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ERROR ANALYSIS OF VARIABLE DEGREE MIXED METHODS
FOR ELLIPTIC PROBLEMS VIA HYBRIDIZATION

BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

Abstract. A new approach to error analysis of hybridized mixed methods
is proposed and applied to study a new hybridized variable degree Raviart-
Thomas method for second order elliptic problems. The approach gives error
estimates for the Lagrange multipliers without using error estimates for the
other variables. Error estimates for the primal and flux variables then follow
from those for the Lagrange multipliers. In contrast, traditional error analyses
obtain error estimates for the flux and primal variables first and then use it to
get error estimates for the Lagrange multipliers. The new approach not only
gives new error estimates for the new variable degree Raviart-Thomas method,
but also new error estimates for the classical uniform degree method with less
stringent regularity requirements than previously known estimates. The error
analysis is achieved by using a variational characterization of the Lagrange
multipliers wherein the other unknowns do not appear. This approach can be
applied to other hybridized mixed methods as well.

1. Introduction

In this paper, we introduce a new approach to obtaining error estimates for hy-
bridized mixed methods. It allows error analysis of the Lagrange multipliers without
using error estimates for the other variables, as is customarily done. Moreover, it
yields previously unknown error estimates with weaker regularity assumptions on
the exact solution. The analysis is achieved by adopting a new point of view in-
spired by a recent variational characterization [7] of the Lagrange multipliers in
which the flux and primal variable do not appear.

We illustrate this new approach by applying it to a new hybridized variable
degree Raviart-Thomas (RT) mixed method for the following second order elliptic
boundary value problem:

q + a(x) gradu = 0, on Ω,(1.1)

div q + d(x) u = f on Ω,(1.2)

u = g on ∂Ω.(1.3)

Here Ω ⊂ R
N is a polyhedral domain (N ≥ 2), f ∈ L2(Ω), g ∈ H1/2(∂Ω), a(x) is a

symmetric N × N matrix function with components in L∞(Ω), a(x) is uniformly
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positive definite on Ω, and d(x) is a nonnegative function in L∞(Ω). This approach
can also be applied to other variable degree methods, like the method proposed by
Brezzi, Douglas and Marini [5] or the one introduced by Demkowicz et al. [8] (as
discussed in the last section of this paper). We choose to introduce and analyze
a variable degree version of the simplicial RT method because, to our knowledge,
no such method exists in the literature. A variable degree RT method (in nonhy-
bridized form) employing rectangles has been studied previously by Suri [16].

To place the results of this paper into proper perspective, let us discuss the
increasing importance of hybridization to the study of mixed methods. In its in-
ception in 1965 by Fraejis de Veubeke [9], hybridization was thought of merely
as a clever implementation technique for mixed methods. However, twenty years
later, it was realized that it also leads to better approximations. Indeed, Arnold
and Brezzi [2] considered the RT method and showed how to use the Lagrange
multiplier unknowns introduced by the hybridization procedure to enhance the ac-
curacy of solutions by means of a local post-processing. Later, Brezzi, Douglas and
Marini [4] applied a similar approach to a mixed method now known as the BDM
method.

Hybridization has other well-known merits as well. The matrix system for the
Lagrange multipliers is significantly smaller than that of the original mixed method.
Indeed, when local spaces of polynomials of degree k are used, the number of
degrees of freedom within an element increases like O(kN ), whereas the number
of degrees of freedom of the Lagrange multipliers on a face increases only like
O(kN−1). Furthermore, the recent simplifications in [7] that allow easy and direct
computation of the matrix equation for the multipliers make hybridization even
more appealing.

Another use of hybridization, namely its use as a device for avoiding implemen-
tation of transition elements in variable degree methods, was pointed out by Kirby
and Dawson [13]. To put this in perspective, recall that in 1985, Brezzi, Dou-
glas and Marini [5] proposed a natural variable degree extension of their original
BDM method by introducing suitably defined transition elements. These elements
were constructed in order to maintain the inter-element continuity of the normal
component of the flux when joining two BDM elements of different degree. Kirby
and Dawson [13] showed how the method of [5] can be conveniently implemented
without the use of transition elements by hybridizing it.

In this paper, we show that hybridization helps in the construction and analysis
of variable degree mixed methods. The main difficulty in the construction and
analysis of variable degree versions of mixed methods is to ensure that the variation
of the polynomial degree does not destroy the delicate stability of the methods, as
manifested in the inf-sup condition. We overcome this difficulty by obtaining a
variational formulation of the Lagrange multipliers for which stability is obvious:
Indeed, on the space of the Lagrange multipliers MT, we will give a bilinear form
aT(·, ·) and a linear form bT(·) (which depends on mesh T) such that the discrete
Lagrange multiplier λT is the only element of the space MT satisfying

aT(λT, µ) = bT(µ) for all µ ∈ MT.

This result shapes our approach to error estimation: Because of it, it is reasonable
to expect an error estimate in the “energy” norm aT(µ, µ)1/2. But it turns out that
the “consistency error”

τ (µ) := aT(u, µ) − bT(µ),
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where u is the exact solution of (1.1)–(1.3), is nonzero, in general. This and the
mesh dependent nature of aT(·, ·) makes the error analysis reminiscent of finite
element methods with variational crimes. See, e.g., [3] for a general theory of
variational crimes and [14] for the application of such an approach to the analysis of
discontinuous Galerkin methods. Previous papers have studied other relationships
between mixed and nonconforming methods (see, e.g., [1, 2]).

Where we depart from all the above-mentioned analyses is in showing that the
truncation error τ (µ) admits a particularly simple bound in terms of projections
that have become classical tools in the analysis of mixed methods. In the traditional
analysis of mixed methods, one such projection is well known to be an essential tool
in proving the inf-sup condition. In contrast, in our approach, we only use it to
bound the consistency error τ (µ). While the construction of such projections is
very well known for uniform degree mixed methods, their generalization to the
variable degree case is not entirely simple. Such a generalization was studied in the
early work on the variable degree BDM method [5], but results were achieved only
under the assumption that the maximum variation of the polynomial degrees of two
adjacent elements be one. This restriction was removed by Demkowicz et al. [8] who
constructed projections for BDM-type spaces with arbitrarily varying polynomial
degrees. We will adapt their ideas to construct an appropriate projection for the
variable degree RT method.

The paper is organized as follows. In Section 2, we introduce and discuss the
hybridized variable degree method. In particular, we give a variational characteri-
zation of the Lagrange multipliers. This is a particular case of an abstract version
of the results in [7] and is essential for the analysis of the method. The abstract
result is discussed in Appendix A. In Section 3, we state and discuss the error
estimates for the Lagrange multipliers as well as how error estimates for the other
two variables follow from them. The error estimates are stated in terms of an ex-
tension of the well-known Raviart-Thomas projection to the variable degree case.
Details of this projection, constructed following [8], are in Appendix B. Section 4
is devoted to obtaining key auxiliary lemmas. Section 5 is devoted to the proofs
of the error estimates in L2-like norms and Section 6 to proving an equivalence
between the energy norm and a more transparent norm. We end in Section 7 by
briefly showing how to extend this analysis to the variable degree BDM method.

2. The method

In this section, we introduce the hybridized variable degree RT method. We
begin by recalling the classical uniform degree RT method and its hybridization.
We then present its variable degree version and prove that it is well defined. Finally,
we state the result that characterizes the approximate solution and then we briefly
discuss the new approach to error analysis.

