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REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS
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Society classification scheme. The 2000 Mathematics Subject Classification can be
found in print starting with the 1999 annual index of Mathematical Reviews. The
classifications are also accessible from www.ams.org/msc/.

3[05C35, 90C27, 52B60]—Report on global methods for combinatorial isoperi-
metric problems, by L. H. Harper, Cambridge Studies in Advanced Mathematics,
Vol. 90, Cambridge University Press, 2004, xiv+231 pp., hardcover, $60.00, ISBN
0-521-83268-3

It is a very nice and useful book, written by a real expert in the field. A typical
problem can be described as follows. Let G be a graph with the edge set E and
the vertex set V , and let k be a given positive integer. The task is to choose a
k-element set S ⊆ V that minimizes the number of edges which are defined by one
vertex from S and by one vertex outside of S.

The book has been based on many years of teaching this material to graduate
students and this is certainly reflected in the style in which it is written. In a series
of lemmas and theorems, the author leads the reader through rather simple cases to
more complicated concepts. On the other hand, it offers a rich and varied selection
of problems from this beautiful branch of combinatorial optimization to which a
certain unifying “global” approach is developed. Informal comments at the end of
each chapter provide a nice supplement to the main text and also help to gain some
historical perspective on the subject. I believe that both specialists in the area and
mathematicians with other backgrounds will find lots of new interesting material
in this book.

Igor Shparlinski

E-mail address: igor@comp.mq.edu.au

4[65L60, 65L70, 65M60, 65Nxx, 74S05, 76M10]—Adaptive finite element
methods for differential equations, by Wolfgang Bangerth and Rolf Rannacher,
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003, viii+207
pp., softcover, EUR 22.00/SF 35.00, ISBN 3-7643-7009-2

Finite element methods are, undoubtedly, one of the most general and powerful
techniques for the numerical solution of partial differential equations. Their histori-
cal roots can be traced back to the 1943 paper of Richard Courant [6] on variational
methods for the approximation of problems of equilibrium and vibration. Given
that V is an infinite dimensional Hilbert space, a(·, ·) is a continuous and coercive
bilinear functional on V × V and �(·) is a continuous linear functional on V , the
archetypal linear variational problem consists of finding u in V such that

(P): a(u, v) = �(v) for all v ∈ V.
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Boundary value problems for scalar linear elliptic partial differential equations or
elliptic systems, such as the Stokes problem modelling the flow of a viscous in-
compressible fluid in a bounded open set Ω ⊂ R

n, naturally fit into this abstract
variational framework.

In engineering and scientific applications it is frequently the case that, instead
of the field u itself, the quantity of interest is a certain output functional u �→ J(u);
typical examples include the weighted integral-mean-value of u, a point-value of u,
the normal flux of u through (part of) the boundary ∂Ω of Ω, or, in problems that
arise from fluid mechanics, the lift and the drag exerted on a body that is immersed
into a viscous or inviscid fluid.

The finite element approximation of the variational problem (P) consists of se-
lecting a finite dimensional space Vh (of dimension N = N(h, p)) of the space V
consisting of a piecewise polynomial function of a certain degree p on a triangula-
tion Th of granularity h of the computational domain Ω, and seeking uh ∈ Vh such
that

(Ph) : a(uh, vh) = �(vh) for all vh ∈ Vh.

Adaptive finite element methods, driven by a posteriori error bounds, aim to auto-
matically adapt the local mesh-size h or the local polynomial degree p, or both h
and p, so as to accurately capture the analytical solution u, or a certain functional
u �→ J(u) of the solution.

It is this topic that forms the subject of the book by Bangerth and Rannacher
under review. The book grew out of a lecture series given by the second author
during the summer of 2002 at the Department of Mathematics of the ETH in Zürich.
It comprises a brief Preface, followed by twelve chapters, a 24-page Appendix, a
Bibliography with 138 entries, and a 5-page Index of terms; each chapter is about
15 pages long and is supplemented by computational examples as well as exercises
whose model solutions are supplied in the Appendix.

As is highlighted by the authors in Chapter 1 of the book, the goal of adaptivity
is the “optimal” use of computing resources according to either one of the following
principles:

• Minimal work N subject to a prescribed positive tolerance TOL: N → min,
TOL given; or,

• Maximal accuracy subject to prescribed work: TOL → min, N given.

These goals are, traditionally, approached by mesh adaptivity driven by “local re-
finement indicators” based on the computed solution uh. The process of adaptivity
has three main ingredients:

• a rigorous a posteriori bound on the error in the quantity of interest in
terms of the data and the computed solution;

• a local refinement indicator extracted from the a posteriori error bound;
• automatic mesh adaptation (in the form of local h-refinement, or local p-

refinement, or their combination referred to as hp-refinement) according to
certain refinement strategies based on the local refinement indicators.

The idea of a posteriori error estimation stems from the early work of Babuška
and Rheinboldt [2, 3]; see also the monographs of Ainsworth and Oden [1], Babuška
and Strouboulis [4], and Verfürth [21] for further detail on the subject of a posteriori
error analysis of the finite element method. The focus of this book by Bangerth and
Rannacher is a general technique for goal-oriented a posteriori error estimation for
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finite element approximations of differential equations, called the dual-weighted-
residual (DWR) method, and the implementation of this technique into adaptive
finite element algorithms.

To give a brief sketch of the DWR method, consider the variational problem
(P) and its finite element approximation (Ph) and suppose that the goal of the
computation is to find an accurate approximation to the real number J(u) where
J : V → R is (for the sake of simplicity of presentation) a linear functional and u
is the solution to problem (P).

The derivation of an a posteriori bound by means of the DWR method on the
error J(u) − J(uh) between the unknown value J(u) and its known finite element
approximation J(uh) rests on considering the associated dual problem: find z ∈ V
such that

(D): a(w, z) = J(w) for all w ∈ V.

Clearly, setting w = u − uh in (D), we deduce that

J(u) − J(uh) = J(u − uh) = a(u − uh, z)
= a(u − uh, z − vh)

for all vh ∈ Vh, where, in the transition to the last line, we made use of the Galerkin
orthogonality property: a(u−uh, vh) = 0 for all vh ∈ Vh, which is a straightforward
consequence of subtracting (Ph) from (P) with v = vh ∈ Vh ⊂ V . Proceeding then,
using (P), we obtain

J(u) − J(uh) = �(z − vh) − a(uh, z − vh) ∀vh ∈ Vh.

