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BACK AND FORTH
ERROR COMPENSATION AND CORRECTION METHODS
FOR SEMI-LAGRANGIAN SCHEMES WITH APPLICATION

TO LEVEL SET INTERFACE COMPUTATIONS

TODD F. DUPONT AND YINGJIE LIU

Abstract. Semi-Lagrangian schemes have been explored by several authors

recently for transport problems, in particular for moving interfaces using the
level set method. We incorporate the backward error compensation method de-
veloped in our paper from 2003 into semi-Lagrangian schemes with almost the
same simplicity and three times the complexity of a first order semi-Lagrangian
scheme but with improved order of accuracy. Stability and accuracy results
are proved for a constant coefficient linear hyperbolic equation. We apply this
technique to the level set method for interface computation.

1. Introduction

Semi-Lagrangian schemes, e.g., the Courant-Isaacson-Rees (CIR) scheme [2],
have no CFL restriction for the time step size, and therefore local space refinement
becomes more convenient. Recently several researchers have used and studied semi-
Lagrangian schemes for transport equations, in particular for computing level sets
(Osher and Sethian [19]) describing interface movement. Strain [25, 26, 27] has
developed several fast semi-Lagrangian schemes for evolving level sets which incor-
porate techniques including essentially non-oscillatory (ENO [10, 23, 24]) spatial
interpolation, predictor-corrector temporal approximation, velocity smoothing, and
quad-tree meshes. Enright et al. [5] apply the CIR scheme to the hybrid particle
level set method [4] to simplify the method with almost no loss of resolution.

For a hyperbolic equation ut + v · ux = 0, the CIR scheme computes the numer-
ical solution defined on a mesh {xi} as U(xi, tn+1) = U(x̂i, tn), where x̂i = Γi(tn)
and Γi(t) is the approximate characteristic curve passing (xi, tn+1). Various ap-
proximations of x̂i and U(x̂i, tn) (since U is only defined at grid points (xi, tn))
can be used. For example, one may choose x̂i = xi − v(xi, tn)(tn+1 − tn) and com-
pute U(x̂i, tn) by linearly interpolating the U values at two nearest grid points xj

and xj+1 such that x̂i ∈ [xj , xj+1], and obtain the first order CIR scheme which
does not increase the L∞ norm of the numerical solution with increasing time. If
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tn+1 − tn is small enough so that x̂i ∈ [xi−1, xi+1] (the CFL condition), then the
CIR scheme is actually the first order upwind scheme. Furthermore, if the linear
interpolation of U(x̂i, tn) is from the U values at grid nodes xi−1 and xi+1, then
it becomes the Lax-Friedrich scheme. Therefore the CIR scheme removes the CFL
condition by interpolating U(x̂i, tn) from the U values near the root of the char-
acteristics x̂i, instead of from the U values near xi. In order to achieve a higher
order of accuracy, a higher degree (2nd degree or higher) polynomial interpolation
can be applied and a corresponding order of temporal numerical integration is also
necessary for computing the characteristics. Falcone and Ferretti [6] have analyzed
the stability and convergence of a general class of semi-Lagrangian schemes.

In higher space dimensions, the first order CIR scheme is quite simple since it
only uses a local linear interpolation. Is there a convenient way to manipulate
the first order CIR scheme to achieve a higher order of accuracy simultaneously in
both space and time without using a higher order polynomial interpolation? The
MacCormack scheme [17] uses an upwind scheme followed by a downwind scheme
to obtain an improved order of accuracy in both space and time for hyperbolic
equations. For semi-Lagrangian schemes, the integration is along the approximate
characteristics and the upwind discretization is not clearly defined at the root of
the characteristics. We are interested in whether the backward error compensation
algorithm introduced in [3] can be successfully applied to the CIR scheme. This
algorithm is based on a simple observation that if one solves a hyperbolic system
forward in time for one time step with a scheme (e.g., a first order scheme) and
then backward in time for one time step with the same scheme, one obtains another
copy of the solution at the initial time. The two copies of the solution should have
been equal if there were no numerical errors (at least, away from singularities).
Therefore comparing the two copies of the solution gives us information about the
errors which we can use to improve the accuracy. In Shu and Osher [23], some
TVD Runge-Kutta methods also incorporate downwind spatial discretizations in
order to achieve the TVD property, which are implemented by discretizing the time
reversed hyperbolic equation in certain middle time steps.