2.1. The variable degree hybridized RT method. Given a triangulation of Ω,
T, made of simplices, the RT mixed method seeks an approximation (qh, uh) in the
finite element space V

k
h × W

k
h given by

V
k
h = {v ∈ H(div, Ω) : v|K ∈ Vk(K) for all K ∈ T},

W
k
h = {w ∈ L2(Ω) : w|K ∈ Wk(K) for all K ∈ T},
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where the local spaces Vk(K) and Wk(K) are given by

Vk(K) =(P k(K))N + xP k(K),(2.1)

Wk(K)=P k(K).(2.2)

Here, P k(K) denotes the space of polynomials on K of degree at most k, k ≥ 0. The
classical uniform degree method defines the approximation (qh, uh) by requiring
that, for all (v, w) ∈ Vh × Wh,∫

Ω

c qh · v dx −
∫

Ω

uh div v dx = −
∫

∂Ω

g v · n ds,∫
Ω

w div qh dx +
∫

Ω

d uh w dx =
∫

Ω

f w dx,

where c = a−1.
Next, let us introduce the hybridized version of the above method. Such a

method seeks an approximation (qh, uh, λh) to (q, u, u|Ei
), where Ei denotes the

set of interior faces. It is sought in the finite element space V k
h ×W k

h ×Mk
h defined

by

V k
h = {v ∈ (L2(Ω))N : v|K ∈ Vk(K) for all K ∈ T},

W k
h = {w ∈ L2(Ω) : w|K ∈ Wk(K) for all K ∈ T},

Mk
h = {µ ∈ L2(Ei) : µ|e ∈ Mk(e) for all e ∈ Ei},

where the local space Mk(e) is given by

(2.3) Mk(e) = P k(e),

and is defined by requiring that, for all (v, w, µ) ∈ V k
h × W k

h × Mk
h ,∫

Ω

c qh · v dx −
∑
K∈T

∫
K

uh div v dx +
∑
e∈Ei

∫
e

λh [v] ds = −
∫

∂Ω

g [v] ds,

∑
K∈T

∫
K

w div qh dx +
∫

Ω

d uh w dx =
∫

Ω

f w dx,

∑
e∈Ei

∫
e

µ [qh] ds = 0,

where [v] = v ·n on ∂Ω, and [v] = v+
e ·n+

e +v−
e ·n−

e , for all e ∈ Ei. Here, n denotes
the outward unit normal to Ω, n+

e = −n−
e is an arbitrary unit vector normal to e

and v±
e (x) = limε↓0 v(x − ε n±

e ). It is well known that the above method is well
defined and that (qh, uh) given by this method coincides with the approximate
solution given by the original RT method (see, e.g., [6, Section V.1]).

The definition of the hybridized variable degree RT method can be obtained
by simply replacing the finite dimensional space V k

h × W k
h × Mk

h by the finite
dimensional space V T × WT × MT defined by

V T = {v ∈ (L2(Ω))N : v|K ∈ V (K) for all K ∈ T},(2.4)

WT = {w ∈ L2(Ω) : w|K ∈ W (K) for all K ∈ T},(2.5)

MT = {µ ∈ L2(Ei) : µ|e ∈ M(e) for all e ∈ Ei},(2.6)
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where

V (K) = Vk(K)(K), W (K) = Wk(K)(K), and M(e) = Mk(e)(e).

Here k(K) for K ∈ T lies in an arbitrary but fixed set of nonnegative integers and

(2.7) k(e) = max{k(K+
e ), k(K−

e )},
where K±

e are the two simplices in T that share the interior face e. Thus, we
consider the approximation (qT , uT , λT) in the space V T × WT × MT satisfying∫

Ω

c qT · v dx −
∑
K∈T

∫
K

uT div v dx +
∑
e∈Ei

∫
e

λT [v] ds = −
∫

∂Ω

g [v] ds,(2.8)

∑
K∈T

∫
K

w div qT dx +
∫

Ω

d uT w dx =
∫

Ω

f w dx,(2.9)

∑
e∈Ei

∫
e

µ [qT] ds = 0(2.10)

for all (v, w, µ) ∈ V T ×WT ×MT . These equations yield a well-defined method, as
we see in the next result.

Proposition 2.1. There exists a unique (qT, uT , λT) ∈ V T × WT × MT satisfying
the discrete formulation (2.8), (2.9) and (2.10).

Proof. To prove the existence and uniqueness of (qT , uT , λT), it suffices to show
that the only solution for the case in which the boundary data g and the right-
hand side f are equal to zero is the trivial one. In such a case, if we extend λT by
zero to ∂Ω, the first two equations defining the approximate solution become∑

K∈T

( ∫
K

cqT · v dx −
∫

K

uT div v dx +
∫

∂K

λTv · nK ds

)
= 0,

∑
K∈T

( ∫
K

w div qT dx +
∫

K

d uT w dx

)
= 0,

for all v ∈ V T and all w ∈ WT . Choosing w = uT and v = qT, adding the above
equations, and using (2.10), we obtain∫

Ω

cqT · qT dx +
∫

Ω

du2
T dx = 0.

Thus qT ≡ 0.
Next, we show that λT ≡ 0 as well. Since qT = 0, we have, for all v ∈ V (K),

0 = −
∫

K

uT div v dx +
∫

∂K

λTv · nK ds(2.11)

=
∫

K

v · graduT dx +
∫

∂K

(λT − uT)v · nK ds

=
∫

K

v · graduT dx +
∫

∂K

(P∂KλT − uT) v · nK ds,(2.12)

where the function P∂KλT is defined on each face e of ∂K as the element of Mk(K)(e)
satisfying

(2.13)
∫

e

(P∂KλT) µ ds =
∫

e

λT µ ds, for all µ ∈ Mk(K)(e).
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Using the properties of the local space V (K)×W (K) (see, e.g., [6]), we can find
a function r in V (K) such that

r · n|e = (P∂KλT − uT) |e ∈ Mk(K)(e) for all e ∈ ∂K,

and ∫
K

r · gradw dx = 0, for all w ∈ W (K).

Using this function in equation (2.12), we obtain that

(P∂KλT − uT)|∂K = 0 and
∫

K

v · graduT dx = 0,

for all v ∈ V (K) and for all K ∈ T. Hence, uT is constant on K and, as a
consequence, P∂KλT is constant on ∂K for every K ∈ T.

Now, since, for every face e ∈ Ei, we have

(P∂K+
e
λT)|e ∈ Mk(K+

e )(e), (P∂K−
e

λT)|e ∈ Mk(K−
e )(e) and λT |e ∈ M(e),

and since, by equation (2.7), k(e) = max{k(K+
e ), k(K−

e )}, one of the functions
(P∂K+

e
λT)|e and (P∂K−

e
λT)|e must coincide with λT. Hence λT must be constant

on e as P∂K±
e

λT is constant on ∂K±
e . But if λT is constant on every edge e ∈ Ei,

then λT coincides with P∂KλT on all K ∈ T, and λT |∂K is constant on ∂K for all
K ∈ T. Since we extended λT by zero to ∂Ω, we conclude that λT ≡ 0.

This implies that we can now write equation (2.11) as

0 = −
∫

K

uT div v dx.

As a consequence, uT vanishes on all K ∈ T because div V (K) = W (K). This
completes the proof. �

2.2. A characterization of the approximate solution. Next, we give a char-
acterization of the approximate solution which is a straightforward extension of an
analogous result in [7] for uniform degree hybridized RT methods. This result is
also the main tool for the error analysis.

To state it, we introduce some local mappings. The first mapping lifts functions
on faces of the simplices of the triangulation T to functions on Ω. Let E be the set
of all faces of the triangulation T. Notwithstanding a slight abuse of notation, we
denote the set of all square integrable functions on the union of all faces of E by
L2(E). The lifting associates to each m ∈ L2(E) the pair (Qm , Um ) ∈ V T × WT

defined by requiring that∫
Ω

c Qm · v dx −
∑
K∈T

∫
K

Um div v dx = −
∑
e∈E

∫
e

m [v] ds,(2.14)

∑
K∈T

∫
K

w div Qm dx +
∫

Ω

d Um w dx = 0,(2.15)

hold for all (v, w) ∈ V T × WT.
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The other local mappings are defined similarly: For any f ∈ L2(Ω) the pair
(Qf , Uf ) ∈ V T × WT and is defined by requiring that∫

Ω

cQf · v dx −
∑
K∈T

∫
K

Uf div v dx = 0,(2.16)

∑
K∈T

∫
K

w div Qf dx +
∫

Ω

d Uf w dx =
∫

Ω

f w dx(2.17)

hold for all (v, w) ∈ V T × WT . For any α ∈ (L2(Ω))N the pair (Qα , Uα ) ∈
V T × WT and is defined by requiring that∫

Ω

c Qα · v dx −
∑
K∈T

∫
K

Uα div v dx =
∫

Ω

α · v dx,(2.18)

∑
K∈T

∫
K

w div Qα dx +
∫

Ω

d Uα w dx = 0(2.19)

hold for all (v, w) ∈ V T × WT.
The above three pairs of maps are all locally defined, e.g., the value of (Qm , Um )

on an element K is completely determined as the solution of the mixed method on
the single element K with data determined by the value of m on ∂K. Note that the
three local maps are obtained using three different data functionals, but using the
same mixed problem. The solvability of the mixed problem on one element, ensured
by Proposition 2.1, thus shows that the above maps are well defined. Although all
three maps use the same mixed problem, we have chosen to explicitly distinguish
each of them so as to delineate the dependence of the final solution on the data
components and the Lagrange multipliers (as in Theorem 2.2 below).

