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CONJUGATE GRADIENT PREDICTOR CORRECTOR METHOD
FOR SOLVING LARGE SCALE PROBLEMS

MUHAMMED I. SYAM

ABSTRACT. In this paper, we give a new method for solving large scale prob-
lems. The basic idea of this method depends on implementing the conjugate
gradient as a corrector into a continuation method. We use the Euler method
as a predictor. Adaptive steplength control is used during the tracing of the
solution curve. We present some of our experimental examples to demonstrate
the efficiency of the method.

1. INTRODUCTION

Continuation methods have long served as useful theoretical tools in modern
mathematics. Their use can be traced back at least to such works as those of [29],
[21] and [4]. Leray and Schauder [24] refined the tool and presented it as a global
result in topology. The use of deformations to solve nonlinear systems of equations
may be traced back at least to [23]. The classical continuation methods were the
first deformation methods to be numerically implemented and may be regarded as
a forerunner of the predictor corrector methods for the numerical path following.

Because of their versatility and robustness, numerical continuation methods have
now been finding ever wider use in scientific applications. Introductions into aspects
of the subject of numerical continuation methods may be found in the books [10],
[13], [18], [31], [32], [36], and [1].

One of the primary applications of continuation methods involves the numeri-
cal solution of nonlinear eigenvalue problems; see [6], [19], [20], [17], [32], [7] and
[28]. Such problems are likely to have arisen from a discretization of an operator
equation in a Banach space context, which also involves an additional bifurcation
parameter. For some specific examples see [1], [14]. As a result of the discretization,
the corresponding finite dimensional problem H(u) = 0 where H : RVt — RNV
may require that N be quite large. This leads to the task of solving large scale
continuation problems.

There are many areas where large scale continuation methods exist. An area
in which a considerable amount of experience concerning large scale continuation
methods exists is structural mechanics; see [31] and the references cited therein.
Also, some work was done on combining continuation methods with multigrid meth-
ods for solving large scale continuation problems arising from discretization of el-
liptic problems via finite differences; see [5], [3], and [28]. Another area where large
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scale continuation problems have been treated concerns finite element discretiza-
tions of elliptic problems, which are then combined with a conjugate solver in the
continuation algorithm; see [I1], [30], and [2]. From this discussion, we see that a
variety of combinations can be made of continuation algorithms and sparse solvers;
see [1] and [12]. In this paper, we indicate more specifically how to incorporate a
conjugate gradient method or a Krylov subspace method. In Section 2, the idea
of the predictor corrector continuation method in general will be presented. In
addition, we recall the nonlinear conjugate gradient method in Section 3 while the
conjugate gradient predictor corrector algorithms will be developed in Section 4.
Finally, numerical examples will be presented in Section 5.

2. PREDICTOR CORRECTOR CONTINUATION METHOD

To describe the idea of the predictor corrector continuation method, let us con-
sider curves which are implicitly defined by an underdetermined system of equations

H(u)=0

where H : RVt — RN is a smooth map. We shall mean that a map is smooth if
it has as many continuous derivatives as the context of the subsequent discussion
requires. We call u a regular point of H if the Jacobian H’(u) has maximal rank
while v is a regular value of H if u is a regular point of H whenever H(u) = v. If a
point or a value is not regular, then it is called singular. If ug € RV+! is a regular
point of H such that H(ug) = 0, it follows from the Implicit Function Theorem
that the solution set H~1(0) can be locally parametrized about ug with respect to
some parameter, say arclength s; see [26]. We thus obtain the solution curve c(s)
of the equation H(u) = 0.

For convenience of the theoretical and practical discussions, we usually use
parametrization with respect to arclength. Hence, by re-parametrization (accord-
ing to arclength), we obtain a smooth solution curve ¢ : I — RV*1 for some open
interval I containing zero such that for all s € I :

| _
det( zl(c(s))) > 0.

The above conditions uniquely determine the tangent ¢ (s) with a specific ori-
entation. Here and in the following, A* denotes the Hermitian transpose of A, |lu||
the Euclidean norm of u, H' the total derivative of H, and ¢ the derivative of ¢ with
respect to arclength. The above solution curve ¢(s) is characterized as the solution
of the initial value problem

u=t(H'(u)), u(0) = ug

where t(H’(u)) is the tangent vector induced by H'(u).