Thus we have eliminated the analytical solution u, at the expense of involving
the dual solution z. The last identity can be written in a more compact form on
introducing the linear functional R(uh) : V → R, defined by

R(uh)(v) = �(v) − a(uh, v) ∀v ∈ V,

referred to as the finite element residual , or, simply, residual ; it measures the extent
to which the numerical solution uh fails to satisfy the equation (P). Hence,

J(u) − J(uh) = R(uh)(z − vh)
= 〈R(uh), z − vh〉 ∀vh ∈ Vh,

where 〈·, ·〉 denotes the duality pairing between the dual space V ′ of V and V . This
error representation formula is at the heart of the DWR method, highlighting the
fact that the error in the approximation of the value J(u) depends on the interplay
between the finite element residual R(uh) and the error z − vh, with vh ∈ Vh, in
the approximation of the dual solution z, which acts as a weight function for the
residual. Hence the terminology dual-weighted-residual method. In particular, the
last identity implies that

(1) |J(u) − J(uh)| = inf
vh∈Vh

|〈R(uh), z − vh〉|.

In earlier incarnations of duality-based error estimation—particularly in the pi-
oneering research pursued by the Gothenburg school (see, for example, the articles
by Johnson [16], Eriksson and Johnson [13, 14], and the illuminating survey paper
by Eriksson, Estep, Hansbo, and Johnson [12])—the objective was to eliminate the
explicit appearance of the dual solution z from the right-hand side of (1) through a
succession of upper bounds. The first of these upper bounds involved making a par-
ticular choice of vh such as the finite element interpolant or quasi-interpolant Phz
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of z; this step was followed by localizing the expression |〈R(uh), z − Phz〉| through
decomposing it, as a sum of analogous terms defined locally, over the elements T
in the triangulation; the next step was to apply the Cauchy–Schwarz inequality
to each of these local terms in tandem with an interpolation-error bound such as
‖z − Phz‖L2(T ) ≤ Cinth

s
T ‖z‖Hs(T ), where hT = diam(T ), with T ∈ Th, and Cint is

an interpolation constant; and, finally, to exploit the strong stability of the dual
problem to bound the Sobolev norm ‖z‖Hs(Ω) in terms of the data of the dual
problem and the stability constant Cstab of the dual problem, resulting in an a
posteriori error bound of the form

|J(u) − J(uh)| ≤ CintCstab

(∑
T∈Th

h2s
T ‖R(uh)‖2

L2(T )

)1/2

with no explicit dependence on the dual solution. While such an a posteriori error
bound is reliable in the sense that the right-hand side of the inequality is a guaran-
teed upper bound on the left-hand side, numerical experiments will quickly reveal
that, typically, the right-hand side will overestimate the left-hand side—sometimes
by orders of magnitude—even if the sharpest available values of the constants Cint

and Cstab are used. A further observation in connection with the last bound is that
the original feature of (1), namely that it is the interplay between R(uh) and z−vh,
with vh ∈ Vh, that governs the error J(u) − J(uh), rather than the size of R(uh)
alone, is completely lost through successive applications of the Cauchy–Schwarz in-
equality aimed at eliminating the presence of the dual solution z. The importance
of preserving the dual solution z as a locally varying weight to the residual is par-
ticularly important in instances when the dual solution exhibits complex behavior
over the computational domain Ω. Whether or not this is so, of course, depends
entirely on the nature of the problem (P) and the choice of the output functional J .
For example, when (P) is the weak formulation of an elliptic convection-dominated
diffusion equation and J(u) = u(x0), x0 ∈ Ω, the dual solution z will contain a
thin internal layer which will be aligned with the subcharacteristic curve passing
through x0. It would be unreasonable to expect that the presence of such a lo-
calized and anisotropic structure in the dual solution could be represented by, or
encoded into, a single constant, Cstab, the stability constant of the dual problem
featuring in the last a posteriori error bound.

These recognitions motivated, in the mid-1990s, the work of Becker and Ran-
nacher [7] where the dual-weighted-residual method was first introduced (see also
[8] and the survey articles [8] and [15]). At about the same time, other researchers
have also embarked on closely related investigations (see, for example, [17], [19] and
[20]).

In particular, in order to derive a sharp a posteriori error bound from the error
representation formula (1) while retaining the presence of the dual solution in the
bound as a local weight to the finite element residual, it was recognized in [7] that
the number of applications of the Cauchy-Schwarz inequality in the derivation of
the bound has to be kept to the minimum. An a posteriori error bound based on
the DWR method which meets these objectives can be inferred from (1); it has the
form

(2) |J(u) − J(uh)| ≤
∑

T∈Th

|〈R(uh)|T , z − Phz〉T |,
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where 〈·, ·〉T is a localized counterpart of the duality pairing 〈·, ·〉, R(uh)|T is the
restriction of the (global) finite element residual R(uh) to element T ∈ Th, and
Phz ∈ Vh is the finite element interpolant or quasi-interpolant of z.

Chapters 2–4 of the book are devoted to explaining the application of the DWR
method to an ODE model problem (Chapter 2) and a PDE model problem (Chap-
ter 3), and to discussing practical aspects of the method (Chapter 4), including the
evaluation of the DWR error bound (2) and other DWR error bounds akin to (2).
For, strictly speaking, inequality (2), as it stands, is not an a posteriori error bound
in the classical sense of the word, given that it involves the unknown analytical
solution z to the dual problem (D). Clearly, z has to be computed numerically; in
particular, if a finite element method is used to compute an approximation to z,
then a finite element space different from Vh must be used for this purpose; once
such an approximation to z is available, it has to be projected onto Vh to obtain
zh ∈ Vh which can be used in lieu of Phz in (2). The additional errors incurred
through the numerical approximation of the dual solution are difficult to quantify
unless one embarks on reliable a posteriori error estimation for the dual problem;
for reasons of economy, this is rarely attempted in practice. Indeed, there is very
little in the current literature in the way of rigorous analytical quantification of
the impact of replacing the exact dual solution z in the DWR error bound by its
numerical approximation; see, however, the recent analytical work of Carstensen
[5] on the estimation of higher Sobolev norm from lower order approximation, and
the application of this in the context of the DWR method. A second issue is
that the necessity to compute a “reasonably” accurate approximation to the dual
solution results in added computational work. The authors of the book provide
a convincing computational demonstration through a wide range of model prob-
lems that, except on very coarse meshes, a posteriori error bounds obtained by
the DWR method remain reliable and very sharp even on replacement of z by its
numerical approximation. In addition, when implemented into adaptive finite el-
ement algorithms, error bounds derived by the DWR method lead to economical
computational meshes.

An analysis aimed at gaining further theoretical insight into the performance of
the DWR method is performed in Chapter 5 of the book. The chapter also discusses
the current limits of theoretical analysis of the method focusing, in particular,
on convergence under mesh refinement of the finite element residual and of the
weights which incorporate the numerical approximation to the dual solution z. As
is noted by the authors at the end of Section 5.3, further challenges include the
convergence analysis of the method on locally refined meshes, particularly in the
presence of singularities in the solutions to the primal problem (P) and/or the dual
problem (D). Indeed, the convergence analysis of adaptive algorithms has been the
subject of active research in recent years (see, for example, the papers of Morin,
Nochetto, and Siebert [18], Cohen, Dahmen, and DeVore [11], and Binev, Dahmen,
and DeVore [10] in this direction in the context of energy-norm-based a posteriori
error estimation and adaptivity for elliptic problems).