In order to emphasize the underlying matrix structure of the problem, we rewrite
the hybridized method in terms of the operators A : V T �→ V T , B : V T �→ WT,
C : V T �→ MT , and D : MT �→ MT defined by

(2.20)

(Ap, r)Ω =
∫

Ω

c p · r dx, (Bp, v)Ω =
∑
K∈T

∫
K

v div p dx,

(Cp, µ)E = −
∑
K∈T

∫
∂K

µ p·nK ds, (Dw, v)Ω =
∫

Ω

dwv dx,

for all p ∈ V T, r ∈ V T , w ∈ WT, v ∈ WT, and µ ∈ MT. Here and elsewhere, for any
domain O, (·, ·)O denotes the L2(O) (or L2(O)N ) inner product. To simplify nota-
tion, we do not distinguish between functions µ defined on Ei and their extension by
zero on ∂Ω, so we have written

∫
∂K

µ p·nK ds above rather than
∫

∂K\∂Ω
µ p·nK ds.

Finally, we denote by αg the element of V T defined by

(2.21) (αg, v)Ω = −(g, v · n)∂Ω for all v ∈ V T.

With the above notation, the equations defining the approximate solution,
namely, the equations (2.8)–(2.10), can be rewritten as

(2.22)

⎛
⎝A −Bt −Ct

B D 0
C 0 0

⎞
⎠

⎛
⎝qT

uT

λT

⎞
⎠ =

⎛
⎝αg

Pf
0

⎞
⎠ ,
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where the superscript t denotes L2-adjoints and Pf denotes the L2(Ω)-orthogonal
projection of f onto WT. Solutions of systems of this type can be characterized in
terms of the local mappings introduced above, as stated in the following theorem.

Theorem 2.2 (Characterization of approximate solutions). Suppose (p, v, λ) ∈
V T × WT × MT satisfies

(2.23)

⎛
⎝A −Bt −Ct

B D 0
C 0 0

⎞
⎠

⎛
⎝p

v
λ

⎞
⎠ =

⎛
⎝α

β
0

⎞
⎠ ,

for some functions α ∈ V T and β ∈ TT. Then

p = Qα + Qβ + Qλ ,

v = Uα + Uβ + Uλ ,

and λ is the unique function in MT that satisfies

(2.24) aT(λ, µ) = bT(µ), for all µ ∈ MT ,

where

aT(λ, µ) =
∫

Ω

c Qλ · Qµ dx +
∫

Ω

d Uλ Uµ dx,(2.25)

bT(µ) = (β, Uµ )Ω + (α, Qµ )Ω,(2.26)

for all η and µ ∈ MT.

Proof. We apply Theorem A.1 in Appendix A. All conditions of Theorem A.1 can
be easily verified using the well-known properties of the Raviart-Thomas pair of
spaces on an element. It only remains to show that (2.24) has a unique solution.
But this follows immediately from the uniqueness of solutions of (2.23) established
in Proposition 2.1. �

3. The main results

In this section, we state and discuss our main results. We begin by stating an
error estimate for the Lagrange multiplier in the “energy” norm

|||µ|||a := aT(µ, µ)1/2

on the space of the Lagrange multipliers. We then state the error estimates for the
flux and primal variables (qT and uT) which follow from it. We also give a result
that elucidates the nature of this norm. Finally, we obtain error estimates in weaker
L2-like norms which imply superconvergence estimates for the primal variable. Our
analysis critically relies on the linearity of the problem.

3.1. Error estimates in energy norms. Our first error estimate bounds the
distance between the Lagrange multiplier λT and the L2(E)-orthogonal projection
into MT of the exact solution u, which we denote by Pu; i.e., Pv ∈ MT is defined
by ∫

e

(Pv) η dγ =
∫

e

v η dγ, for all η ∈ MT for all e ∈ Ei.

The bound is written in terms of two other projections. One is a projection into
the flux space: Π : V �→ V T, where the domain of definition of Π, namely V , is a
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subspace of H(div, Ω). In our analysis we require that Π is such that the following
diagram commutes:

(3.1)

V
div−−−−→ L2(Ω)

Π

⏐⏐� ⏐⏐�P

V T
divT−−−−→ WT ,

where divT denotes “piecewise divergence”, i.e., for v ∈ V T , (divT v)|K = div(v|K)
for all K ∈ T. Such projections have become a classical tool in the analysis of
mixed finite element methods [6]. The most well known example of a projection Π
satisfying (3.1) is the Raviart-Thomas interpolation operator ΠR which has been
used to analyze the uniform degree case traditionally [6, 15]. Although ΠR continues
to satisfy (3.1) even in the variable degree case, an important difference between
the uniform degree case and the variable degree case is that while in the former
case ΠR satisfies

(3.2) Range(ΠR) ⊆ V T ∩ H(div, Ω),

in the variable degree case Π no longer satisfies (3.2). The traditional analysis of
mixed methods requires that both (3.1) and (3.2) hold.

It is possible to construct a projection Π that satisfies both (3.1) and (3.2) using
the ideas in [8]. We detail this construction in Appendix B. It is this projection that
appears in all our error estimates. Note that in contrast to the traditional mixed
analysis, it is possible to use our approach to get error estimates even when (3.2)
does not hold (see Remark 3.1). However, if both (3.1) and (3.2) hold, then our
estimates are simpler and more elegant. This is the reason we have chosen to use
the projection constructed in Appendix B in all our error estimates.

The remaining projection that appears in the following theorem, namely Pu, is
the L2(Ω)-orthogonal projection into WT of the exact solution u. Define the norms

‖r‖c =
( ∫

Ω

c r ·r dx

)1/2

and ‖v‖d =
( ∫

Ω

d v2 dx

)1/2

.

Note that the former is a weighted L2-norm, while the latter is, in general, only
a seminorm. Recall that q and u denote the exact solution components defined
by (1.1)–(1.3); we tacitly assume that q ∈ V . The following theorem holds without
any uniformity assumptions on the mesh and contains no unknown constants.

Theorem 3.1. For any µ ∈ MT,

(3.3) aT(λT − Pu, µ) =
∫

Ω

c (Πq − q) · Qµ dx +
∫

Ω

d(u − Pu) Uµ dx.

Consequently,

(3.4) |||λT − Pu|||2a ≤ ‖q − Πq‖2
c + ‖u − Pu‖2

d.

Notice that the above result implies control of the consistency error mentioned
in the introduction: Since τ (µ) := aT(u, µ) − bT(µ) = aT(Pu, µ) − aT(λT, µ), the
theorem gives

sup
µ∈MT

τ (µ)
|||µ|||a

≤
(
‖q − Πq‖2

c + ‖u − Pu‖2
d

)1/2
.

The proof of Theorem 3.1 is extremely simple. It follows directly from the char-
acterization of the multipliers given by Theorem 2.2 and the commuting diagram
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property. The use of the latter provides a precise description of the structure of the
error as shown in the next lemma.

Lemma 3.2 (The error equations). The discrete error functions defined by

eq = Πq − qT , eu = Pu − uT and eλ = Pu − λT,

satisfy

(3.5)

⎛
⎝A −Bt −Ct

B D 0
C 0 0

⎞
⎠

⎛
⎝eq

eu

eλ

⎞
⎠ =

⎛
⎝δ

ε
0

⎞
⎠ ,

where

(3.6) δ = P(c(Πq − q)) and ε = P(d(Pu − u)),

with P denoting the L2-orthogonal projection into V T.