Since the solution curve c is characterized by the above initial value problem,
it is evident that the numerical methods for solving initial value problems can
immediately be used to numerically trace c. In fact, a typical path following method
consists of a succession of two different steps.
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Predictor step: An approximation step along the curve, usually in the general
direction of the tangent of the curve. It is called the Euler-predictor which is given
by

v=u+ ht(H (u))
where u is a point lying along the solution curve ¢, and h > 0 represents a stepsize.

Corrector steps: One or more iterative steps for solving H(u) = 0 which bring
the predicted point back to the curve. It is called the Gauss-Newton-Corrector
which is given by

W =v—H'(v)TH(v).

We should note that if A is an N x (N + 1) matrix with maximal rank, then
At = A*(AA*)~! and it is called the Moore-Penrose inverse of A. We can use
a fixed stepsize h or adaptive steplength control. We now describe the Newton
adaptive steplength control. Let f : Range(c) — R be a smooth functional. One
choice of f is

f(@) = (z —uo)™to
where tg = t(H'(up)).

Suppose that the predictor-corrector method produced two successive points
c(sk+1) and c(sg) such that f(c(sk+1))Xx f(e(sg)) < 0. Then, it is reasonable to
replace the usual steplength adaptation used to traverse the curve ¢ by a Newton-
steplength adaptation which is motivated by the following one-dimensional Newton
method for solving the equation f(c(s)) =0:

_ flc(sn))
Sntl = Sn = T AT
f'(e(sn))C" (sn)
The last equation suggests that we can take the new steplength

L f(e(s)

f'(c(sn))C" (sn)
at u = c(sy,) in order to obtain a predictor point v = u + ht(H'(u)), which should
lead to a better approximation of a zero point of f on c¢. In addition, under the
normal hypotheses of smoothness, if the initial value of ¢(s,) is sufficiently near a
zero point of f, then the usual quadratic convergence of the iterative process can
be expected. For more detail, see [1], [34], [35], and [33].

3. NONLINEAR CONJUGATE GRADIENT METHOD
Let us assume that the problem to be solved is

(1) m&n{f(u) cu € RV

where f: RV*T1 — R is a smooth nonlinear functional, usually having an isolated
local minimal point @ which we desire to approximate. We recall the nonlinear
conjugate gradient method of Polak and Ribiere [30]. The following is an outline
of the conjugate gradient method due to them.

Algorithm 3.1 (Nonlinear conjugate gradient).

Input : ug € RNVF1 % initial point
Output: ug,uy,. .. % converging to u
Step 1: go = 7 f(uo) and dy = go; % initial gradients

Step 2: For j =0,1,... do steps 3-7
Step 3: Set p; = arg min,~o f(u; — pd;); % line search
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Step 4: Set uj1 = uj — p;d;;
Step 5: Set gjr1 =V f (uj+1);

Step 6: Set 5y = Wttt g

Step 7: Set dj1 = g; + vjd;; % new conjugate gradient
Step 8: Stop.

For more detail about the nonlinear conjugate gradient method and its proper-
ties, see [9], [12], and [16]. This method has some difficulties and disadvantages.
We mention some of them.

1) The convergence of the conjugate gradient method is sometimes slow. Its
superlinear convergence is somewhat unsatisfactory; see [8] and [27].

2) There are various possibilities for obtaining the factors y; in Algorithm 3.1.
The choice of ; will affect the convergence of the conjugate gradient method.
Hence, a wrong choice will make the algorithm diverge.

3) In practice and in order to obtain an acceptable p;, one need not do a very
precise one-dimensional minimization in the line search step since it is costly. Most
of the convergence rate proofs require cyclic reloading, i.e., setting v; = 0 after
N + 1 steps. The general idea of such proofs involves the approximation of f(u)
via the Taylor formula by

Flu) = (@) + /(@) (u—u) + (u—w)" v (@) (u - )

and then using the convergence results for the quadratic case. Actually, even in
the simple cases, because of the presence of rounding errors, we cannot expect
that stopping will occur after N + 1 steps. Instead, we should regard the conjugate
gradient method, even in this case, as an iterative method which makes a substantial
improvement after k steps. For more detail, see [12]. For these reasons, authors
combine the conjugate gradient with a preconditioning to make this method more
suitable.