Two difficulties involved in the numerical computation of the level set method
are (1) how to reduce diffusion; and (2) how to minimize artifacts near the singular
points of the interface. Typically high order ENO or WENO ([16, 11]) schemes
are used for solving the level set equation and redistancing. Sussman and Puck-
ett [28] have combined the level set and volume-of-fluid method so that one has
the interface represented by a smooth level set function for extracting information
such as mean curvature, etc., and also has the local volume conservation from the
volume-of-fluid method. Enright et al. [4] have developed the hybrid particle level
set method which takes advantage of the high resolution of Lagrangian schemes
near interface singularities, and also has the convenience of the level set method
which automatically resolves topological changes of the interface. Strain [25, 26, 27]
addresses these difficulties by using semi-Lagrangian schemes to compute the level
set equation so that local space refinement can be done near singular points of the
interface without locally reducing the time step size. Here we incorporate the back-
ward error compensation algorithm [3] with the CIR scheme and obtain an efficient
and simple algorithm for the level set method. We will introduce this algorithm in
Section 2, and discuss its stability and accuracy in Sections 3 and 4. In Section 5,
we discuss its application to the level set method. We would like to refer to Kim
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et al. [12] for fluid simulations incorporating the backward error compensation
algorithm with other methods.

2. Backward error compensation for semi-Lagrangian schemes

The level set method proposed by Osher and Sethian [19] uses a continuous
function φ(x, t) ∈ R to represent evolving interfaces as the zero level set {(x, t) :
φ(x, t) = 0}, where x ∈ Rd is the spatial variable and t ∈ R represents the time.
For a given velocity field v(x, t) ∈ Rd, the level set function φ satisfies

(2.1)
∂φ

∂t
+ v · �φ = 0.

We define a straightforward scheme based on the first-order CIR scheme with
backward error compensation. For simplicity we use a uniform mesh and describe
the scheme in all of Rd. We assume a uniform rectangular grid in Rd with the
spatial mesh size

∆x = (∆x1, ∆x2, . . . , ∆xd)
and let the time step size be ∆tn = tn+1 − tn. Given the approximate level set
function Φ(·, tn) at grid points

{xi = (i1∆x1, i2∆x2, . . . , id∆xd) : i = (i1, i2, . . . , id) ∈ Zd},
the first order CIR scheme can be formulated as

(2.2) Φ(xi, tn+1) = Φ(x̂i, tn),

where x̂i = xi−v(xi, tn)∆tn. In one space dimension (d = 1), Φ(x̂i, tn) is computed
from the linear interpolation of Φ(xj , tn) and Φ(xj+1, tn) where x̂i ∈ [xj , xj+1]. In
two space dimensions Φ(x̂i, tn) can be approximated by the bilinear interpolation
of the Φ(·, tn) values at the vertices (grid points) of a grid cell containing x̂i. For
general space dimensions one can use the tensor product of one-dimensional linear
polynomials to interpolate. Denote Φn

i = Φ(xi, tn).
The backward error compensation algorithm [3] can be applied to the CIR scheme

as follows (see Figure 2.1):
Step 1. Solve equation (2.1) forward in time to obtain Φ̃n+1 by the CIR scheme

(2.2), with Φn being the initial value at the time tn.
Step 2. Solve equation (2.1) backward in time to obtain Φ̆n by the same method.

This is equivalent to solving the time reversed equation ∂φ
∂t − v · �φ = 0

forward in time by (2.2), with Φ̃n+1 being the initial value.
Step 3. Let Φn

i = Φn
i + 1

2 (Φn
i − Φ̆n

i ) for all i.
Step 4. Solve equation (2.1) forward in time to obtain Φn+1 by (2.2), with Φn being

the initial value at the time tn.

forward backward error compensation forward

current time

next time

Figure 2.1. Backward error compensation algorithm.