Proof. We begin by noting that the exact solution (q, u, u) satisfies∫
Ω

c q · v dx −
∑
K∈T

∫
K

u div v dx +
∑
e∈Ei

∫
e

u [v] ds = −
∫

∂Ω

g [v] ds,

∑
K∈T

∫
K

w div qT dx +
∫

Ω

d u w dx =
∫

Ω

f w dx,

∑
e∈Ei

∫
e

µ [q] ds = 0,

for all (v, w, µ) ∈ V T × WT × MT . By using the commuting diagram property in
the second equation and the fact that P is the L2-projection into MT , we obtain∫

Ω

c Πq · v dx −
∑
K∈T

∫
K

Pu div v dx +
∑
e∈Ei

∫
e

Pu [v] ds = −
∫

∂Ω

g [v] ds

+
∫

Ω

c (Πq − q) · v dx,

∑
K∈T

∫
K

w div ΠqT dx +
∫

Ω

d Pu w dx =
∫

Ω

f w dx +
∫

Ω

d (Pu − u) w dx,

∑
e∈Ei

∫
e

µ [Πq] ds = 0,

which we can rewrite as

(3.7)

⎛
⎝A −Bt −Ct

B D 0
C 0 0

⎞
⎠

⎛
⎝Πq

Pu
Pu

⎞
⎠ =

⎛
⎝αg + δ

Pf + ε
0

⎞
⎠ ,

where αg is as in (2.21). Subtracting (2.22) from the above equation, we have the
result. �

Proof of Theorem 3.1. The identity (3.3) immediately follows from a direct appli-
cation of Theorem 2.2 to the system of equations satisfied by the discrete error
functions, as described in Lemma 3.2. The inequality (3.4) can now be obtained
from (3.3) after a simple application of the Cauchy-Schwarz inequality. Thus The-
orem 3.1 is proved. �
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Remark 3.1. If we had chosen to use a projection that satisfies (3.1), but not (3.2),
then in the third equation of (3.5), the right-hand side would be nonzero. By
showing that this nonzero right-hand side is small and employing a more general
form of Theorem 2.2 (see Theorem A.1), it is possible to get an error estimate
similar to (3.4).

Error estimates for the the flux and primal variables follow from Theorem 3.1
and the simple continuity properties given in the next lemma. In the following, C
denotes a generic constant independent of the element sizes.

Lemma 3.3 (Continuity properties of the local mappings). For all (α, β, λ) ∈
V (K) × W (K) × M(K),

‖Qα ‖c,K ≤ C‖α‖c,K , ‖Uα ‖0,K ≤ ChK‖α‖0,K ,

‖Qβ ‖c,K ≤ ChK‖β‖0,K , ‖Uβ ‖0,K ≤ Ch2
K‖β‖0,K ,

‖Qλ ‖c,K ≤ Ch−1
K ‖λ‖K , ‖Uλ ‖0,K ≤ C‖λ‖K .

These continuity properties are proved in Section 4.

Corollary 3.4. The discrete solution components qT and uT satisfy

‖q − qT‖c ≤ C
(
‖q − Πq‖c + ‖u − Pu‖d

)
,

‖u − uT‖d ≤ C
(
‖q − Πq‖c + ‖u − Pu‖d

)
.

Proof. Thanks to Lemma 3.2, a direct application of the characterization of solu-
tions, as given by Theorem 2.2, yields

eq = Qδ + Qε − Qeλ and eu = Uδ + Uε − Ueλ .

Hence

‖qT − Πq‖c ≤ ‖Qδ ‖c + ‖Qε ‖c + ‖Qeλ ‖c,

‖uT − Pu‖d ≤ ‖Uδ ‖d + ‖Uε ‖d + ‖Ueλ ‖d.

By the triangle inequality and the definition of the norm ||| · |||a, this implies that

‖qT − q‖c ≤2
(
‖q − Πq‖c + ‖u − Pu‖d

)
+ ‖Qδ ‖c + ‖Qε ‖c,

‖uT − u‖d ≤2
(
‖q − Πq‖c + ‖u − Pu‖d

)
+ ‖Uδ ‖d + ‖Uε ‖d.

The corollary follows after using the continuity properties of the local mappings,
Lemma 3.3, and the definition of δ and ε, (3.6). �

It is now clear that rates of convergence can be obtained for the approximate
solution by using approximation properties of the projections Π and P. In partic-
ular, we obtain the following result under minimal regularity assumptions. We use
‖ · ‖X and | · |X to denote the standard norm and seminorm, respectively, in any
Sobolev space X.

Corollary 3.5. Suppose the exact solution u is in H1(Ω), q = −agradu ∈
H1(Ω)N , and the mesh T is a quasi-uniform mesh of mesh-size h. Then,

|||λT − Pu|||a ≤ Ch(|q|H1(Ω) + |u|H1(Ω)).

In the case of the standard uniform degree Raviart-Thomas method, as far as we
know, previously stated estimates for λT − Pu required at least H3(Ω)-regularity
of u; see, e.g., the estimate for the RT method in [2, Corollary 1.5] or the one for
the BDM method in [4, Lemma 4.1]. Such stringent regularity requirements create
difficulties when attempting duality arguments and in applications such as analysis
of multigrid methods. The estimate of Corollary 3.5 is useful in these situations.
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3.2. The nature of the energy norm. Next, we elucidate the nature of the
energy norm |||·|||a. To avoid assumptions on meshes, we state a local result involving
the following analogue of aT(·, ·) on one simplex K ∈ T:

aK(η, µ) =
∫

K

c Qη ·Qµ dx +
∫

K

d Uη Uµ dx.

We show that aK(λ, λ) admits two-sided bounds involving a transparent norm and
seminorm defined by

‖λ‖2
K = hK ‖λ‖2

0,∂K and |||λ|||2K =
1

hK
‖λ − mK(λ)‖2

0,∂K ,

where

mK(λ) =
1

|∂K|

∫
∂K

λ ds.

As before, the estimates contain constants (e.g., C1 and C2 in Theorem 3.6) that
in general depend on the ratio rK = hK/ρK but are otherwise independent of
hK . Let dmax and dmin denote the essential supremum and infimum of d(x) on K,
respectively. Recall that P∂Kλ is as defined in (2.13).

Theorem 3.6. Let λ ∈ MT. There are positive constants C1 and C2 independent
of hK such that for every K ∈ T,

C1

(
|||P∂Kλ|||2K + dmin‖P∂Kλ‖2

K

)
≤ aK(λ, λ) ≤ C2

(
|||P∂Kλ|||2K + dmax‖P∂Kλ‖2

K

)
for all λ ∈ MT.

This result was obtained for the case d = 0 and for uniform polynomial degrees
in [12, Theorem 2.2]. A detailed proof of this result for d ≥ 0 is given in Section
6. Note that in the particular case of the uniform degree Raviart-Thomas method,
we can remove P∂K from the estimates of the theorem because in such a case,
P∂Kµ = µ for all µ ∈ MT .

Let us briefly discuss a consequence in the uniform degree case. Suppose T is a
nondegenerate mesh. Define

(3.8) |||λ||| =
( ∑

K∈T

|||λ|||2K
)1/2

and ‖λ‖ =
( ∑

K∈T

‖λ‖2
K

)1/2

.

Since d(x) ≥ 0, one bound of the theorem implies that

C1|||λ|||2 ≤ aT(λ, λ),

while the other implies that

aT(λ, λ) ≤ C(|||λ|||2 + ‖λ‖2) ≤ C|||λ|||2,

where the last inequality follows from a Poincaré -type inequality; see [12]. Com-
bining the last two inequalities, we find that |||λ|||a is equivalent to |||λ||| with mesh
independent constants. One consequence of this is that the error estimate of The-
orem 3.1 implies that we have control of the error in the more transparent ||| · |||-
norm. Another consequence is in preconditioning the matrix equation defining the
Lagrange multipliers of the hybridized mixed method: To precondition aT(·, ·), it
suffices to precondition the norm |||λ||| on MT, even when d �= 0. One such precon-
ditioner is already known [12].
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Figure 1. An example of a mesh and a multiplier λ ∈ MT for
which |λ|U = 0. (Here the domain is the unit square divided
into four congruent elements, d(x) ≡ 0, c(x) is the identity, and
k(K) = 0 for all the four elements.)

3.3. Error estimates in L2-like norms. The standard technique to obtain error
estimates in weaker L2-like norms from stronger energy norms is the Aubin-Nitsche
duality argument. The results we now present are obtained by adapting such a
duality argument to the mesh-dependent bilinear form aT(·, ·). First, we present
error estimates in the seminorm

|µ|U ≡ ‖Uµ ‖0,Ω.

