|\left.\phi_{\xi}\right|_{H^{3 / 2}} \leq c|\ln h \| \xi|_{H^{1 / 2}}\right.\right.
\end{aligned}
$$

Proof of Theorem 3.1. As remarked above, the first step consists in finding an estimate for $\left\|s-s_{h}\right\|_{H^{-1 / 2}(\partial D)}$. By Lemma 2.1] we have

$$
\begin{aligned}
\int_{\partial D} \xi\left(s_{h}-s\right) & =d^{2} E(s)\left(\phi_{\xi}, s_{h}-s\right) \\
& =d^{2} E(s)\left(\phi_{\xi}-p_{h} \phi_{\xi}, s_{h}-s\right)+d^{2} E(s)\left(p_{h} \phi_{\xi}, s_{h}-s\right) \\
& \equiv A+B
\end{aligned}
$$

First we estimate

$$
\begin{array}{rlr}
|A| & =\left|d^{2} E(s)\left(\phi_{\xi}-p_{h} \phi_{\xi}, s_{h}-s\right)\right| \\
& \leq c\left\|s-s_{h}\right\|_{H^{1 / 2}(\partial D)}\left\|\phi_{\xi}-p_{h} \phi_{\xi}\right\|_{H^{1 / 2}(\partial D)} \quad \text { by (10) } \\
& \leq c h^{2}\left|\phi_{\xi}\right|_{H^{3 / 2}(\partial D)} \leq c h^{2}|\xi|_{H^{1 / 2}(\partial D)}
\end{array}
$$

by Theorem [2.1, Proposition 2.4 and Lemma 2.1 Then we calculate

$$
\begin{aligned}
|B| & =\left|d^{2} E(s)\left(p_{h} \phi_{\xi}, s_{h}-s\right)\right| \\
\leq & \mid d^{2} E(s)\left(p_{h} \phi_{\xi}, s_{h}-s\right)+d E(s)\left(p_{h} \phi_{\xi}\right) \\
& \quad-d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\left|+\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right|\right. \\
\leq & c\left\|s-s_{h}\right\|_{T}^{2}\left\|p_{h} \phi_{\xi}\right\|_{T}+\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right| \quad \text { by Taylor's theorem and Prop. 2.2 } \\
\leq & c h^{2}|\ln h|^{3 / 2}\left\|p_{h} \phi_{\xi}\right\|_{H^{1 / 2}}+\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right| \quad \text { by (41) and Prop. 2.3 } \\
\leq & c h^{2}|\ln h|^{3 / 2}|\xi|_{H^{1 / 2}}+\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right| \quad \text { by Prop. 2.4 and Lemma 2.1] }
\end{aligned}
$$

Now we want to give an estimate for $\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right|$. Since $s_{h}$ is stationary for $E_{h}$, we know that $d E_{h}\left(s_{h}\right)\left(\xi_{h}\right)=0$ for all $\xi_{h} \in H_{h}$. Hence

$$
\begin{aligned}
d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right) & =d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)-d E_{h}\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right) \\
& =\int_{D} \nabla u \nabla v-\int_{D_{h}} \nabla u_{h} \nabla v_{h}
\end{aligned}
$$

where

$$
\begin{array}{ll}
u=\Phi\left(\gamma \circ s_{h}\right), & u_{h}=\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right) \\
v=\Phi\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right), & v_{h}=\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)
\end{array}
$$

Next write

$$
\begin{aligned}
d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)= & \int_{D_{h}} \nabla u \nabla v-\int_{D_{h}} \nabla u_{h} \nabla v_{h}+\int_{D \backslash D_{h}} \nabla u \nabla v \\
= & \int_{D_{h}} \nabla\left(u-u_{h}\right) \nabla\left(v_{h}-v\right)+\int_{D_{h}} \nabla\left(u-u_{h}\right) \nabla v \\
& +\int_{D_{h}} \nabla u \nabla\left(v-v_{h}\right)+\int_{D \backslash D_{h}} \nabla u \nabla v \equiv I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

Estimate of $I_{1}$. We have

$$
\left|I_{1}\right|=\left|\int_{D_{h}} \nabla\left(u-u_{h}\right) \nabla\left(v-v_{h}\right)\right| \leq\left|u-u_{h}\right|_{H^{1}\left(D_{h}\right)}\left|v-v_{h}\right|_{H^{1}\left(D_{h}\right)}
$$