Chapter 6 is concerned with the extension of the DWR method to nonlinear
variational problems. A particularly appealing feature of the DWR method from the
practical point of view is that, when applied to nonlinear PDEs, the dual problem,
which is simply the adjoint of the linearization of the primal problem, is still a
linear problem. Hence the computational overhead of obtaining an approximate
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dual solution is merely a fraction of the computational complexity of solving the
primal nonlinear problem itself.

Chapters 7 to 11 discuss the application of the DWR method to, respectively,
eigenvalue problems, optimization problems, time-dependent problems, linear and
nonlinear problems in structural mechanics, and problems in fluid dynamics in-
cluding the computation of drag and lift coefficients in a viscous incompressible
flow.

The book closes, in Chapter 12, with an overview of miscellaneous and open prob-
lems, including historical remarks and a survey of current developments. Some of
the open problems identified by the authors include the use of the DWR method
for multidimensional time-dependent problems, its application in the context of the
hp-version finite element method, the organization of anisotropic mesh refinement,
the effective control of variational crimes, the control of the error incurred in the
solution of algebraic equations which result from finite element discretizations of
differential equations, the application of the DWR method to nonvariational prob-
lems, and, finally, the solution of the theoretical problems raised in Chapter 5 so as
to provide complete theoretical underpinning of the DWR method. Some of these
are already the subject of ongoing research.

This well-written book is highly suitable as supporting text for an advanced
undergraduate or a basic graduate course on adaptive finite element methods for
partial differential equations. The material is clearly structured and well orga-
nized, and the numerous computational examples and exercises induce the reader
to further explore the subject. The discussions of open or incompletely understood
problems are particularly stimulating and raise the understanding of the reader to
the forefront of current research in the field. I warmly recommend this book to
anyone with interest in the analysis of finite element methods and their application
to partial differential equations.
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University of Oxford

5[11B85, 11Z05, 37A45, 37B10, 68Q45, 68R15, 94A45]—Automatic se-
quences. Theory, applications, generalizations, by Jean-Paul Allouche and Jef-
frey Shallit, Cambridge University Press, Cambridge, 2003, xvi+571 pp., $50.00,
ISBN 0-521-82332-3

Sequences come in all flavors. Some, such as periodic sequences, are

highly organized, while others are unordered and have no simple de-

scription. The subject of this book is automatic sequences and their

generalizations. Automatic sequences form a class of sequences some-

where between simple order and chaotic disorder. This class contains

such celebrated sequences as the Thue–Morse sequence and the Rudin–

Shapiro sequence. . . . [from the Introduction]

The subjects of this fine book include combinatorics on words, formal languages,
useful parts of number theory, formal power series, . . . . The chapter titles give
some hint of the breadth of material appropriately touched upon: Stringology,
Number Theory and Algebra, Numeration Systems, Finite Automata and Other
Models of Computation, Automatic Sequences, Uniform Morphisms and Automatic
Sequences, Cobham’s Theorem for (k, l) Numeration Systems, Morphic Sequences,
Frequency of Letters, Characteristic Words, Subwords, Cobham’s Theorem, Formal
Power Series, Automatic Real Numbers, Multidimensional Automatic Sequences,
Automaticity, k-Regular Sequences, Physics.

Automatic Sequences is both an introduction to the study of the said sequences
and related mathematics and a careful survey of known results and applications
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with beautifully optimized proofs, many of which can lay claim to coming from the
Book.

Let me continue by giving an entry to the subject rather different from those
emphasised in the book being reviewed (but see its Chapter 12).

Consider a formal power series
∑

j1,j2,...,jn
aj1,j2,...,jnxj1

1 xj2
2 · · ·xjn

n , or
∑

ν aνxν in
brief, representing a rational function, thus a quotient of polynomials. Fear of func-
tions of many variables might lead one to study its “main diagonal”

∑
j aj,j,...,jx

j .
That diagonal represents an algebraic function if n = 2; in general it represents
a solution of a Fuchsian linear differential equation with rational function coeffi-
cients. If, moreover, the base field is finite, of characteristic p, then that diagonal is
algebraic over the field of rational functions over that finite field. Rather more to
the point, the multisequence of coefficients aν of an algebraic power series defined
over a finite field is p-automatic, and conversely such an “automatic” power series
is necessarily algebraic.

One sees this surprisingly readily. Take the base field to be Fp, the field of p
elements and set S = {0, 1, . . . , p − 1}n. If the power series y(x) = y(x1, . . . , xn)
is algebraic, then it satisfies an equation

∑s
i−0 fi(x)ypi

= 0. Set f = −f0. Then
multiply by fp−1, obtaining an equation fpy = L(yp, yp2

, . . . , yps

). Now recall that
{xα = xi1

1 xi2
2 · · ·xin

n : α ∈ S} is a basis for Fp[[X ]] over (Fp[[X ]])p. After again
multiplying by fp−1 that yields equations fpyα = Lα(yp, yp2

, . . . , yps

), . . . . If one
checks the multidegree in x of Lα1,...,αk

as k increases, one finds it is bounded;
hence there are only finitely many distinct yα1,...,αk

. That says there is a positive
integer e so that for every n-tuple j with the ji less than pe there is an e′ < e and
an n-tuple j′ with the j′i less than pe′

so that for all n-tuples ν,

apeν+j = ape′ν+j′ .

In other words, the multisequence of coefficients aν is p-automatic. Conversely one
sees easily that each yα1,...,αe satifies an equation of the form

yα1,...,αe =
∑

xγyβ1,...,βe
pe−e′

.

It follows—the Jacobian determinant of such a system of equations is 1—that the
yα1,...,αe and hence y must be algebraic.

I should also mention a manuscript settling a question irritatingly open at the
time the book was completed. Given an infinite string, denote by p(n) the number
of its distinct subwords of length n. Recently, Boris Adamczewski, Yann Bugeaud,
and Florian Luca in “Sur la complexité des nombres algébriques” (C. R. Acad. Sci.
Paris, Ser. I 336 (2004)) applied Schlickewei’s p-adic generalisation of Wolfgang
Schmidt’s subspace theorem (which itself is a multidimensional generalisation of
Roth’s theorem) to proving that for the base b expansion of an irrational algebraic
number lim supn→∞ p(n)/n = ∞, whereas for any number generated by a finite
automaton p(n) = O(n).

I highly recommend Automatic Sequences, whether as text, reference, or all the
more as an excellent read, both to rank beginners and to those already acquainted
with parts of the subject.