Then, we show how error estimates in this seminorm naturally yield superconver-
gence results for the primal variable. Error estimates in the L2-like norm ‖ · ‖
defined by (3.8) also follow as a corollary. Note that |·|U is only a seminorm in gen-
eral (see Figure 1). Our results are obtained using the first or both of the following
assumptions.

Assumption 3.1.
(1) For every f ∈ L2(Ω), the solution U of the boundary value problem

(3.9)
− div(a(x)gradU) + d(x)U = f on Ω,

U = 0 on ∂Ω,

satisfies the regularity property

‖U‖H1(Ω) + |agradU |H1(Ω) ≤ C‖f‖0,Ω.

(2) The function d(x) is piecewise smooth in the sense that ‖d‖W 1
∞(K) ≤ C for

all K ∈ T. Let d1,∞ = maxK∈T ‖d‖W 1
∞(K).

(3) The mesh T is quasi-uniform of mesh size h.

Assumption 3.2. (1) The function c(x) is piecewise smooth in the sense that
‖c‖W 1

∞(K) ≤ C for all K ∈ T. Let c1,∞ = maxK∈T ‖c‖W 1
∞(K).

(2) For all K ∈ T, k(K) ≥ 1.

We have the following error estimates.

Theorem 3.7. Let q and u solve (1.1)–(1.2). Suppose Assumption 3.1 holds. Then,

|λT − Pu|U ≤ C h

(
‖Πq − q‖c + σ ‖ div(Πq − q)‖0,Ω + d1,∞‖Pu − u‖0,Ω

)
,

where the factor σ equals one. If in addition Assumption 3.2 holds, then σ = 0.
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A direct consequence of this theorem is the following result which shows that
‖uT − Pu‖0,Ω is one order higher than the best approximation error ‖u − Pu‖0,Ω

under suitable regularity assumptions.

Corollary 3.8 (Superconvergence). Suppose Assumption 3.1 holds. Then

‖uT − Pu‖0,Ω ≤ C h

(
‖Πq − q‖c + σ ‖ div(Πq − q)‖0,Ω + d1,∞‖Pu − u‖0,Ω

)
,

where the factor σ equals one. If in addition Assumption 3.2 holds, then σ = 0.

As a consequence, we also obtain error estimates for the Lagrange multiplier in
the L2-like norm ‖ · ‖, as the following corollary shows. While similar results are
known in the uniform degree case [2, 4], the estimate is new for the variable degree
method.

Corollary 3.9. The statements of Theorem 3.7 continue to hold if we replace |·|U
with ‖ · ‖.

All these results will be proven in Section 5.

4. The continuity properties of the local mappings

In this section, we prove the continuity properties of the local mappings given
in Lemma 3.3. We begin by stating and proving an auxiliary result containing key
properties of the operators A, Bt and Ct.

Lemma 4.1 (Bounds for A, Bt and Ct). For all (v, w, λ) ∈ V (K)×W (K)×M(K)
and all K ∈ T,

c‖v‖0,K ≤ ‖Av‖0,K ≤ C‖v‖0,K ,

c‖w‖0,K ≤ hK‖Btw‖0,K ≤ C‖w‖0,K ,

hK‖Ctλ‖0,K ≤ C‖λ‖K .

Proof. The estimates for A follow from its definition (2.20), in a straightforward
way. Let us prove the estimates for Bt. From the definition of B, we see that Btw|K
is the only element of W (K) such that (r, Btw)K = (w, div r)K for all r ∈ V (K).
Hence, the upper bound for the operator Bt follows from a simple inverse inequality.
The lower bound is a direct consequence of the well-known surjectivity of B as a
mapping from V (K) to W (K). Indeed, because of the surjectivity, we have the
following inf-sup condition on the reference element K̂:

‖ŵ‖0,K̂ ≤ Ĉ sup
r∈V (K̂)

(ŵ, div r)K̂

‖r‖0,K̂

, for all ŵ ∈ W (K̂),

where V (K̂) × W (K̂) is the Raviart-Thomas space of index k(K) on K̂. This
implies the following estimate after mapping back to K:

C‖w‖0,K ≤ hK sup
r∈V (K)

(w, div r)K

‖r‖0,K
= hK‖Btw‖0,K , for all w ∈ W (K).

This completes the proof of the lower bound for B.
It remains to prove the estimate for Ct. By definition, Ctλ is the element in V T

such that ∫
Ω

r · Ctλ dx = (Cr, λ)E = −
∑
K∈T

∫
∂K

λ r ·nK ds,
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for all r ∈ V T. If we take r = Ctλ on K and r = 0 elsewhere, we get

‖Ctλ ‖2
0,K = −

∫
∂K

λ Ctλ·nK ds ≤ C ‖λ ‖0,∂K ‖Ctλ ‖0,∂K ,

by the Cauchy-Schwarz inequality. Now, a simple inverse inequality gives us that

‖Ctλ ‖0,K ≤ C h
−1/2
K ‖λ ‖0,∂K = C h−1

K ‖λ ‖K ,

by the definition of ‖λ ‖K . This completes the proof. �

Proof of Lemma 3.3. Let us begin by proving the continuity estimates for the map-
ping (Qα , Uα ). By definition (see (2.18) and (2.19)) we have(

A −Bt

B D

) (
Qα
Uα

)
=

(
Pα
0

)
,

where P denotes the L2-orthogonal projection into V T. It follows that

(AQα , Qα )K + (D Uα , Uα )K = (α, Qα )K .

Since D is positive semidefinite, this implies that ‖Qα‖2
c,K ≤C‖α‖0,K‖Qα‖c,K .

Thus ‖Qα‖c,K ≤ C ‖α ‖0,K .
To obtain the continuity estimate for U , we proceed as follows:

‖ Uα ‖0,K ≤ C hK ‖Bt
Uα ‖0,K by the invertibility of Bt, Lemma 4.1,

= C hK ‖AQα − Pα ‖0,K by the definition of (Qα , Uα ),

≤ C hK ‖α ‖0,K .

Next, let us prove the continuity properties of the mapping (Qβ , Uβ ). By
definition (see (2.16) and (2.17)) we have(

A −Bt

B D

) (
Qβ
Uβ

)
=

(
0
β

)
.

It follows that
(AQβ ,Qβ )K + (D Uβ , Uβ )K = (β, Uβ )K ,

and consequently

(4.1) ‖Qβ ‖2
c,K ≤ C ‖β ‖0,K ‖ Uβ ‖0,K .

To estimate ‖ Uβ ‖0,K , we proceed as follows:

‖ Uβ ‖0,K ≤ C hK ‖Bt Uβ ‖0,K by the invertibility of Bt, Lemma 4.1,

= C hK ‖AQβ ‖0,K by the definition of (Qβ , Uβ ),

≤ C hK ‖β ‖1/2
0,K ‖ Uβ ‖1/2

0,K by (4.1).

As a consequence,

‖ Uβ ‖0,K ≤ C h2
K ‖β ‖0,K and ‖Qβ ‖c,K ≤ C hK ‖β ‖0,K .

It remains to obtain the estimates for the lifting (Qλ , Uλ ). Observe that

(Qλ , Uλ ) = (QC tλ, UC tλ),

by the definitions of (Qλ , Uλ ) and (Q· , U· ). Hence the required estimates follow
from the estimates of (Q· , U· ) and the continuity of Ct as given in Lemma 4.1. �
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5. Proofs of the error estimates in L2
-like norms

We prove Theorem 3.7 in two steps.

5.1. Proof of Theorem 3.7: Step 1. The proof of the error estimates in L2-
like norms given in Theorem 3.7 is based on the continuity properties of the local
mappings and on a suitable version of the Aubin-Nitsche lemma. We describe the
latter next. Consider the dual problem in mixed form

cψ + gradφ = 0 on Ω,

div ψ + dφ = Ueλ on Ω,

φ = 0 on ∂Ω,

where, as before, eλ = λT − Pu. Let (ψT , φT, εT) ∈ V T × WT × MT be the
hybridized mixed approximation of (ψ, φ, φ|Ei

). With this notation, we have the
following result.

Lemma 5.1 (The Aubin-Nitsche duality argument). We have

|eλ|2U =
∫

Ω

c (Πq − q) · QεT dx +
∫

Ω

d(u − Pu) UεT dx.