The ideal convergence (one step!) would occur when the condition number is
one, i.e., when all of the eigenvalues of /f’ are equal. Intuitively, the next best
situation would occur when the eigenvalues have as few cluster points as possible.
This observation is used to motivate the idea of preconditioning for the conjugate
gradient method. For more detail, see [12].

In the preconditioned conjugate gradient (PCG) method, we will use the incom-
plete Cholesky factorization as a preconditioner. The idea behind the PCG method
is to compute the incomplete Cholesky factorization for the Hessian matrix <7 f (u;).
Then, we use this factorization in Steps 1 and 5 in Algorithm 3.1 instead of 7 f (u;).
In this technique, the preconditioning matrix will vary from iteration to iteration.
This will affect the cost of this method. We will describe this preconditioner in
Section 4. In Section 5, we will compare the PCG method and our contribution
in Algorithm 4.2. In the next section, we present our new method, which is the
conjugate gradient predictor corrector method.

4. CONJUGATE GRADIENT PREDICTOR CORRECTOR METHOD

Let us now return back to our major problem, namely minimizing the functional

) Flu) = 5 @)
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where H : RV+!1 — RN, The minimal points of (2) obviously form the solution
curve which can be traced by the continuation method. From (2), we have

Vf(u) H'(u)"H (u);

Vi) = H(u)H(u)+O(H )
The gradient V f(u) = H'(u)*H (u) is orthogonal to the tangent vector t(H'(u)).
This motivates the idea for implementing the conjugate method (Algorithm 3.1) as
a corrector into a continuation method. Analogous to the case when the minimiza-
tion problem has an isolated solution at which the Hessian is positive definite, we
may expect local superlinear convergence of the conjugate gradient method for the
functional (2).

The solution will be a point % € H~!(0) which is essentially nearest to a predictor
point v which is taken as the starting point for the (nonlinear) conjugate gradient
method. Numerical experience suggests that local superlinear convergence holds,
as in the case of the functional f with an isolated minimal point. We propose the
above conjugate gradient method as a reasonable corrector procedure nevertheless,
provided once again that an effective preconditioning is incorporated. We will
propose a preconditioning of the dependent variables, which we now describe in
more detail.

Let us consider the following transformation of f:

(3) ww=%M*HMW
where L is an as yet unspecified nonsingular IV x N matrix. By computing the first
and the second derivatives of p(u), we have
Vi(u) = H'(u)*(LL*)™! H(u);
(4) V' (u) = H'(u)*(LLY) " H' (u) + O(| H (w)]))-

If we assume that our continuation method furnishes predictor points which are
already near H~1(0), we may neglect the O(||H (u)||) term in (4). Furthermore, if
H(u) = 0, then an ideal choice would be to take L such that

LL* = H'(u)H'(u)*

is the Cholesky decomposition. Thus, we have
V() = H'(u)(LL*) " H(u)
= H'(u)"(H'(u)H'(u)*)""H (u)
H'(u)" H(u),

where H'(u)t = (H'(u))*(H'(u)H'(u)*)~'. Hence in this case, the gradient
Veo(u) = H'(u)*H(u) coincides with the usual Newton direction which we used
as the standard corrector in Section 2.

If we want to use the Cholesky decomposition, then we would relinquish whatever
advantage sparseness may have offered. Also, we would prefer to determine L
with a small computational expense and in such a way that the linear equations
LL*z = y are cheaply solved for z. For these reasons, our preconditioning involves
computing an incomplete Cholesky factorization. To describe this factorization, let
A = H'(u)H'(u)*. The main idea behind this factorization is to calculate a lower
triangular matrix L with the property that L has some tractable sparsity structure
and is somehow “close” to A’s exact Cholesky factor. The preconditioning is then
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taken to be LL*. We should note that L;; = 0 if the corresponding a;; = 0. This
leads to the following algorithm.