650 TODD F. DUPONT AND YINGJIE LIU

The term 1
2 (Φn

i − Φ̆n
i ) is called the backward compensation term. It should be

noted that the velocity field v is only evaluated at grid points at times tn and tn+1

in the above algorithm and the that CIR scheme (2.2) involves only local linear
interpolation of Φ(x̂i, ·). Therefore the implementation of the above algorithm is
quite simple even for three space dimensions.

The dual of the above algorithm, called the forward error correction algorithm,
can be applied to the CIR scheme as follows:
Step 1. Solve equation (2.1) forward in time to obtain Φ̃n+1 by the CIR scheme

(2.2), with Φn being the initial value at the time tn.
Step 2. Solve equation (2.1) backward in time to obtain Φ̆n by the same method.

This is equivalent to solving the time reversed equation ∂φ
∂t − v · �φ = 0

forward in time by (2.2), with Φ̃n+1 being the initial value.
Step 3. Solve equation (2.1) forward in time to obtain Φn+1 by (2.2), with Φ̆n being

the initial value at the time tn.
Step 4. Let Φn+1

i = Φ̃n+1
i + 1

2 (Φ̃n+1
i − Φn+1

i ) for all i.
If the velocity field v depends only on x and t, the above two algorithms are

equivalent in the sense that they will result in the same Φn+1. If the velocity
field v depends on φ, i.e., v = v(φ(x, t),x, t), in the backward error compensation
algorithm we may use the same velocity field in Step 4 as in Step 1. Therefore the
velocity field only needs to be computed twice at Steps 1 and 2. In the forward
error correction algorithm, we may use the same velocity field in Step 3 as in Step 1
so that the velocity field only needs to be computed twice. When using this velocity
approximation, we can easily see that the above two algorithms applied to the CIR
scheme are equivalent.

3. Stability

In [3], we have proved the l2 stability of the backward error compensation algo-
rithm applied to the first order upwind scheme for the 1D equation ut + ux = 0.
Here we prove some more general results in higher space dimensions. Throughout
this and the next section, we consider equation (2.1) in the domain [0, 1]d with
periodic boundary conditions, and assume v is a constant vector in equation (2.1)
unless specified otherwise. We use i, j, k, l, s ∈ Z for indices and i, j,k, l, s ∈ Zd for
multi-indices. In particular, we use k to represent the dual index of the Fourier
series. The symbol i will also represent

√
−1 when the meaning is clear from

context. Let ∆xj = 1/Nj , j = 1, 2, . . . , d, for some positive integers Nj . With
N = (N1, N2, . . . , Nd) set DN = Zd ∩ Πj [0, Nj − 1]. The Un

i is defined outside
DN by periodic extension. Similarly, take FN = Zd ∩ Πj [1 − Nj , Nj − 1]. Let
L : Un+1 = L(Un) be a linear scheme for equation (2.1) such that Un+1

i =∑
j∈DN

αjU
n
i+j, where the αj’s depend on ∆tn/∆xl, l = 1, . . . , d. The Un

j can be
expressed uniquely as the finite Fourier series

Un
j =

∑
k∈FN

Cn
ke2πik·xj ,

where k = (k1, k2, . . . , kd). Substituting this finite Fourier series into scheme L
we obtain Cn+1

k = ρLCn
k , where ρL(k) =

∑
j∈DN

αje
2πik·xj is the Fourier symbol

of L, and max{|ρL(k)| : k ∈ FN} is called the amplification factor of scheme
L. Let L∗ : Wn = L∗(Wn+1) be the corresponding linear scheme that solves
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equation (2.1) backward in time using scheme L. (Note that L∗ is not defined
to be the adjoint of L with respect to any inner product, although it may be in
some cases.) Applying the backward error compensation algorithm to scheme L we
obtain a linear scheme for equation (2.1),

(3.1) F : V n+1 = F (V n) = L(I +
1
2
(I − L∗L))(V n),

where I is the identity operator. Let ρL∗ and ρF be the Fourier symbols of schemes
L∗ and F respectively; we then have the following theorem.