Moreover, the right-hand side is the sum of the terms

I1 =
∫

Ω

c (Πq − q) · ψ dx +
∫

Ω

d (u − Pu)φ dx,

I2 =
∫

Ω

c (Πq − q) · (ψT − ψ) dx +
∫

Ω

d (u − Pu)(φT − φ) dx,

I3 = −
∫

Ω

c (Πq − q) · QUeλ dx −
∫

Ω

d (u − Pu) U Ueλ dx.

Proof. A direct application of the characterization of the approximate solution,
Theorem 2.2, to the approximate solution of the dual problem, (ψT , φT, εT), gives

aT(µ, εT) =
∫

Ω

Ueλ Uµ dx for all µ ∈ MT.

Hence,

|eλ|2U = aT(eλ, εT) =
∫

Ω

c (Πq − q) · QεT dx +
∫

Ω

d(u − Pu) UεT dx,

by Theorem 3.1. Now, using Theorem 2.2 once more, we find that

QεT = ψT − QUeλ = ψ + (ψT − ψ) − QUeλ ,

UεT = φT − U Ueλ = φ + (φT − φ) − U Ueλ ,

and the result follows. �

5.2. Proof of Theorem 3.7: Step 2. It only remains to estimate the terms Ii,
i = 1, 2, 3. The terms I2 and I3 can be immediately seen to be small:

I2 ≤ ‖Πq − q‖c‖ψ − ψT‖c + ‖u − Pu‖d‖φ − φT‖d(5.1)

≤ Ch(|ψ|H1(Ω) + |φ|H1(Ω))(‖Πq − q‖c + ‖u − Pu‖d),

≤ Ch|eλ|U (‖Πq − q‖c + ‖u − Pu‖d),
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by Assumption 3.1 and

I3 ≤ ‖Πq − q‖c‖QUeλ ‖c + ‖u − Pu‖d‖U Ueλ ‖d

≤ Ch|eλ|U (‖Πq − q‖c + h‖u − Pu‖d),

by the continuity properties of local mappings, Lemma 3.3.
To estimate I1, we begin by estimating the last term in its definition:∫
Ω

d (u − Pu)φ dx =
∫

Ω

(u − Pu)(dφ − P(dφ)) dx ≤ Ch‖u − Pu‖0,Ωd1,∞‖φ‖H1(Ω)

≤ Chd1,∞‖u − Pu‖0,Ω|eλ|U ,(5.2)

by Assumption 3.1.
There are two ways to estimate the other term in the definition of I1. First,∫

Ω

c (Πq − q) · ψ dx = −
∫

Ω

φ div(q − Πq) dx

= −
∫

Ω

φ(I − P) div q dx

= −
∫

Ω

(I − P)φ div(q − Πq) dx

≤ Ch|φ|H1(Ω)‖ div(q − Πq)‖0,Ω

≤ Ch|eλ|U ‖ div(q − Πq)‖0,Ω,

by Assumption 3.1. Now, if we assume that Assumption 3.2 also holds, then k(K) ≥
1, and the same term can be estimated alternately:

(c (Πq − q), ψ)K =(c(q − Πq), agradφ)K

=((c − c)(q − Πq), agradφ)K

+ (c(q − Πq), agradφ − κ)K

+ (c(q − Πq), κ)K ,

where c and κ denote the averages of c(x) and a(x)gradφ on K, respectively.
Because k(K) ≥ 1, by the definition of Π, (q − Πq, ctκ)K = 0, so by Friedrichs
inequality,∫

K

c (Πq − q) · ψ dx ≤ Ch(c1,∞‖agradφ‖0,Ω + |agradφ|H1(Ω))‖q − Πq‖0,Ω

≤ Ch|eλ|U ‖q − Πq‖0,Ω,

by Assumption 3.1.
Combining the estimates for I1, I2, and I3, we get the estimate of the theorem.

This completes the proof.

5.3. Proof of the superconvergence result of Corollary 3.8. To prove this
result, we begin by noting that

‖eu‖0,Ω ≤ Ch‖ Bteu‖0,Ω,

by the invertibility of Bt, Lemma 4.1. Now, since, by the error equation, Lemma
3.2,

Bteu = δ − Aeq − Cteλ

= δ − Aeq − AQeλ + Bt Ueλ ,
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by the definition of (Q· , U· ), (2.14)-(2.15), we obtain that

‖eu‖0,Ω ≤ Ch
(
‖δ‖0,Ω + ‖Aeq‖0,Ω + ‖AQeλ ‖0,Ω + ‖Bt Ueλ ‖0,Ω

)
≤ C

(
h ‖δ‖0,Ω + h ‖eq‖c + h |||eλ|||a + ‖Ueλ ‖0,Ω

)
,

by the continuity properties of the operators A and Bt, Lemma 4.1, and the defi-
nition of the norm ||| · |||a. The estimate now easily follows by using the definition of
δ, (3.6), Corollary 3.4, and Theorems 3.1 and 3.7. This completes the proof.

5.4. Proof of Corollary 3.9. Although it is possible to prove Corollary 3.9 by
means of a duality argument similar to the one used to prove Theorem 3.7, for
brevity, we prefer to use Corollary 3.8 together with the approach used in a similar
proof in [2]: Since eλ satisfies∫

∂K

eλ v · n ds =
∫

K

c (qT − q) · v dx +
∫

K

eu div v dx,

for all v ∈ V (K), by choosing v such that v · n = eλ and ‖v‖0,K ≤ C‖eλ‖K , and
using an inverse inequality, we have

‖eλ‖2
K ≤ (Ch‖q − qT‖0,K + ‖eu‖0,K) ‖eλ‖K .

Hence the result follows after an application of Corollaries 3.4 and 3.8.

6. Proof of the norm equivalence result

To prove the norm equivalence result of Theorem 3.6, we begin by proving two
lemmas. Recall that, by the definition of the operators A and C, Gλ is the only
element of V T that satisfies

(6.1)
∫

K

c (Gλ )·q dx = −
∫

∂K

λ(q ·nK) ds, for all q ∈ V (K) and K ∈ T.

As a consequence, we have the following relation between the operator G and the
local liftings (Qλ , Uλ ):

(6.2)
(

A −Bt

B D

) (
Qλ
Uλ

)
=

(
AGλ

0

)
.

We also need to introduce an orthogonal projection into the following subspace
of divergence-free functions on an element K:

V 0(K) ≡ {p ∈ V (K) : div p = 0}.

Define an orthogonal projection J into V 0(K) as follows: For any K ∈ T and
r ∈ V T , the restriction Jr|K is defined to be the only element in V 0(K) satisfying

(6.3)
∫

K

c (Jr)·pdx =
∫

K

c r ·p dx for all p ∈ V 0(K).

Note the following properties of G and J .

Lemma 6.1. For all (r, λ) ∈ V T × MT and all K ∈ T, we have

‖P∂Kλ‖K ≤ ChK‖Gλ ‖c,K ,

‖(I − J)r‖0,K ≤ ChK‖Br‖0,K .
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Proof. To prove the first inequality, we choose a q in (6.1) that satisfies q · nk =
P∂Kλ and ‖q‖0,K ≤ Ch

1/2
K ‖P∂Kλ‖0,∂K . Such a q can easily be seen to exist in

V (K). Then,∫
∂K

λ(q · nK) ds =
∫

∂K

|P∂Kλ|2 ds = −
∫

K

c (Gλ )·q dx

≤ ‖Gλ ‖c,K‖q‖c,K ≤ Ch
1/2
K ‖Gλ ‖c,K‖P∂Kλ‖0,∂K ,

from which the bound follows.
To prove the second inequality, we note that if Br = 0, then (I−J)r = r−Jr =

0, by definition of B and J . The result now follows by a simple scaling argument.
This completes the proof. �

The proof of the norm equivalence result proceeds by splitting the liftings of λ
to the flux space into a divergence free part and a remainder. The following lemma
collects some results pertaining to both the parts.