For the first term we calculate

$$
\begin{array}{rlrl}
\left|u-u_{h}\right|_{H^{1}\left(D_{h}\right)}= & \left|\Phi\left(\gamma \circ s_{h}\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right|_{H^{1}\left(D_{h}\right)} & \\
\leq & \left|\Phi\left(\gamma \circ s_{h}-\gamma \circ s\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}-\gamma \circ s\right)\right|_{H^{1}\left(D_{h}\right)} & & \\
& +\left|\Phi(\gamma \circ s)-\Phi_{h} I_{h}(\gamma \circ s)\right|_{H^{1}\left(D_{h}\right)} & & \\
\leq & c h^{1 / 2}\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{1}(\partial D)}+c h|\gamma \circ s|_{H^{3 / 2}(\partial D)} & & \text { by Prop. 2.7 } \\
\leq & c h+c h\|\gamma\|_{C^{2}}\|s\|_{H^{3 / 2}} \leq c h & & \text { by (152). }
\end{array}
$$

For the second term we compute

$$
\begin{aligned}
\mid v- & \left.v_{h}\right|_{H^{1}\left(D_{h}\right)}=\left|\Phi\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)-\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)\right|_{H^{1}\left(D_{h}\right)} \\
\leq & \left|\Phi\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}-\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right)-\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}-\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right)\right|_{H^{1}\left(D_{h}\right)} \\
& +\left|\Phi\left(\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right)-\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right)\right|_{H^{1}\left(D_{h}\right)} \\
\leq & c h^{1 / 2}\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}-\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} \\
& +\left|\Phi\left(\left(\gamma^{\prime} \circ s\right)\left(p_{h} \phi_{\xi}-\phi_{\xi}\right)\right)-\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s\right)\left(p_{h} \phi_{\xi}-\phi_{\xi}\right)\right)\right|_{H^{1}\left(D_{h}\right)} \\
& +\left|\Phi\left(\left(\gamma^{\prime} \circ s\right) \phi_{\xi}\right)-\Phi_{h} I_{h}\left(\left(\gamma^{\prime} \circ s\right) \phi_{\xi}\right)\right|_{H^{1}\left(D_{h}\right)} \quad \text { by Prop. 2.7 } \\
\leq & c h|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+c h^{1 / 2}\left|\left(\gamma^{\prime} \circ s\right)\left(p_{h} \phi_{\xi}-\phi_{\xi}\right)\right|_{H^{1}(\partial D)} \\
& +c h\left|\left(\gamma^{\prime} \circ s\right) \phi_{\xi}\right|_{H^{3 / 2}(\partial D)}^{\leq} \quad \text { by (56) and by Prop. [2.7] } \\
\leq & c h|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+c h^{1 / 2}\left\|\gamma^{\prime} \circ s\right\|_{C^{0,1}}\left\|p_{h} \phi_{\xi}-\phi_{\xi}\right\|_{H^{1}(\partial D)} \\
& +c h\left\|\gamma^{\prime} \circ s\right\|_{C^{2}}\left\|\phi_{\xi}\right\|_{H^{3 / 2}(\partial D)}^{\leq} \quad \text { by Prop. 2.5 } \\
\leq & c h|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+c h\left|\phi_{\xi}\right|_{H^{3 / 2}(\partial D)}^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)} \quad \text { by Lemma 2.1] Prop. 2.4 }
\end{aligned}
$$

Therefore we get

$$
\left|I_{1}\right| \leq c h^{2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}
$$

Estimate of $I_{2}$. From integration by parts we obtain

$$
I_{2}=\int_{D_{h}} \nabla\left(u-u_{h}\right) \nabla v=\int_{\partial D_{h}}\left(u-u_{h}\right) \frac{\partial v}{\partial \nu}
$$

Therefore, by (36),

$$
\left|I_{2}\right| \leq\left\|\frac{\partial v}{\partial \nu}\right\|_{L^{2}\left(\partial D_{h}\right)}\left\|u-u_{h}\right\|_{L^{2}\left(\partial D_{h}\right)} \leq c|v|_{H^{1}(\partial D)}\left\|u-u_{h}\right\|_{L^{2}\left(\partial D_{h}\right)}
$$