Alf van der Poorten

Centre for Number Theory Research

1 Bimbil Place, Killara

Sydney, NSW 2071, Australia

E-mail address: alf@math.mq.edu.au
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6[40A05, 40A10, 40A25, 40A30, 40B05, 40G05, 41A20, 41A21, 41A25,
41A55, 41A58, 41A60, 65B05, 65B10, 65B15, 65D25, 65D30, 65R10,
65R20]—Practical extrapolation methods: theory and applications, by Avram
Sidi, Cambridge Monographs on Applied and Computational Mathematics,
Vol. 10, Cambridge University Press, Cambridge, 2003, xxii+519 pp., $95.00,
ISBN 0-521-66159-5

A fundamental problem one faces in different scientific and engineering disciplines
is that of finding limits of sequences {Am}; in many cases, solutions are simply
defined to be limits of sequences of approximations. Such sequences may arise in
different forms. They may arise, for example,

• from the solution of linear or nonlinear systems of equations by iterative
methods, in which case {Am} is the sequence of iterates. Here limm→∞ Am

are the solutions to the systems being considered.
• from trapezoidal rule approximations of one- or multi-dimensional inte-

grals, in which case Am = Q(hm), where Q(hm) is the approximation with
integration stepsize hm, and {hm} is a decreasing null sequence.

• in the summation of infinite series
∑∞

k=1 ak, in which case, Am =
∑m

k=1 ak,
m = 1, 2, . . . . Here ak can be numbers or they can be of the general form
ak = ckφk(x), where ck are numbers and φk(x) are elementary functions
such as powers, trigonometric functions, orthogonal polynomials, or other
special functions.

• from infinite-range integrals
∫∞
0

f(t) dt, where Am =
∫ xm

0
f(t) dt for some

increasing positive sequence of points {xm} such that limm→∞ xm = ∞.

In many cases of practical interest, these sequences converge extremely slowly;
therefore, one needs to compute a large number of the terms Am to approximate
limm→∞ Am with reasonable accuracy, and this makes their direct use very expen-
sive computationally. In some cases, {Am} may even diverge, which makes their
direct use irrelevant. (In case of divergence, one speaks about the antilimit of {Am}
instead of its limit, and the antilimit is a quantity of relevance; for a power series,
the antilimit may be the Abel sum of the series on the circle of convergence or its
analytic continuation outside its circle of convergence when the radius of conver-
gence is nonzero, or it may be its Borel sum when the radius of convergence is zero,
etc.)

In all cases, whether {Am} converges or not, suitable extrapolation methods
(equivalently, convergence acceleration methods or sequence transformations) are
needed to obtain the limit or antilimit of {Am} with high accuracy by using the
terms A1, A2, . . . , As, where s is a small integer.

Generally speaking, an extrapolation method, when applied to a sequence {Am},
produces another sequence {Âm} that converges to the limit or antilimit of {Am}
faster than {Am} itself. A practical extrapolation method is one for which Âm is a
linear or nonlinear combination of a finite (and preferably “small”) number of the
Ak. It is known that methods that are linear in the Ak have very limited scope
and perform poorly in general. The book under review concentrates on nonlinear
methods. The only linear method covered in the book is the famous transformation
of Euler, which seems to be the most effective linear method.

This book, written by a leading expert in the field, is an excellent up-to-date
account of the most useful extrapolation methods for sequences of scalars. (As
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the author has written in the preface, extrapolation methods for vector sequences,
because of their special theory and applications, deserve a fully dedicated book.
The reviewer hopes that the author, whose work in this subject is highly regarded
and well known, will undertake the writing of such a book eventually.) It presents
an excellent synthesis of all aspects of the subject of convergence acceleration. It
discusses a large number of recently published methods and results, as well as
known ones, of both the author and other researchers. It presents their theory in
a thorough and unified manner in most places, and discusses them from the point
of view of the practitioner by giving important tips about their effective use. It
also provides numerous examples of the types of sequences that arise in practical
applications. The author has produced a book that is in complete agreement with
its title: the methods it deals with are practical, and so are the problems they
are applied to. Everything taken into account, this book will benefit both the
theoretician and the practitioner.

Here are the unique features of the book that distinguish it from the earlier
literature:

• It includes the most important aspects of extrapolation methods, namely,
derivation of methods, design of efficient algorithms for their implementa-
tion, and rigorous convergence and stability analyses.

• It covers many different types of sequences that arise in practical applica-
tions along with detailed analyses of their asymptotic properties. (Most
sequences treated in the common literature belong to a very limited class
of sequences, namely, the class b(1) discussed in the book.)

• It treats divergent sequences on an equal footing with convergent ones,
providing at the same time an illuminating discussion of their antilimits.

• The proofs of many of the theorems are provided in the text; the reader is
referred to the literature in only a few cases.

• All known extrapolation methods, either explicitly or implicitly, rely on
the form of the asymptotic expansion of Am as m → ∞. In Sidi’s book
great emphasis is placed on the asymptotic analysis of Am as m → ∞.
Theorems and simple recipes are given by which one can deduce the form
of the asymptotic expansion of Am, from which the user can decide easily
on the right extrapolation method to employ.

• The issue of stability is formalized and treated in detail for the first time.
The conclusions drawn from the analysis of stability are used to devise
strategies the author calls arithmetic progression sampling (APS) and geo-
metric progression sampling (GPS) that enable high accuracy in finite-
precision arithmetic. (It must be noted that, without the use of these
strategies, the best accuracy that can be obtained from extrapolation meth-
ods is limited and is completely destroyed eventually.)

• In addition, to make the work of the practitioner easy, the author has pro-
vided important practical information in a series of brief appendices. Of
these, Appendix G contains the algorithms of the methods discussed in the
book. Appendix H classifies the important types of sequences {Am} that
arise in applications and points to the most effective convergence acceler-
ation methods for each type. In Appendix I the author has also provided
a well-documented user-friendly FORTRAN 77 code that implements the
d-transformation on infinite series.
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The reviewer has found the style of this book agreeable. The author has suc-
ceeded in retaining a great amount of unity throughout. Concepts are defined
clearly and are illustrated with several interesting and nontrivial examples. The
notation is consistent and remains the same when going from one chapter to an-
other. Things are explained with clarity. Quite a few examples are included in
every chapter, and this makes the study of the material quite pleasant. So far as
the reviewer has noted, there seem to be no errors; there seem to be some misprints
that the reader can correct easily by himself. The list of references contains most
of the relevant literature. In order to follow the theoretical arguments with ease,
some working knowledge of asymptotic expansions (what they are and what one
can do with them) is required.

Here is a short description of the contents of the book:
The Introduction gives the motivation for using extrapolation methods, discusses

antilimits via concrete examples, gives an overview of the major subjects to be
encountered in the remaining part of the book. Among these, the issue of stability
is discussed in detail (and should be studied with care). This chapter actually lays
out the course of action the author takes in the study of each individual method.
It is important that the reader spend some time to understand the Introduction’s
message.