Lemma 6.2. For any λ ∈ MT and K ∈ T we have

JQλ = JGλ ,(6.4)

c |||P∂Kλ|||K ≤ ‖JQλ ‖c,K ≤ C|||P∂Kλ|||K ,(6.5)

‖ (I − J)Qλ ‖c,K ≤ ChKd1/2
max ‖Uλ ‖0,K ,(6.6)

dminC h2
k‖(I − J)(Qλ − Gλ )‖2

c,K ≤ ‖Uλ ‖2
d,K .(6.7)

Proof. To prove (6.4), observe that by the definitions of J and Q ,∫
K

c (Gλ )·r dx =
∫

K

c (Qλ )·r dx = −
∫

∂K

λ(r ·nK) ds, for all r ∈ V 0(K).

Hence JQλ = JGλ .
To prove (6.5), note that because of (6.4), JQλ is nothing but the Q -lifting of

λ when d ≡ 0, so aK(λ, λ) = ‖JQλ ‖2
c,K . By a slight modification of the norm

equivalence established for the d ≡ 0 (and uniform degree) case in [12, Lemma 2.1
and Theorem 2.2] the inequalities of (6.5) can be established.

To prove (6.6),

‖(I − J)Qλ ‖c,K ≤C ‖(I − J)Qλ ‖0,K by (6.4),

≤C hK ‖BQλ ‖0,K by Lemma 6.1,

=C hK ‖D Uλ ‖0,K by the definition of the liftings,

≤C hK d1/2
max ‖Uλ ‖0,K .

To prove (6.7), first note that by Lemma 4.1,

‖Uλ ‖2
d,K ≥ dmin‖Uλ ‖2

0,K ≥ dminC h2
k ‖Bt Uλ ‖2

0,K .

By (6.2), we also have

Bt Uλ = A(Qλ − Gλ ) = A(I − J)(Qλ − Gλ ),

where we have also used (6.4). This completes the proof. �

With the above lemmas, we can now prove the norm equivalence result of The-
orem 3.6.



1672 B. COCKBURN AND J. GOPALAKRISHNAN

Proof of Theorem 3.6. We obtain the upper bound as follows:

aK(λ, λ) = ‖Qλ ‖2
c,K + ‖Uλ ‖2

d,K

= ‖JQλ ‖2
c,K + ‖(I − J)Qλ ‖2

c,K + ‖Uλ ‖2
d,K by orthogonality of J ,

≤ C |||P∂Kλ|||2K + C dmax ‖Uλ ‖2
0,K by Lemma 6.2,

≤ C
(
|||P∂Kλ|||2K + dmax ‖P∂Kλ‖2

K

)
,

where the last inequality was obtained by noting that Uλ|K = UP∂Kλ |K and
using the continuity property of U given by Lemma 3.3.

To obtain the lower bound of the theorem, we proceed as follows:

aK(λ, λ) = ‖JQλ ‖2
c,K + ‖(I − J)Qλ ‖2

c,K + ‖Uλ ‖2
d,K

≥ ‖JQλ ‖2
c,K + ‖(I − J)Qλ ‖2

c,K + ν ‖(I − J)(Qλ − Gλ )‖2
c,K ,

where ν ≡ dminC h2
K by (6.7) of Lemma 6.2. Note that we can always assume that

ν ≤ 1 for all elements K. Hence

aK(λ, λ) ≥ ‖JQλ ‖2
c,K + ν

(
‖(I − J)Qλ ‖2

c,K + ‖(I − J)(Qλ − Gλ )‖2
c,K

)
≥ ‖JQλ ‖2

c,K +
ν

2
‖(I − J)Gλ ‖2

c,K by the triangle inequality,

= (1 − ν

2
)‖JQλ ‖2

c,K +
ν

2

(
‖JQλ ‖2

c,K + ‖(I − J)Gλ ‖2
c,K

)

≥ 1
2
‖JQλ ‖2

c,K +
ν

2

(
‖JQλ ‖2

c,K + ‖(I − J)Gλ ‖2
c,K

)
,

since ν ≤ 1. Now, since by Lemma 6.2, JQλ = JGλ ,

‖JQλ ‖2
c,K + ‖(I − J)Gλ ‖2

c,K = ‖JGλ ‖2
c,K + ‖(I − J)Gλ ‖2

c,K = ‖Gλ ‖2
c,K ,

by the orthogonality property of J . Consequently,

aK(λ, λ) ≥ 1
2
‖JQλ ‖2

c,K +
ν

2
‖Gλ ‖2

c,K ≥ C
(
|||P∂Kλ|||2K + dmin‖P∂Kλ‖2

K

)
,

by Lemmas 6.2 and 6.1. This completes the proof of Theorem 3.6. �

7. Extension to the variable degree BDM method

We now briefly describe how the analysis extends to the variable degree BDM
method [4, 8]. The method (say in three space dimensions) is obtained by setting

V (K) = (P k(K)(K))3, W (K) = P k(K)−1(K), M(e) = Mk(e)(e),

in the formulation in Section 2. That the method is well defined can be seen by
the same type of arguments as in Proposition 2.1. Moreover, it is easy to see that
the entire error analysis goes through and analogues of Theorems 2.2, 3.1, and 3.7
hold. In particular, we have the following analogue of (3.3):

aBDM
T (λBDM

T − Pu, µ) =
∫

Ω

c (ΠBDMq − q) · Qµ dx +
∫

Ω

d(u − PBDMu) Uµ dx.

(7.1)

Note that when previously introduced notation is superscripted by “BDM”, it is to
be understood as defined as before after replacing RT spaces by the BDM spaces.
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Since PBDM projects onto a space that is one polynomial degree less on every
mesh element than the corresponding RT space, it may appear at first sight that
the last term in (7.1) is only O(hk) (when k(K) = k and d(x) > 0), one order
less than the corresponding RT estimate. The following corollary shows otherwise.
For simplicity we only give results under both Assumptions 3.1 and 3.2, although
similar estimates can be proved when only the former holds.

Corollary 7.1. Suppose Assumptions 3.1 and 3.2 hold. Then

(7.2) |||λBDM
T − Pu|||a ≤ C

(
‖ΠBDMq − q‖c + d1,∞h‖u − PBDMu‖0,Ω

)
.

If in addition the solution U of (3.9) satisfies |U |H2(Ω) ≤ C‖f‖0,Ω and d2,∞ ≡
maxK∈T ‖d‖W 2

∞(K) < ∞, then

‖uBDM
T − PBDMu‖0,Ω ≤ C h

(
‖ΠBDMq − q‖c + d2,∞h‖PBDMu − u‖0,Ω

)
,(7.3)

‖λBDM
T − Pu‖ ≤ C h

(
‖ΠBDMq − q‖c + d2,∞h‖PBDMu − u‖0,Ω

)
.(7.4)

Proof. Let d̄ denote the piecewise constant function which on every K ∈ T equals
the average of d(x) on K. By (7.1)

|||eBDM
λ |||2a ≤ ‖q − ΠBDMq‖c|||eBDM

λ |||a +
∫

Ω

(d − d̄)(u − PBDMu) UeBDM
λ dx

≤ ‖q − ΠBDMq‖c|||eBDM
λ |||a + Chd1,∞‖u − PBDMu‖0,Ω|eBDM

λ |U
≤ ‖q − ΠBDMq‖c|||eBDM

λ |||a
+ Ch2d1,∞‖u − PBDMu‖0,Ω(‖q − ΠBDMp‖c + d1,∞‖u − PBDMu‖0,Ω),

by the BDM analogue of Theorem 3.7. Hence (7.2) follows after applying the
arithmetic geometric mean inequality.

We now prove that

(7.5) |eBDM
λ |U ≤ C h(‖ΠBDMq − q‖c + d2,∞h‖PBDMu − u‖0,Ω).

It is not difficult to see that the remaining two estimates (7.3) and (7.4) follow
from (7.5) as in the analysis for the RT method. To prove (7.5), first we repeat the
arguments in the proofs of Theorem 3.7 and Corollary 3.8 for the BDM case and
get

‖uBDM
T − PBDMu‖0,Ω ≤ C h(‖ΠBDMq − q‖c + d1,∞‖PBDMu − u‖0,Ω).(7.6)

Then, we again follow the lines of the proof of Theorem 3.7 but this time with the
following changes: First, in (5.1), we estimate ‖φ − φT‖d differently: Since

‖φ − PBDMφ‖0,Ω ≤ Ch2|φ|H2(Ω),

‖PBDMφ − φT‖0,Ω ≤ Ch(h|ψ|H1(Ω) + h|φ|H1(Ω)),

by (7.6). Hence, by triangle inequality ‖φ − φT‖0,Ω ≤ Ch2(|ψ|H1(Ω) + ‖φ‖H2(Ω)).
Second, in (5.2), we estimate dφ − PBDM(dφ) using

‖dφ − PBDM(dφ)‖0,Ω ≤ Ch2d2,∞|φ|H2(Ω).