Theorem 1. Suppose ρL∗(k) = ρL(k) for all k ∈ FN. Then |ρF (k)| ≤ 1 for all
k ∈ FN if and only if |ρL(k)| ≤ 2 for all k ∈ FN.

Proof. The Fourier symbol of (3.1) can be obtained as follows:

ρF = ρL(1 +
1
2
(1 − ρLρL)).

Let η = |ρL|, G(η) = |ρF |, then the theorem is proved by inspecting the function
G(η) = η|32 − 1

2η2| for η ∈ [0,∞). �
Theorem 1 not only insures that the backward error compensation algorithm

applied to a stable (in l2) scheme is stable, but also implies that some unstable
schemes can be turned into stable ones. Throughout this paper, we say a scheme
is stable if it is stable in the l2 sense, unless specified otherwise. It is easy to verify
that the condition in Theorem 1 is satisfied when applying the backward error
compensation algorithm to the following classical schemes.

Example 1. In one space dimension (d = 1), the first order upwind scheme for
equation (2.1) has an amplification factor |ρ| ≤ 2 if the CFL factor |v|∆t/∆x is no
more than 1.5 (the scheme is unstable for the CFL factor greater than 1). Therefore,
applying the backward error compensation algorithm to it creates a scheme stable
with CFL factor less than or equal to 1.5, and the new scheme is second order
accurate [3].

Example 2. Using center spatial difference and forward Euler time difference for
equation (2.1) will create an unstable scheme. When d = 1, the scheme has an
amplification factor |ρ| ≤ 2 if the CFL factor is no more than

√
3. Therefore

applying the backward error compensation algorithm to it creates a second order
scheme (see Section 4) stable with the CFL factor less than or equal to

√
3.

Example 3. In one space dimension, the Lax–Friedrich scheme has an amplifica-
tion factor no more than 2 if the CFL factor is less than or equal to 2 (it is stable
only if the CFL factor is less than or equal to 1). Therefore applying the backward
error compensation algorithm to it creates a second order scheme (see Section 4)
stable with the CFL factor less than or equal to 2.

Remark. It is well known that for the linear Schrodinger equation

iψt = −a � ψ,

the simplest explicit scheme with forward Euler time discretization and center spa-
tial discretization is unstable. In 1D, the amplification factor for such a scheme
is

|ρ(k)|2 = 1 + (4λ)2 sin4(πk∆x), where λ = |a| ∆t

∆x2
.
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Therefore |ρ| ≤ 2 if λ ≤ 1
4 . By applying equivalent results of Theorem 1 and

Theorem 4 (in the next section), we could also show that applying the backward
error compensation algorithm to it creates a new second order scheme stable for
λ ≤ 1

4 .

Next we verify that for constant coefficients with periodic boundary conditions,
the CIR scheme for equation (2.1) satisfies the condition of Theorem 1. Given Φn,
the Φn+1 computed by the CIR scheme can be written as

(3.2) Φn+1
j = (LΦn)j =

∑
l

Φn
l Ψl(xj − v∆tn),

where Ψl is the Lagrange basis function which in each cell is a linear (d = 1)
polynomial or a bilinear (d = 2) polynomial, etc., satisfying Ψl ≥ 0 and Ψl(xj) = δlj
(= 1 if l = j; 0 otherwise). The function Ψl has the property that

Ψl(x) = Πd
j=1ψ∆xj ,lj (xj),

where ψh,j is the basis function associated with the mesh point jh in one-dimen-
sional piecewise linear interpolation using the mesh of integer multiples of h.

It then follows that

(3.3) Φn+1
j = (L1 ⊗ · · · ⊗ LdΦn)j,

where the operators Lj are the one-dimensional versions of L using vj and ∆xj .
From this it follows that

(3.4) ρCIR(k) = Πd
j=1ρLj

(kj).