Following the Introduction, the book is divided into four parts: Part I, which
forms the bulk, gives a very detailed discussion of the Richardson extrapolation
and its various generalizations. Part II presents the subject of sequence transfor-
mations and includes most of the known transformations. Part III is a single long
chapter that treats quite a few applications of the methods discussed in Parts I and
II that are not explicitly covered in these parts. Among the applications covered
here, we mention especially those involving multi-dimensional integrals with sur-
face, line, and corner singularities, periodic Fredholm integral equations (such as
boundary integral equations on closed curves) with singularities, numerical inver-
sion of Laplace transforms, summation of slowly convergent series with special sign
patterns, summation of rearrangement series, and computation of time-periodic
steady states from iterative schemes. Part IV is a collection of appendices that the
reader will find very helpful in following the material of Parts I and II. Of these,
Appendix A gives a summary of asymptotic expansions, Appendix D is an excellent
compendium of one-dimensional Euler–Maclaurin expansions, old and new, Appen-
dix E is about the Zeta function and related asymptotic expansions; all these are
used extensively throughout the book.

In the remainder of this review, we will briefly cover the contents of Parts I and
II, making some informative remarks when appropriate.

Part I. The discussion of the classical Richardson extrapolation process given in
Chapters 1 and 2 is the most complete treatment that has been given in book form.
Chapter 3 presents what the author calls first generalization of the Richardson
extrapolation process and what is known in the literature by the name of one of the
algorithms that implement it, namely, the E-algorithm. Chapter 4 gives a further
generalization of the Richardson extrapolation process known by the name GREP
and that is the author’s work. From the examples given in this chapter, it becomes
clear that GREP is a very comprehensive extrapolation framework.

Chapters 5 and 6 discuss two important GREPs, namely, the D-transformation
for infinite-range integrals

∫∞
0

f(t) dt and the d-transformation for infinite series
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∑∞
k=1 ak, both due to Levin and Sidi. The various numerical examples given in

the original paper of Levin and Sidi and in other additional works show that these
methods are capable of accelerating the convergence of a very large class of infinite-
range integrals and infinite series, thus have a much larger scope than most other
methods. These chapters need special attention, because they introduce important
classes of functions f(x) [denoted B(m)] and of sequences {ak} [denoted b(m)] that
the reader encounters in the rest of the book and that occur frequently in scien-
tific and engineering applications. The D-transformation is designed to compute
integrals

∫∞
0

f(t) dt with f ∈ B(m), while the d-transformation is designed to sum
infinite series

∑∞
k=1 ak with {ak} ∈ b(m), m = 1, 2, . . . , whether these are conver-

gent or divergent. Concerning the issue of summation of infinite series, it must be
added that most of the literature on sequence transformations has not gone beyond
treatment of series

∑∞
k=1 ak for which {ak} is in b(1), the simplest of sequence

classes b(m). For commonly occurring Fourier series and orthogonal polynomial
series and other similar ones, in most cases, it follows that {ak} ∈ b(m) with m ≥ 2
but {ak} ∈ b(1), which means that such series can be summed economically with
the help of the d-transformation (and the transformation of Shanks), most other
transformations being ineffective.

Even though the original paper of Levin and Sidi was published more than twenty
years ago, this is the first time the D- and d-transformations have appeared in book
form. As mentioned already, most researchers in sequence transformations have
chosen to limit themselves to the simplest class of sequences b(1). Recent books
in this field simply ignore the d- and D-transformations. From the many papers
the reviewer has refereed during the last two decades, he has gotten the impression
that most researchers in the field simply do not understand these important classes
of transformations. Sidi’s book is the first to present the d- and D-transformations,
their fascinating theory, their application, and their implementation. The reviewer
hopes that it will help to put an end to their excommunication.

Chapter 7 describes the W-algorithm of the author and the W(m)-algorithm of
Ford and Sidi, two sophisticated recursive schemes, by which one can implement
the D- and d-transformations, among others. Chapters 8, 9, and 10 discuss the gen-
eral convergence and stability theory and efficient application of the simplest form
of GREP, namely, of GREP(1), in different circumstances. Chapter 11 discusses
the efficient use of extrapolation methods in computing oscillatory infinite-range
integrals and describes the D̄-, D̃-, W -, and mW -transformations that achieve very
high accuracy economically. (Note that these methods are also GREPs.) Chap-
ter 12 is about the application of the d-transformation to power series and about the
resulting rational Padé-like approximations, while Chapter 13 treats the summation
of Fourier series and their generalizations, via what the author calls the complex
series approach, in an economical manner. Chapter 14 discusses some special topics
in Richardson extrapolation. One such topic concerns an interesting approach of
the author for the efficient computation of derivatives of limits and antilimits via
extrapolation methods.

Part II. Chapter 15 discusses the Euler transformation, the only linear method
considered in the book, the Aitken ∆2-process, and the transformation of Lubkin.
All three methods are of historical importance and still used whenever appropriate.
Chapter 16 gives the most thorough treatment of the transformation of Shanks (im-
plemented most efficiently via the famous ε-algorithm of Wynn) that has appeared
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in book form. Now, when the transformation of Shanks is applied to a power series,
the approximations obtained are nothing but the Padé approximants. On account
of this, it is natural that a discussion of this subject be included in a book dealing
with acceleration of convergence. Thus, Chapter 17 is a good summary of part of the
algebraic and analytic theory of Padé approximants and of related subjects, such as
interpolation by exponential functions (Prony’s method), continued fractions and
the quotient-difference (qd) algorithm, and Gaussian quadrature. A detailed sum-
mary of the classical theorems of de Montessus and of Koenig, with the author’s
refinements, including the treatment of the so-called intermediate rows, and sum-
maries of convergence of Padé approximants from moment series, from Pólya fre-
quency series, and from entire functions, form an important part of this chapter. In
Chapter 18, a brief discussion of the various generalizations of Padé approximants,
such as multi-point approximants, Hermite-Padé approximants, Padé approximants
from orthogonal polynomial expansions, is provided. Chapters 19–22 give detailed
accounts of the L-transformation of Levin and the more recent S-transformation of
Sidi, the ρ-algorithm of Wynn and Osada’s modifications of it, the θ-algorithm of
Brezinski, the higher-order G-transformation of Gray, Atchison, and McWilliams,
and the transformations of Overholt and of Wimp. (The S-transformation has been
observed to be the most effective method for summing a class of wildly divergent
power series that have zero radius of convergence. Such divergent series arise, for
example, from perturbation analysis in theoretical physics.) Chapter 23 discusses
the confluent forms of some of the sequence transformations and includes new but
unpublished results of the author too. Finally, Chapter 24 provides a short descrip-
tion of the so-called formal theory of sequence transformations. In the reviewer’s
opinion, this last chapter is rather weak; it has no place in a book dealing with
practical methods.

This book is quite pleasant to read. This should not be taken as a sign that it is
easy reading, however; in many places, one may have to spend some time to verify
the results that are put forth, whether their proofs are supplied or not. In addition
to being an excellent research monograph, hence of interest to the theoretician,
this book will also serve as a practical guide for those scientists and engineers who
wish to apply extrapolation methods in the solution of their problems, but are not
interested in the mathematical details. It can also serve as a textbook for those
advanced undergraduate and graduate students who would like to undertake an
in-depth study of the subject of extrapolation methods.