With these revised estimates, completing the proof as before, we obtain (7.5). �
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We conclude by emphasizing that the approach we have used here to analyze
the variable degree hybridized RT and BDM mixed methods can also be applied to
other methods with the same structure. As we have seen, hybridization is useful
not only in the construction of mixed methods and their implementation, but it is
also a useful theoretical device in their error analysis.

Appendix A. The abstract version of the characterization theorem

In this appendix, we state and prove an abstract version of a result obtained
in [7]. Since our intention is to emphasize the generality of the result, we prove it
in the following abstract framework:

Assumption A.1. Let V , W, and M be arbitrary finite dimensional spaces with
inner products (·, ·)V , (·, ·)W , and (·, ·)M , respectively. Assume that

(1) A : V �→ V is a symmetric and positive definite operator,
(2) B : V �→ W is surjective, and
(3) D : W �→ W is a symmetric positive semidefinite operator.

We also need to introduce several auxiliary operators. First, we define (Q, U) :
M �→ V × W by

(A.1)
(

A −Bt

B D

) (
Qλ
Uλ

)
=

(
Ctλ
0

)
,

where C is an operator from V to M . We also define (Q, U) : V T �→ V T × WT

by

(A.2)
(

A −Bt

B D

) (
Qα
Uα

)
=

(
α
0

)
and (Q, U) : WT �→ V T × WT by

(A.3)
(

A −Bt

B D

) (
Qβ
Uβ

)
=

(
0
β

)
.

By virtue of assumption A.1, the above operators are well defined. The next theo-
rem deals with solutions of linear systems of the following form:

(A.4)

⎛
⎝A −Bt −Ct

B D 0
C 0 0

⎞
⎠

⎛
⎝p

v
λ

⎞
⎠ =

⎛
⎝α

β
γ

⎞
⎠ .

Similar equations have been studied earlier [10, 11]. With the above notation, we
have the following theorem.

Theorem A.1. Suppose Assumption A.1 holds. Then (A.4) holds for some (p, v, λ)
∈ V × W × M and (α, β, γ) ∈ V × W × M , if and only if

p = Qα + Qβ + Qλ ,(A.5)

v = Uα + Uβ + Uλ ,(A.6)

and λ satisfies
a(λ, µ) = b(µ),

for all µ ∈ M , where

a(λ, µ) = (AQλ , Qµ )V + (D Uλ , Uµ )V ,

b(µ) = (α, Qµ )V + (β, Uµ )W + (γ, µ)M .
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Proof. Since we have that(
A −Bt

B D

) (
p
v

)
=

(
α + Ctλ

β

)
,

by the linearity of the problem and the definition of the auxiliary operators, we
immediately get that

p = Qα + Qβ + Qλ and that v = Uα + Uβ + Uλ .

It remains to prove the characterization of λ. Inserting the above expression for
p in the equation C p = γ, we get

CQλ = −CQα − CQβ + γ,

or equivalently,
(CQλ , µ)M = −(CQα − CQβ + γ, µ)M ,

where µ is an arbitrary element of M . Next, we show that

a(λ, µ) = (CQλ , µ)M and that b(µ) = (−CQα − CQβ + γ, µ)M .

To do that, we simply use the definitions of the local operators.
Since (CQλ , µ)M = (Qλ , Ctµ)V , if we replace λ by µ in the first equation of

(A.1) and then multiply by Qλ , we get

(CQλ , µ)M = (Qλ , AQµ )V − (Qλ , Bt Uµ )V .

Now, since (Qλ , Bt Uµ )V = ( Uµ , BQλ )W , multiplying the second equation of
(A.1) by Uµ , we obtain

−( Uµ , BQλ )W = ( Uµ , D Uλ )W .

Hence
(CQλ , µ)M = (Qλ , AQµ )V + ( Uµ , D Uλ )W = a(λ, µ),

as claimed.
Using similar algebraic manipulations, we easily get that

−(CQα , µ)M = (α, Qµ )V and − (CQβ , µ)M = (β, Uµ )V .

This completes the proof. �

Appendix B. The interpolation operator Π

Here we give details of the construction of a variable degree projection Π that
preserves H(div, Ω)-continuity. The projection given here is a straightforward mod-
ification of the projection introduced in [8]. Although the Raviart-Thomas spaces
were not considered in [8], it is easy to adapt their arguments to this case, as we
now show.

Let K̂ be a fixed reference simplex. To every face e of K̂, let us associate a
nonnegative integer e and let  be an integer such that e ≤ . Define

V̂ �,�e
= {r ∈ xP �(K̂) + P �(K̂)N : r · ne ∈ P �e(e) for all faces e of K̂}.

The projection Π̂�,�e
r, for any smooth r is defined as the unique function π ∈ V̂ �,�e

satisfying

(π ·ne, µ)e = (r ·ne, µ)e for all µ ∈ P �e(e) and faces e,

(div π, div v)K̂ = (div r, div v)K̂ for all v ∈ V̂ �,�e
with v ·n|∂K̂ = 0,

(π, v)K̂ = (r, v)K̂ for all v ∈ V̂ �,�e
with v ·n|∂K̂ =0 and div v=0.
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These conditions uniquely specify a π ∈ V̂ �,�e
because if the right-hand sides above

are zero, then obviously the only π ∈ V̂ �,�e
that satisfies the conditions is zero.

The global interpolant Π can now be defined by mapping Π̂�,�e
to K by the

Piola map after appropriately setting the degrees  and e. First let K̂ be mapped
one-to-one onto K by the standard affine mapping x = DK x̂ + bK , and let vector
functions be transformed between K̂ and K by

q̂(x̂) ≡ | detDK |D−1
K q(x).

With this notation, we define the global projection Πq for a smooth q, element by
element: On any element K, the restriction (Πq)|K is defined by

Π̂q = Π̂�,�e
q̂,

with  equal to k(K), with e = min(k(K+
e ), k(K−

e )) whenever e is an interior
face (see (2.7)), and e = k(K) if e is a face on ∂Ω. It is easy to see that Πq ∈
H(div, Ω) for any smooth q. It is possible to find the domain of continuity of Π
by usual arguments, but we omit such details; e.g., Π is a continuous operator on
H(div, Ω) ∩ Lr(Ω)2 for r > 2 in two space dimensions.

This projection can be applied in the earlier analysis provided we can prove
the critical commutativity property (3.1). Because of the properties of the Piola
mapping, we only need to prove that

(B.1)
∫

K̂

p div(Π̂q) dx =
∫

K̂

p div q̂ dx, for all p ∈ P k(K)(K̂).

First, observe that this identity holds with p = 1, because by the definition of the
projection,

(B.2)
∫

∂K̂

(Π̂q − q̂)·n ds = 0.

Thus (B.1) holds for lowest order elements. Now consider the case k(K) > 0. Set
 = k(K). Because of (B.2), it suffices to prove (B.1) for all p ∈ P �(K̂) with
zero mean. This follows from the definition of the projection, provided div : {r ∈
xP �(K̂)+P �(K̂)N : r ·n = 0 on ∂K̂} �→ {p ∈ P �(K̂) :

∫
K̂

p dx = 0} is a surjection.
To prove this surjectivity, consider the function u satisfying ∆u = p on K̂ and
n · gradu = 0 on ∂K̂, for any given p ∈ P �(K̂). Let q ∈ xP �(K̂) + P �(K̂)N be
defined by q · n = 0 on ∂K̂ and (q, r)K̂ = (gradu, r)K̂ for all r ∈ P �−1(K̂)N .
In other words, q is the standard Raviart-Thomas projection of gradu, and hence
well defined; see, e.g., [6, Proposition III.3.3]. Then (div q, s)K̂ = −(q,grad s)K̂ =
−(gradu,grad s)K̂ = (p, s)K̂ for all s ∈ P �(K̂), so div q = p. This proves the
surjectivity.
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