Algorithm 4.1 (Incomplete Cholesky Preconditioner).
INPUT: A
n % the size of the matriz A,
OUTPUT: L % lower triangular matriz so that LL* ~ A.
STEP 1: For k=1:n do steps 2-7.
STEP 2: Set Akl — \/ﬂ
STEP 3: Fori=k+1:n do step 4
STEP J: Ifa; #0, aj, = Zk’;, end
STEP 5: For j=k+1:n, do steps 6-7
STEP 6: Fori=j:n, do step 7.
STEP 7: If Qi 75 0, Qj5 = Qi5 — ik Qjk, end.
STEP 8: Stop.

Note that the matrix A and its incomplete Cholesky factor L would be stored
in an appropriate data structure and the looping in Algorithm 4.1 would take on a
very special appearance. This preconditioner would relinquish whatever advantage
sparseness may have offered. For more detail, see [22)].

We are ready to present our new technique in Algorithm 4.2.

Algorithm 4.2 (CG Predictor Corrector Method).
INPUT: uy € RVH! % such that H(ug) =~ 0; initial point,

te RNFL % initial approzimation to t(H'(up)) = 0,
h>0 % initial steplength.
OUTPUT: u;, i =0,1,2,... % approzimating the solution curve.

STEP 1: Fori=1,2,... do steps 2-14.

STEP 2: Set v=wu;_1+ ht % predictor step.

STEP 3: Calculate LL* ~ H'(v)H'(v)* % preconditioner.
STEP 4: Setg,=H'(v)*(LL*)"*H(v), d = g,, % gradients.
STEP 5: Do steps 6-11 until convergence % corrector loop.
STEP 6: Setp = arg min,>g HL‘lH(v — ,od)”2 ,

STEP 7: Setw=v—pd % corrector step, nonlinear CG.
STEP 8: Set g, = H'(w)*(LL*)"'H(w); % new gradient.
STEP 9: Set y = {92—92) 9w,

STEP 10: Set d = g, +vd; % new conjugate gradient,

STEP 11: Set v =w and g, = Go-

STEP 12: adapt steplength h > 0.

STEP 13: Sett = H, % approzimation to t(H'(w)).
STEP 14: Set u; = w; % new point approzimately on H~1(0).
STEP 15: Stop.

Now, we discuss the details of the method for solving the line search problem
—- . —1 . 2
(5) p—IngH(}HL H(v—pd)|”.
Let us approximate ¢(v — pd) via Taylor’s formula of order two by

(6) olv— pd) % plv) — pp'(V)d + 20"V (v)d
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We approximate p by the minimum of the right-hand side of equation (6). This is
minimized exactly when

¢'(v)d

@ RO

provided d*V¢'(v)d > 0. Furthermore, for ¢(v — pd) = % HL*IH(U — pd)HQ, we
have
(8) ¢'(v)d = H(v)"(LL*)™! H'(v)d = g;d
and

d*Ve'(v)d d*H'(v)*(LL*)™ H'(v)d + O H(v)] [|dll)
LY H (v)d]|”.

9)

Since the evaluation of H'(v)d is costly for large scale problems, we will use an
inexpensive approximation of it using the central difference formula

v4erdn) — H(v — eqdr
(10) P P ,|d|)2€H< ) g+ Oe)

for an appropriate € > 0. If we choose d = e; = (d;1, di2, . . ., 0;(n+1)), Where
L g=u
‘5“‘{ 0, j#i }

H(v+ee;)) — H(v—ee;)
B 2¢

Q

then
+O(e).

Therefore,

(11)

H,, (v) H(v+eep) — H(v— eeq)
) H,,(v) 1 | Hv+eex) — H(v — eeq)
H (’U) = : = i .
H$N+1(’U) H(U+66N+1) _H(U_eeN-H)

We will use (10) and (11) for computing H'(v)d and H'(w). For more detail on
how to choose €, see [I] and [25]. Since the evaluation of H'(w) is very costly
(2N + 2 evaluations of H for large N), we hold it fixed in the corrector loop (i.e., in
Steps 5-11 in Algorithm 4.2). Since the predictor corrector steps of a continuation
method are performed in such a way that all generated points are close to the
solution curve in H~1(0), the quadratic approximation considered in (7) will give
good results in our situation. Thus, we substitute (9)-(11) in (7). For the same
reason, the approximation of H'(v) in (11) will also give good results and it will
not have any effect on the results. In Step 12 of Algorithm 4.2, we use the adaptive
steplength h which is described in Section 2.