The first term is estimated by

$$
\begin{aligned}
& |v|_{H^{1}(\partial D)}=\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} \\
& \quad \leq\left|\left(\gamma^{\prime} \circ s_{h}-\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)}+\left|\left(\gamma^{\prime} \circ s\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} \\
& \quad \leq c h^{1 / 2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+c\left\|\gamma^{\prime} \circ s\right\|_{C^{0,1}}\left\|p_{h} \phi_{\xi}\right\|_{H^{1}(\partial D)} \text { by (56) and Prop. [2.5] } \\
& \quad \leq c h^{1 / 2}|\ln h|^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+c\left(c h^{1 / 2}|\xi|_{H^{1 / 2}(\partial D)}+|\xi|_{H^{1 / 2}(\partial D)}\right) \leq c|\xi|_{H^{1 / 2}(\partial D)} .
\end{aligned}
$$

For the second term we have

$$
\begin{aligned}
& \| u-u_{h}\left\|_{L^{2}\left(\partial D_{h}\right)}=\right\| \Phi\left(\gamma \circ s_{h}\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right) \|_{L^{2}\left(\partial D_{h}\right)} \\
& \quad \leq\left\|\Phi\left(\gamma \circ s_{h}\right) \circ \pi-I_{h}\left(\gamma \circ s_{h}\right) \circ \pi\right\|_{L^{2}(\partial D)} \\
& \quad \leq\left\|\Phi\left(\gamma \circ s_{h}\right) \circ \pi-\left(\gamma \circ s_{h}\right)\right\|_{L^{2}(\partial D)}+\left\|\left(\gamma \circ s_{h}\right)-I_{h}^{\partial D}\left(\gamma \circ s_{h}\right)\right\|_{L^{2}(\partial D)} \\
& \leq c h^{2}\left|\gamma \circ s_{h}\right|_{H^{1}(\partial D)}+c h^{2}\left(\sum_{j}\left|\gamma \circ s_{h}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

For the last inequality we have used (35) and standard interpolation results. We have $|u|_{H^{1}(\partial D)}=\left|\gamma \circ s_{h}\right|_{H^{1}(\partial D)} \leq\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{1}(\partial D)}+|\gamma \circ s|_{H^{1}(\partial D)} \leq c$ by (52). Together with (57) we obtain

$$
\left\|\Phi\left(\gamma \circ s_{h}\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right\|_{L^{2}\left(\partial D_{h}\right)} \leq c h^{2}|\ln h|
$$

Hence

$$
\left|I_{2}\right| \leq c h^{2}|\ln h||\xi|_{H^{1 / 2}(\partial D)}
$$

Estimate of $I_{3}$. Again by integration by parts we get

$$
\begin{array}{rlrl}
\left|I_{3}\right| & =\left|\int_{D_{h}} \nabla u \nabla\left(v-v_{h}\right)\right| \leq\left\|\frac{\partial u}{\partial \nu}\right\|_{L^{2}\left(\partial D_{h}\right)}\left\|v-v_{h}\right\|_{L^{2}\left(\partial D_{h}\right)} & \\
& \leq c|u|_{H^{1}(\partial D)}\left\|v-I_{h}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)\right\|_{L^{2}\left(\partial D_{h}\right)} & \text { by (36) } \\
& \leq c\left|\gamma \circ s_{h}\right|_{H^{1}(\partial D)}\left\|v \circ \pi-I_{h}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right) \circ \pi\right\|_{L^{2}(\partial D)} & \\
& \leq c\left(\|v \circ \pi-v\|_{L^{2}(\partial D)}+\left\|v-I_{h}^{\partial D}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)\right\|_{L^{2}(\partial D)}\right) & \text { by (52) } \\
& \leq c h^{2}|v|_{H^{1}(\partial D)}+c\left\|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}-I_{h}^{\partial D}\left(\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right)\right\|_{L^{2}(\partial D)} & & \text { by ((35)) } \\
& \leq c h^{2}|v|_{H^{1}(\partial D)}+c h^{2}\left(\sum_{j}\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{1 / 2} &
\end{array}
$$

by standard interpolation results. By the calculation above we have that $|v|_{H^{1}(\partial D)}=$ $\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} \leq c|\xi|_{H^{1 / 2}(\partial D)}$. Together with (58) we obtain

$$
\left|I_{3}\right| \leq c h^{2}|\ln h||\xi|_{H^{1 / 2}(\partial D)}
$$

Estimate of $I_{4}$.