The reviewer recommends Practical Extrapolation Methods very highly to all
those interested in applying and/or learning the subject. He believes that it will re-
main the state-of-the-art reference in extrapolation methods and their applications
for many years to come.

David Levin

Tel Aviv University

7[65F15, 65F50]—The Lanczos method: evolution and application, by Louis Kom-
zsik, Software, Environments, and Tools, Vol. 15, SIAM, Philadelphia, PA, 2003,
xii+87 pp., $42.00, ISBN 0-89871-537-7

This book of roughly 80 pages is dedicated to Cornelius Lanczos and aims to
show the impact of the Lanczos method in linear algebra computations for large
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scale finite element problems in structural dynamics. Its goal is to illustrate the
important differences between a theoretical algorithm and an industrial implemen-
tation. The author has 30 years experience in the structural dynamics software
industry.

The plan of the book is as follows. Chapter 1, The classical Lanczos method, re-
views Lanczos’ famous 1950 paper on the computation of eigenvalues using Lanczos’
notation. Chapter 2, The Lanczos method in exact arithmetic, revisits the Lanc-
zos method using current linear algebra notation. Chapter 3, The Lanczos method
in finite precision arithmetic, introduces breakdown and the loss of orthogonal-
ity. It also discusses partial reorthogonalization. Chapter 4, Block real symmetric
Lanczos method, is about the solution of large symmetric definite generalized eigen-
value problems, mainly based on the work by Grimes, Lewis, and Simon (1994).
Chapter 5, Block unsymmetric Lanczos method, applies the Lanczos method to non-
Hermitian matrices. In particular, it aims to discuss ABLE by Bai, Day, and Ye
(1999). It includes an adaptive block size strategy and maintains biorthogonality
by a reorthogonalization scheme. Then Chapter 6, Industrial implementation of the
Lanczos method, briefly shows some aspects of the implementation, including the
spectral or shift-and-invert transformation, and in more detail the parallelization
of the Lanczos method. Next, Chapter 7, Free undamped vibrations, and Chap-
ter 8, Free damped vibrations, discuss the solution of applications and numerical
results using Msc.NASTRAN on an IBM SP. Chapter 8, also discusses the qua-
dratic eigenvalue problem. Chapter 9, Forced vibration analysis, is an attempt to
introduce Padé via Lanczos. This method is used for algebraic model reduction
of dynamical systems and matches the moments of the transfer function around
a shift point. Chapter 10, Linear systems and the Lanczos method, discusses the
conjugate gradient method. An example from a static analysis is given.

Perhaps the most interesting part is Chapter 7, which shows timings on the par-
allelization of the Lanczos method. The chapter discusses geometric and frequency
parallelism. Usually, the eigenvalues in a given interval are of interest. Geometric
parallelism is the partitioning of the matrices and the Lanczos vectors among the
processes, while frequency parallelism divides the interval into parts. The former
reduces the memory requests per process, while the latter reduces the communica-
tion cost. The author showed an example for which the best computation time is
obtained by combining both ideas.

I was quite surprised to see so many typos and elementary errors in this book.
The Padé via Lanczos method was not correctly introduced in Chapter 9.

I do not think the book is very useful for the numerical analysis community since
it contains very few references, it is not mathematically correct and has a number
of confusing typos. The author is clearly most familiar with the solution of the
symmetric definite eigenvalue problem by the block Lanczos method.

The author does not talk about the dangers of the Lanczos method for the solu-
tion of non-Hermitian eigenvalue problems. For example, it does not even mention
the Arnoldi method as a valuable (and perhaps preferable) method. Similarly, the
book does not discuss the interesting and important work on improving the method
for the solution of linear systems. For example, BiCGStab is not even cited. This
is rather surprising for a book that wants to demonstrate the difference between a
theoretical algorithm in exact arithmetic and an industrial implementation.

There might be an interest from the applications communities, in particular
structural analysis and acoustics. The book may also lift the suspicion from some
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communities that the Lanczos method is less reliable than subspace iteration. How-
ever, the book does not allow an engineer to fully understand the Lanczos method
due to a number of errors. It gives the wrong impression that the Lanczos method
is a universal method that can solve all problems. The 50 citations should help the
interested reader with his search for detailed information.

Karl Meerbergen

8[65N30, 78A25, 78M10]—Finite element methods for Maxwell’s equations, by
Peter Monk, Numerical Mathematics and Scientific Computation, Oxford Uni-
versity Press, New York, 2003, xiv+450 pp., hardcover, $119.50, ISBN 0-19-
850888-3

During the past two decades, the use of novel finite element techniques in elec-
tromagnetic field computations has attracted a lot of attention beginning with the
systematic introduction of edge elements by Nédélec in [7, 8]. Edge elements have
been systematically used in computational electromagnetics as documented, for in-
stance, in the textbooks by Bossavit [1, 2]. A modern approach, based on discrete
differential forms, can be found in the recent survey article by Hiptmair [5]. The
application of finite elements in the numerical solution of Maxwell’s equations has
also been addressed by Jin [6] and Silvester–Ferrari [10]. However, taking into
account that [2], though held in high regard by the reviewer, uses its own terminol-
ogy founded on a specific point of view of computational electromagnetics and that
[6, 10] aim at the electroengineering community, the new book by Monk provides
a comprehensive exposition of the mathematical foundations of the finite element
method for Maxwell’s equations and a presentation of the state-of-the-art in this
area.

The book is broken into fourteen chapters. Chapters 1–12 can be roughly
grouped into three parts. The first part, consisting of Chapters 1–4, is devoted
to the mathematical formulation of Maxwell’s equations and the appropriate func-
tional analytic background as well as the variational formulation of the cavity prob-
lem representing the class of interior domain problems. The second part comprises
Chapters 5–8 and is concerned with conforming tetrahedral and hexahedral finite
elements and their application to the cavity problem. Scattering problems as the
most important class of exterior and coupled interior/exterior domain problems
are dealt with in the third part, comprising Chapters 9–12. Particular aspects re-
lated to the algorithmic realization of the finite element approach are addressed
in Chapter 13, whereas the final Chapter 14 gives a brief introduction into inverse
scattering.

Chapter 1 is devoted to mathematical models of electromagnetism with a clear
emphasis on the time-harmonic Maxwell system and associated interior and ex-
terior domain problems that will become the focus of appropriate finite element
approximations in the subsequent parts of the book.

I found Chapter 2 useful in making the book self-contained. It provides the
necessary tools from functional analysis and linear operator theory in a Hilbert
space framework, and it states basic finite element convergence results in an abstract
setting. The experienced reader can easily skip this chapter and proceed to the
next one which is more subtle in so far as it introduces to the function spaces
H(div; Ω) and H(curl; Ω) of vector-valued functions on bounded, simply connected
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Lipschitz domains Ω ⊂ R
3 and their trace spaces which play a vital role in the finite

element analysis of Maxwell’s equations. Furthermore, the indispensable Helmholtz
decomposition and the associated de Rham diagram are discussed in due depth.