As we saw before, Vi(u) = H'(u)*H(u) coincides with the usual Newton di-
rection which we used as the standard corrector in Section 2. This means that
the corrector in Algorithm 4.2 will be a rapidly converging corrector such as the
standard corrector in Section 2. Moreover, Algorithm 4.2 has been based upon
the Euler predictor, which is of local order two. This leads to the fact that the
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sequence, which is generated by Algorithm 4.2, is quadratically convergent. Also,
it has the upper bound

s — will < O(2).
For more detail about the last inequality, see [IJ.

The above discussion ensures that Algorithm 4.2 safely follows the solution curve
faster than the traditional CG which has superlinear convergence. Also, the PCG
method will be faster than the traditional CG method but it will not be quadrati-
cally convergent. For more detail, see [I5]. We can see the difference between these
three methods in the next section.

5. NUMERICAL RESULTS

In this section, we present three numerical experiments. In each example, we
make a comparison between the traditional conjugate gradient, the preconditioning
conjugate gradient, and the conjugate gradient predictor corrector method (Algo-
rithm 4.2). We compare them according to the computational time in seconds,
absolute error, and the number of iterations. We did all of these calculations on a
2.00Ghz Pinetum 4 computer. The first example is an application in fluid dynam-
ics. We will start with it to demonstrate the practicality of our technique in real
life problems.

Example 5.1 (The problem of thermal ignition in a finite cylinder). In this ex-
ample we study the equations modelling thermal ignition in a finite cylinder with
aspect ratio v = % where R and L denote the radius and length of the cylinder,
respectively. Assume the cylinder has the origin as center and the z-axis as its rota-
tional axis. Thus, the partial differential equation that represents this application

takes the form

—Au =6 eTreu,
u = 0 on the boundary of the cylinder,
ou
(12) — =0 on the plane z = 0,
0z
ou .
— =0 on the axis r =0,
or
250
200 +
150 |
U
100
50 Ly
O T T T T I\ll
0 0.5 1 1.5 2 2.5

FIGURE 1. The variation of the peak temperature 4 with §
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where A is the Laplace operator in cylindrical coordinates, u is the nondimensional
temperature, J is the exothermicity, and € is the inverse activation energy. Replacing
the axial coordinate z by vz, we obtain

The nonlinear thermal equation was discretized in a standard Galerkin finite-
element method, using nine-noded quadrilateral elements with biquadratic inter-
polation. The details of the finite-element formulation are similar to those in the
bifurcation studies of the Taylor and Benard problems (for more detail, see [2]) and
will not be repeated here. As a result of the discretization, we get the large scale
problem of the form H(u,d) = 0, where H : 1521 — R520, Then we apply our tech-
nique which is described in Algorithm 4.2 on the discretization form. To show how
our technique works efficiently, we compare it with the traditional conjugate gradi-
ent method and the preconditioning conjugate gradient method. As was discussed
in Section 4, we use the incomplete Cholesky factorization as preconditioning for
the nonlinear conjugate gradient.

For v = 4, ¢ = 0.15 and R = 1, a starting point § = 0 and @ = 0 is available
on the solution curve for the discretized problem. First, we study the behavior of
the solution, as represented by the peak temperature &, as § varies. The points
of ignition and extinction are marked by L; and Ls, respectively, on the solution

curve. From Figure [I, we note that the peak temperature 2 of the discretized

TABLE 1. The absolute errors in the temperature

(r,2) Errorl Error2 Error3

(0.2,0.2) [ 1.1%x107* | 3.2%x 1078 [ 2.0x 10713
(0.4,04) [ 9.3%x107% [ 211077 [2.0x 10713
(0.8,0.5) [ 65107 | 5.9% 1075 [ 2.9% 10713
(
(
(

1,0.7) [9.9%107%[28% 1077 [ 8.4 %1012
1.4,1) [89%1071[9.8%107% [ 6.5+ 10712
1.9,1.2) [4.7%107 [ 1.0 1077 | 7.2% 10713

TABLE 2. The total computational time in seconds

N | Timel | Time2 | Time3
200 | 163 80 43
308 | 201 97 52

920 | 277 123 70
642 | 355 146 80

| = N =2

TABLE 3. The number of iterations

N | Iterl | Iter2 | Iter3
200 | 128 60 32
308 | 164 82 42
520 | 230 110 61
642 | 301 142 77

| = | DN 2
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solution when plotted against ¢ has a characteristic S-shaped curve whose two-fold
points correspond to Ly and Ls.