$$
\begin{aligned}
\left|I_{4}\right| & =\left|\int_{D \backslash D_{h}} \nabla u \nabla v\right| \leq|u|_{H^{1}\left(D \backslash D_{h}\right)}|v|_{H^{1}\left(D \backslash D_{h}\right)} \\
& \leq c h^{2}|u|_{H^{1}(\partial D)}|v|_{H^{1}(\partial D)} \text { by (34) } \\
& =c h^{2}\left|\gamma \circ s_{h}\right|_{H^{1}(\partial D)}\left|\left(\gamma^{\prime} \circ s_{h}\right) p_{h} \phi_{\xi}\right|_{H^{1}(\partial D)} \leq c h^{2}|\xi|_{H^{1 / 2}(\partial D)}
\end{aligned}
$$

by what we remarked above.
From the estimates for $I_{1}, I_{2}, I_{3}$ and $I_{4}$, we finally obtain

$$
\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right| \leq\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|+\left|I_{4}\right| \leq c h^{2}|\ln h||\xi|_{H^{1 / 2}(\partial D)}
$$

This leads to

$$
|B| \leq c h^{2}|\ln h|^{3 / 2}|\xi|_{H^{1 / 2}(\partial D)}+\left|d E\left(s_{h}\right)\left(p_{h} \phi_{\xi}\right)\right| \leq c h^{2}|\ln h|^{3 / 2}|\xi|_{H^{1 / 2}(\partial D)}
$$

and therefore we can write

$$
\int_{\partial D} \xi\left(s_{h}-s\right) \leq|A|+|B| \leq c h^{2}|\ln h|^{3 / 2}|\xi|_{H^{1 / 2}(\partial D)}
$$

It follows that

$$
\begin{equation*}
\left\|s-s_{h}\right\|_{H^{-1 / 2}}=\sup _{\|\xi\|_{H^{1 / 2}(\partial D)}=1} \int_{\partial D} \xi\left(s_{h}-s\right) \leq c h^{2}|\ln h|^{3 / 2} \tag{59}
\end{equation*}
$$

The claim of Theorem 3.1 now follows from Theorem 2.1 and (27).
Proof of Theorem [3.2. Following the notation of Theorem 2.2, let

$$
u=\Phi(\gamma \circ s), \quad u_{h}=\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right) .
$$

We want to give an estimate for $\left\|u-u_{h}\right\|_{L^{2}\left(D_{h}\right)}$. Write

$$
\begin{aligned}
& \left\|u-u_{h}\right\|_{L^{2}\left(D_{h}\right)} \\
& \quad \leq\left\|\Phi(\gamma \circ s)-\Phi\left(\gamma \circ s_{h}\right)\right\|_{L^{2}\left(D_{h}\right)}+\left\|\Phi\left(\gamma \circ s_{h}\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right\|_{L^{2}\left(D_{h}\right)} \\
& \quad \equiv C+D
\end{aligned}
$$

We have that

$$
\begin{aligned}
C= & \left\|\Phi(\gamma \circ s)-\Phi\left(\gamma \circ s_{h}\right)\right\|_{L^{2}\left(D_{h}\right)} \leq\left\|\Phi(\gamma \circ s)-\Phi\left(\gamma \circ s_{h}\right)\right\|_{L^{2}(D)} \\
\leq & c\left\|\gamma \circ s-\gamma \circ s_{h}\right\|_{H^{-1 / 2}(\partial D)} \quad \text { by trace theory results } \\
\leq & c\left\|\gamma^{\prime}(s)\left(s_{h}-s\right)\right\|_{H^{-1 / 2}(\partial D)} \\
& +c\left\|\left(s-s_{h}\right)^{2} \int_{0}^{1}(1-q) \gamma^{\prime \prime}\left(s+q\left(s_{h}-s\right)\right) d q\right\|_{H^{-1 / 2}(\partial D)} \quad \text { by Taylor } \\
\leq & c\left\|s_{h}-s\right\|_{H^{-1 / 2}(\partial D)}+c\left\|s_{h}-s\right\|_{C^{0}}\left\|s_{h}-s\right\|_{H^{-1 / 2}(\partial D)} \\
\leq & c h^{2}|\ln h|^{3 / 2}+h^{3}|\ln h|^{2} \leq c h^{2}|\ln h|^{3 / 2} \quad \text { by (59) and (41). }
\end{aligned}
$$