Equipped with the arsenal provided before, Chapter 4 deals with the variational
formulation of the cavity problem with varying material coefficients and impedance
boundary conditions on part of the boundary. The intrinsic difficulty related to the
nontrivial kernel of the curl-operator is addressed in detail and how to overcome
it by means of a suitable Helmholtz decomposition. An existence and uniqueness
result is proved relying on the Fredholm alternative, and the issue of cavity eigen-
values and resonances is presented as well.

Although edge elements had been known before, it was Nédélec in his seminal
paper [7] who introduced these H(curl)-conforming elements in a rigorous math-
ematical setting and also generalized to 3D the H(div)-conforming elements due
to Raviart and Thomas in the 2D case. Chapters 5 and 6 are devoted to these
elements on both simplicial and hexahedral triangulations of the computational
domain. Again, those readers who are familiar with this machinery may skim over
the text and go directly to Chapter 7 where the cavity problem is resumed in terms
of its edge element approximation. Emphasis is on the error analysis which can be
accessed in several different ways. Here, in order to be consistent with the appa-
ratus provided in Chapter 4, discrete analogues of compactness are used (compact
perturbations of coercive bilinear forms and the theory of collectively compact op-
erators). Chapter 8 discusses various extensions of edge elements such as Nédélec’s
edge elements of the second family [8], the hp-edge elements which have recently
gained a lot of attention, and edge elements on curved computational domains.

It is not because of the marked preference of the author for scattering problems,
but rather due to the eminent importance in applications that their mathematical
formulation and discrete approximation occupy the next four chapters of the book
as well as the final chapter. There are excellent textbooks on the topic, e.g., by
Cessenat [3], Colton and Kress [4], and Nédélec [9], but their focus is rather on
analytic results than on numerical approaches. A significant strength of Monk’s
book is that he illuminates the theoretical background as much as necessary to
elaborate on the discrete approximations. Chapter 9 serves as an introduction and
collects basic material such as the celebrated Stratton–Chu representation formula
and spherical harmonics and spherical Bessel functions for the series solution of
the exterior domain problem. Another topic is about the electromagnetic Calderon
operators that are then used in Chapter 10 for a variational formulation of the
scattering problem on a bounded domain with an artificial boundary off the scat-
terer. This formulation paves the way for an edge element discretization which
is analyzed by means of a discrete inf-sup condition. The following two chapters
treat scattering by a bounded inhomogeneity (Chapter 11) and by a buried object
(Chapter 12) by means of coupled interior/exterior domain problems. In Chapter
11, a nonoverlapping domain decomposition is used with the matching achieved by
a Lagrange multiplier on the artificial boundary, whereas Chapter 12 relies on an
admittedly not-so-standard overlapping method based on finite element discretiza-
tions of the buried objects as well as a domain containing them and an integral
representation formula of the field off the scatterers in terms of the dyadic Green’s
function. It is acknowledged that there are alternative approaches such as an edge
element/boundary element coupling, but the exposition of such techniques would
go beyond the scope of the book. With the bulk of the book being concerned with
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direct problems, the final Chapter 14 gives a brief outline of the mathematical as-
pects of inverse scattering and presents the linear sampling method as a powerful
tool for numerical purposes.

With the main focus of the book on finite element analysis rather than algo-
rithmic aspects, the intriguing Chapter 13 provides a tour d’horizon of efficient
algorithmic developments including fast solvers such as multigrid and domain de-
composition methods, the issues of phase error and a posteriori error estimation,
special approaches to exterior domain problems (absorbing boundary conditions,
perfectly matched layers), and post-processing techniques (flux recovery).

The book is very well written, thoughtfully organized, and technically sound.
It contains a large bibliography which is adequately referenced with many useful
comments for the reader at the beginning and sometimes the end of the individual
chapters. Undoubtedly, it will become a standard reference text and should be on
the bookshelves of those who are interested in the numerical solution of electro-
magnetic field problems.

In assessing its potential use in the classroom, this reviewer has to report on his
own experience when he has used the book as an accompanying text in a graduate
course on Computational Electromagnetics which was attended both by mathe-
maticians and electrical engineers. What is indeed very appealing is that the book
was very well received by all of them.
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9[65N30, 65N12, 65N15]—Higher-order finite element methods, by Pavel Šoĺın,
Karel Segeth, and Ivo Doležel, Studies in Advanced Mathematics, Chapman &
Hall/CRC, Boca Raton, FL, 2004, xxii+382 pp., hardcover, $89.95, ISBN 1-
58488-438-X; with 1 CD-ROM (Windows, Macintosh, UNIX, and LINUX)

In the Preface the authors state that the “modest” goal of this book is to “present
the basic principles of higher order finite element methods and the technology of
conforming discretizations based on hierarchic elements in spaces H1, H(curl), and
H(div).” After closing the book I felt that the authors achieved what they aimed
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at. In the book a large number of constructions on hp finite elements, scattered
in the mathematical and engineering literature, are collected and presented in a
unified and consistent way. In this respect the book is timely, very useful, and
quite unique. In my opinion, this book is more about construction, implementa-
tion, and application of high order finite elements than theoretical study of the
approximation, stability, and solution methods.

Chapter 1 is introductory and contains three relatively short sections. Some
notation, background material on functional spaces, and the usual material on finite
elements are presented in the first section. Finite elements are treated as triplets
(triad) K = (K, P, Σ), where K is a subdomain in Rn, P is a space of polynomials
of certain degree that are used on K, and Σ is the set of degrees of freedom. The
functions of the finite element spaces are defined elementwise, and their conformity
is treated in four different cases, as functions in H1, H(curl), H(div), and L2.
A number of conforming and nonconforming elements are given as illustrations.
Very important in the book is the concept of hierarchical basis of the space P ,
which should result in reducing the condition number of the algebraic problem and
helping to build p-adaptive methods. A brief but quite exhaustive presentation
of orthogonal polynomials (Gegenbauer, Chebyshev, Legendre) and their use to
construct various shape functions is given. At the end of this section the concept of
finite element approximation is illustrated on two point boundary value problems for
ordinary differential equations of second order. This includes computing the element
stiffness and mass matrices, assembly processes for forming the global matrix, its
sparsity structure and connectivity. This part contains numerous figures and several
algorithms. I would have put slightly more effort into describing and illustrating
visually the concept of hierarchical basis.

Chapter 2 is devoted to the construction of a master finite element of arbitrary
order. The goal here is to build conforming spaces of polynomials in which degrees
might differ from element to element. This is a necessary and crucial property for
p-adaptivity. The cases of H1-, H(curl)-, H(div)-, and L2-conforming elements are
presented as related via the de Rham diagram.

The H1-conforming elements are the first link in the diagram. The space H1

imposes the most severe conformity requirments—global continuity. Thus, the hier-
archical basis functions are the most involved to construct since they involve vertex,
edge, and bubble functions in 2D and vertex, edge, face, and bubble functions in
3D. The authors treat separately, in detail, quadrilateral, triangular, hexahedral,
tetrahedral, and prismatic master elements. Despite the complexity of the con-
structions, the presentation is quite clear with many nice illustrations.