Next, we compare the traditional CG method, the PCG method and the CG
predictor corrector method (Algorithm 4.2) when 6 = 0.5. Assume that Errorl,
Error2, and Error3 mean the absolute error at the given point using the tradi-
tional CG method, the PCG method and Algorithm 4.2, respectively. The results
obtained are given in Table [Il It is clear that the error produced using Algorithm
4.2 is much smaller than that of the PCG method. Also, the error produced using
the PCG method is smaller than that of the traditional CG method. In terms of
computational time where Timel, Time2, and Time3 refer to the total compu-
tational time in seconds using the traditional CG method, the PCG method and
Algorithm 4.2, respectively, the results are given in Table[2. Again it is clear that
Algorithm 4.2 is superior to the traditional CG and PCG methods. Moreover, in
terms of the number of iterations where Iterl, Iter2, and Iter3 refer to the number
of iterations using the traditional CG method, the PCG method and Algorithm 4.2,
respectively, the results are given in Table[3l Again it is clear that Algorithm 4.2
is superior to the traditional CG and PCG methods.

Example 5.2. Consider the two point boundary value problem

(13) Y+ reyy' + (1+2%)y = 2+az+2%e”, ~1<z<]1,
y(=1) = e landy(l)=e.

Using finite difference method to approximate the derivatives

a0 —f@=0 o gy = HEE) =26 @)+ =)

2¢ €2 ’

fi(z) ~

we obtain a nonlinear system of the form F(Y) = 0 where F : RY — RV, Simple
calculations give us

Fi(Y) = yit1 + ity + Biyi + YiyiYi-1 + yi—1 — 6i,

where
ex;e i 9 9
Q= 2 ) 67,:—24—6(1—‘-1‘2),
o Lq
Vi = _exz; ;0= =24 3+ x))e",
Y =( ) d 1+ 2i fori=0:N
= an T; = — ori=0:N.
Y1,Y2, YN ), N—|—1

Define the homotopy H : RY x [0,1] — RN by H(Y,\) = AF(Y) + (1 — M)G(Y),
where G is the finite difference discertization of the linear boundary value problem

(14) v = 2+z+ad)e”, ~l<a<],
y(=1) = e landy(l) =e.

Assume that Y is the solution of the linear system G(Y') = 0. Then a starting point
(Y5,0) is available on the solution curve for the large scale problem H (Y, \) = 0.



CONJUGATE GRADIENT METHOD FOR SOLVING LARGE SCALE PROBLEMS 815

TABLE 4. The maximum of the absolute errors

N Errorl Error2 Error3

100 [ 33%10° [ 1.2%x10° %[ 2.1%10° 1%
150 [ 4.1%10°° [4.4%10° %] 24x10" 12
200 [ 6.4%107° [ 83%107% | 271014
250 [ 7.3%107° [ 8.8%107 8| 3.4% 1014
300 | 8.5%107°[9.1%10°% | 3.8+10~ 1%
350 [ 9.7%«1075]9.4%x10° 8 [ 4.4% 10712

TABLE 5. The total computational time in seconds

N | Timel | Time2 | Time3
100 | 155 77 29
150 | 191 89 36
200 | 226 111 63
250 | 290 139 77
300 | 333 162 84
350 | 378 180 91

TABLE 6. The number of iterations

N | Iterl | Iter2 | Iter3
100 | 96 68 37
150 | 142 80 44
200 | 194 106 58
250 | 241 139 66
300 | 292 148 76
350 | 344 160 81

Then, we apply our technique described in Algorithm 4.2, the traditional CG,
and the preconditioning conjugate gradient (PCG) method. The unique solution of
problem (14) is y(z) = (—24+192— 62?4+ 2%)e® + (22 —5e)x — (22 +5¢). Throughout
this example we use the following notation.