Finally,

$$
\begin{array}{rlr}
D= & \left\|\Phi\left(\gamma \circ s_{h}\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}\right)\right\|_{L^{2}\left(D_{h}\right)} & \\
\leq & \left\|\Phi\left(\gamma \circ s_{h}-\gamma \circ s\right)-\Phi_{h} I_{h}\left(\gamma \circ s_{h}-\gamma \circ s\right)\right\|_{L^{2}\left(D_{h}\right)} \\
& +\left\|\Phi(\gamma \circ s)-\Phi_{h} I_{h}(\gamma \circ s)\right\|_{L^{2}\left(D_{h}\right)} & \\
\leq & c h^{3 / 2}\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{1}(\partial D)} & \\
& +c\left\|\left(\gamma \circ s_{h}-\gamma \circ s\right)-I_{h}^{\partial D}\left(\gamma \circ s_{h}-\gamma \circ s\right)\right\|_{L^{2}(\partial D)} & \\
& +c h^{2}|\gamma \circ s|_{H^{3 / 2}(\partial D)}+c\left\|\gamma \circ s-I_{h}^{\partial D}(\gamma \circ s)\right\|_{L^{2}(\partial D)} & \text { by Prop. } 2.8 \\
\leq & c h^{2}+c\left\|\left(\gamma \circ s_{h}-\gamma \circ s\right)-I_{h}^{\partial D}\left(\gamma \circ s_{h}-\gamma \circ s\right)\right\|_{L^{2}(\partial D)} &
\end{array}
$$

by (52) and standard interpolation results

$$
\leq c h^{2}+c h^{2}\left(\sum_{j}\left|\gamma \circ s_{h}-\gamma \circ s\right|_{H^{2}\left(\pi^{-1}\left(E_{j}\right)\right)}^{2}\right)^{1 / 2} \leq c h^{2}|\ln h| \quad \text { by (57). }
$$

Theorem 3.2 now follows immediately from the estimates obtained for the terms $C$ and $D$.

Final remarks. In [3, Section 6] J. Hutchinson and G. Dziuk analyse the problem of the classical Enneper surface with parameter $R$ and calculate the order of convergence between the smooth and the discrete solution. They study three different cases corresponding to different choices of $R$, and in each case a different grid is used in order to make the comparison more realistic. These experiments confirm the $L^{2}$ convergence rate established in Theorem 3.2.

## References

[1] G. Dziuk and J. E. Hutchinson, On the Approximation of Unstable Parametric Minimal Surfaces, J. Calc. Var. 4 (1996), 27-58. MR 96m:49073
[2] G. Dziuk and J. E. Hutchinson, $L^{2}$ Estimates for Approximations to Minimal Surfaces, Proceedings of the International Conference: Curvature Flows and Related Topics, 67-92, A. Damlamian, J. Spruck and A. Visintin, eds., Gakkotosho, Tokyo, 1995. MR 97g:58042 MR 2000a:65144
[3] G. Dziuk and J. E. Hutchinson, The Discrete Plateau Problem: Algorithm and Numerics, Math. Comp. 68 (1999), no. 225, 1-23. MR 2000a:65144
[4] G. Dziuk and J. E. Hutchinson, The Discrete Plateau Problem: Convergence Results, Math. Comp. 68 (1999), no. 226, 519-546. MR 2000a:65145
[5] G. Dziuk and J. E. Hutchinson, Finite Element Approximations to Surfaces of Prescribed Variable Mean Curvature, preprint.

Centre for Mathematics and its Applications, MSI, Australian National University, Canberra, Australian Capital Territory 0200, Australia

E-mail address: Paola.Pozzi@maths.anu.edu.au


[^0]:    Received by the editor June 12, 2002 and, in revised form, March 11, 2003.
    2000 Mathematics Subject Classification. Primary 65N30; Secondary 49Q05, 53A10.
    Key words and phrases. Minimal surfaces, finite elements, order of convergence, Plateau Problem.