A substantial part of this chapter is devoted to the construction of the H(curl)-
conforming element Kcurl = (K,Q, Σcurl) for K being rectangular, triangular, hex-
ahedral, tetrahedral, and prismatic master elements. First, the de Rham diagram
∇ : H1 �→ H(curl) is used to suggest a polynomial space Q based in the construc-
tion in H1. Then, in 2D, the set of basis functions for Q is split into two groups,
edge functions and bubble functions. The explicit formulas for these hierarchical
basis functions use a recurrent definition of the Legendre polynomials in terms of
the affine coordinates λj . Finally, the H(div) and L2 conforming finite elements
are constructed again using the de Rham diagram. The former is simpler than the
H(curl) conforming case since the functions in H(div) need to have only continuous
normal components across the interelement faces, while the latter is the simplest
one since no continuity is required.
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Chapter 2 contains very important material from a practical point of view. The
authors have done an excellent job in explaining the principles of the constructions
of the hierarchical basis functions, keeping very good accounting for the degrees of
the polynomials involved in each group (edge, face, and bubbles) and writing the
exact expressions for all basis functions. I think this is a difficult task. I found the
notation for simplicial finite elements slightly inconvenient. It is widely accepted in
the literature to order the vertexes vi first and then use consistent ordering of the
faces (or edges), e.g., face si is the one that does not contain vertex vi. I suppose
that such notation would have made many formulas such as (2.34) more symmetric
and transparent.

Chapter 3 is the most technical part of the book. This is the part that describes
the construction of a local finite element “interpolant” for various finite elements
in H1, H(curl), H(div), and L2. Since the degrees of freedom, an important in-
gredient of the finite element construction, have not been discussed thoroughly in
the book up to this point, this construction is not obvious at all. The construction
of the so-called “projection-based” interpolant Πu is described through three main
properties:

(1) locality (or for a given function u, Πu is constructed elementwise);
(2) global conformity (or it should be in one of the spaces H1, H(curl), H(div),

and L2); and
(3) optimality, i.e., it should have some minimization properties.

Again the discussion is carried for H1, H(curl), and H(div) separately.
The case of H1 conforming finite elements is the most complicated. In 2D the

hierarchical basis consists of vertex, edge, and bubble functions and Πu is taken
in the form Πu = uv + ue + ub. The vertex part, uv, is simply the Lagrange
interpolant (linear for triangles and bilinear for squares) based on the vertex values
of u. The most difficult is the choice of ue. The authors first claim that once
uv is chosen, then ue should minimize the H

1/2
00 (e)-norm of the residual u − uv

consecutively over all edges e of K. However, since this is a complicated task, it
is replaced by minimization of the scaled H1

0 (e)-seminorm. The explanations of
this point are mathematically vague and have mostly heuristic value. The choice
of ue, in my opinion, is based on some moments of the residual u − uv along the
edges. In the 3D case the situation is more complicated and the definition of Πu is
even less clear. Besides, authors use various Sobolev spaces and their norms such as
H3/2+ε(K), H1/2+ε(s), Hε(e), etc., which have not been defined. In my opinion, the
construction (or at least the one presented here) of the projection-based interpolant
Πu needs more mathematical rigor and clarification. I think that an attempt to
compare the interpolant discussed in the book with the existing known projections
(say, Clement, Fortin, Nédélec, etc.) would have added to its better understanding.

Further curved finite elements are introduced and the corresponding transfor-
mations to the reference elements are constructed. A concept of transfinite in-
terpolation is introduced and used. Practically, this reduces to the following: we
assume that a curved finite element is given by its vertexes and by parametrized
curves of its edges. The transformation then has two parts: an affine part that
transforms the vertexes of the finite element into the vertexes of the reference one,
and a higher order part that maps the curved edges into straight lines. Curvilinear
variants of all elements presented in Chapter 2 are discussed and their mappings
presented. Isoparametric transformations are just a particular case of this general
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approach. Further, transformation of the master element polynomial spaces for all
four cases of H1, H(curl), H(div), and L2 conforming finite elements are presented
very briefly. The derivation is based on the commutativity of the de Rham diagram
applied to the spaces on reference and physical domains. All these constructions are
summarized into several algorithms for assembly of the resulting discrete system.
Finally, in this chapter the problem of constrained approximation is discussed. This
has an important practical role in the adaptation procedure.

Chapters 4 and 5 have mostly reference value on quadratures and solvers of
systems of linear equations. Exhaustive sets of Newton–Cotes, Chebyshev, Lo-
batto (Radau), and Gauss quadrature formulas for all types of finite elements are
given (and supplied on a CD-ROM). Conjugate gradient, MINRES, GMRES, OR-
THODIR and several other general iterative methods are given as algorithms. Fi-
nally, a multigrid method is presented as a general concept for solving finite element
systems. Unfortunately, there are no comments or suggestions how these will work
in the complex finite element approximation with higher order finite elements, pre-
sented in the book.

The final Chapter 6 is an important and necessary part of the book. First, it
presents several approaches to automatic mesh optimization based on h-, p-, and
hp-adaptivity based on reference solutions. Next, the basic principles of hp-adaptive
computations of goal-oriented adaptivity are discussed. They are based on recovery
with a guaranteed accuracy of “quantities of interest”, namely some functionals of
the desired solution. This part is based entirely on the works of Demkowicz, Oden,
and Rahowicz and illustrates the applicability and the merits of high order finite
elements.

I found a number of misprints and minor inaccuracies. For example, formula
(2.52), p. 80 contains a strange symbol; in the last inequality of p. 324 |Ωs| should
be replaced by |Ωs|1/2; the projector defined by (3.9) is not well explained in the
text above; on pp. 132, 134, 135 there are inconsistent notations for inner product
and norm in H1/2(s), H1+r(KT ). Also in several places (e.g., pp. 128, 132) the
authors state “the theory requires that u ∈ H1+ε” (or u ∈ H3/2+ε) with a strange
reference, while this is a simple result of the Sobolev embedding theorem. Finally,
I think the book would have benefited from a better presentation and explanation
of the lowest order finite elements such as the well known and popular Nédélec
and Raviart–Thomas elements used in H(curl) and H(div). However, these do not
compromise the overall good and clear presentation.

As noted above, the book has various merits, contains many detailed construc-
tions, interesting concepts, and practical discussions. This is a useful and timely
text in the area of high order finite element methods for partial differential equa-
tions. It could be used as a reference book and/or a supplement to a course on
discretization methods for differential equations.

Rigorous mathematical study of stability, optimal error estimates, conditioning
and preconditioning of the resulting systems is not a goal of the book. Nevertheless,
the authors have stated various theorems and conjectures (mostly due to Demkowicz
and his collaborators) that give flavor for some of the existing results and the open
mathematical problems in this relatively new field of numerical analysis for PDEs.

Raytcho Lazarov
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