Errorl = Maz{|y(x;) — y;| : ¢ = 0, N} using the traditional nonlinear conjugate
gradient.

Error2 = Max{|y(z;) — yi| : ¢ = 0, N} using the preconditioned nonlinear con-
jugate gradient.

Error3 = Maz{|y(x;) — ;| : ¢ = 0, N} using Algorithm 4.2.

Timel = The total computational time in seconds using the traditional nonlinear
conjugate gradient.

Time2 = The total computational time in seconds using the preconditioned
nonlinear conjugate gradient.

Time3 = The total computational time in seconds using Algorithm 4.2.

Iterl = The number of iterations using the traditional nonlinear conjugate gra-
dient.

Iter2 = The number of iterations using the preconditioned nonlinear conjugate
gradient.
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Iter3 = The number of iterations using Algorithm 4.2

N = the size of the large scale problem.

The numerical results for this example are given in Tables[d], Bl and Bl Again it
is clear that Algorithm 4.2 proves to be superior to the traditional CG and PCG
methods.

Example 5.3. Consider the two point boundary value problem
(15) Y+ (sinz) ()2 +y = 2+ e*sing, 0< <2,
y(=0) = 1andy(2)= ¢

Using the same procedure and notation as in Example 5.2, the numerical results
are given in Tables [ 8 and @

We want to end this section with the following remarks.

Remark 1. As a result of the discretization of the problems in Examples 5.1-5.3,
the corresponding finite dimensional problem is H : R**! — R™ where n is large.
This leads to the task of solving large scale continuation problems.

Remark 2. The matrices in Algorithm 4.2 are sparse matrices. If we rewrite H(w) =
BU, then B is a band matrix with bandwidth 2 in Examples 5.2 and 5.3 and with

TABLE 7. The maximum of the absolute errors

N Errorl Error2 Error3

100 [ 3.3%107° | 5.1%107Y | 2.5% 10~
150 | 4.9%107° [ 5.9% 1072 | 2.9x10°1°
200 6.2%x107° | 6.5%107° | 3.8« 10~ 1°
250 [ 7.1%107° [ 7.9%x107° | 4.2% 107 1°
300 | 8.9%x107°{9.1%107° | 4.8+10~1°
350 [9.9%«105]1.1%x10°8[5.3%x10°1°

TABLE 8. The total computational time in seconds

N | Timel | Time2 | Time3
100 | 154 75 35
150 | 162 84 41
200 | 201 109 60
250 | 255 133 71
300 | 298 155 80
350 | 320 170 88

TABLE 9. The number of iterations

N | Iterl | Iter2 | Iter3
100 | 77 41 20
150 | 105 55 28
200 | 133 72 35
250 | 184 91 45
300 | 220 119 59
350 | 297 148 71
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bandwidth 4 in Example 5.1. We use the benefit of the bandness when we store
these matrices and when we multiply them by each other or by another vector.

Remark 3. The computational time in seconds for Algorithm 4.2 is less than that
of the preconditioned conjugate gradient method (PCG method). For example, in
Example 5.3, when n = 300, the computational time for Algorithm 4.2 is 80 seconds
while for the PCG methods it is 155 seconds.

Remark 4. The absolute error, as defined in Examples 5.1-5.3, in Algorithm 4.2
is less than for the PCG method. For example, in Example 5.3, when n = 300,
the absolute error for Algorithm 4.2 is 4.8 * 10~'® while for PCG methods it is
9.1%1077.

Remark 5. The number of iterations, as defined in Examples 5.1-5.3, in Algorithm
4.2 is less than for the PCG method. For example, in Example 5.2, when n = 300,
the number of iterations for Algorithm 4.2 is 76 while for the PCG methods it is
148.

Remark 6. From Tables[IHJ, we see that the traditional CG method gives the worst
results while Algorithm 4.2 gives the best.

From the above discussion, we see that Algorithm 4.2 works efficiently and it is
better than the traditional CG method and the preconditioned conjugate gradient
method. Finally, we give Figure[lto let the reader see how Algorithm 4.2 takes care
for the fold points, which is one of the serious problems in the continuation methods.
Moreover, this figure coincides with the real life practicality of the problem. For
more detail, see [37].
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