Hence,

(3.5) ρCIR = ρCIR∗ ,

if the result holds in one space dimension. The one-dimensional result is easily
checked. We are now in a position to obtain

Corollary 2. The CIR scheme with backward error compensation algorithm for
equation (2.1) with constant coefficients has an amplification factor less than or
equal to 1 for any mesh size ∆x and time step size ∆tn.

Proof. It is well known (see, e.g., [6]) that the CIR scheme has an amplification
factor less than or equal to 1. It then follows that it has an amplification factor
less than or equal to one in d-space by (3.4). From (3.5) and Theorem 1 the proof
is complete. �

4. Accuracy

We study the accuracy improvement of the backward error compensation algo-
rithm for a general linear scheme for equation (2.1) with constant coefficients and
periodic initial data (see the previous section). The result generalizes the accuracy
improvement theorem in [3] for a linear ordinary differential equation and is based
on the comparison of the Fourier symbols of the differential equation (2.1) and its
corresponding numerical scheme; see Lax [14]. Let L, L∗, F be linear schemes de-
fined as in Section 3, and let ρL, ρL∗ , ρF be their corresponding Fourier symbols,
respectively. Expanding φ into Fourier series

φ(x, t) =
∑
k∈Zd

ck(t)e2πik·x,
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and plugging in equation (2.1), we obtain
dck
dt

= P (ik)ck,

where P is a linear homogeneous polynomial with real coefficients. Therefore we
can write

ck(tn + ∆t) = e∆tP (ik)ck(tn).
Assume ∆x1 = · · · = ∆xd = h and ∆t/h is fixed during the mesh refinement. A
scheme L1 : Φn+1 = L1(Φn) is said to be accurate of order r if for any solution φ
of equation (2.1) having continuous derivatives up to order r + 1,

φ(xj, tn+1) − L1(φ(·, tn))|xj
= O(hr+1).

We first state the theorem of Lax [14].

Theorem 3. Scheme L is accurate of order r if and only if

ρL(k) = e∆tP (ik) + O(|kh|r+1), as h → 0.

The “only if” part of the theorem is proved by Lax [14] for more general linear
hyperbolic equations with variable coefficients. With constant coefficients, Lax’s
proof also implies the “if” part of this theorem. Using the Lax’s Theorem 3, we
can prove the following theorem.

Theorem 4. Suppose ρL∗(k) = ρL(k) for any k ∈ Zd and that scheme L is
accurate of order r for equation (2.1) with constant coefficients, where r is an odd
positive integer. Then scheme F is accurate of order r + 1.

Proof. The accuracy of scheme L implies that

ρL(k) = e∆tP (ik) + Qr+1(ikh) + O(|kh|r+2),

where Qr+1 is a homogeneous polynomial of order r + 1 with real coefficients (re-
calling that we assume the scheme coefficient αj depends on ∆t/h which is fixed).
Since r + 1 is even, we have

ρL∗(k) = ρL(k) = e−∆tP (ik) + Qr+1(ikh) + O(|kh|r+2).

Therefore
(4.1)

ρF (k) = ρL(k){1 + 1
2 [1 − ρL∗(k)ρL(k)]}

= ρL(k){1 − 1
2 [e−∆tP (ik) + e∆tP (ik)]Qr+1(ikh) + O(|kh|r+2)}

= [e∆tP (ik) + Qr+1(ikh) + O(|kh|r+2)][1 − Qr+1(ikh) + O(|kh|r+2)]
= e∆tP (ik) + O(|kh|r+2).

The proof is complete. �

Remark. When equation (2.1) has variable coefficients, the Fourier-Stieltjes trans-
form (see, e.g., [14]) is used to replace the Fourier symbols, and a formula similar
to (4.1) can be derived for the Fourier–Stieltjes transform of scheme F .

An interesting phenomenon is that the backward error compensation algorithm
seems to improve the numerical result, even for a very irregular mesh. In the
following example we use a first order upwind scheme with and without backward
error compensation to compute the linear advection of a pyramid function: ut+ux =
0, x ∈ [0, 1] with periodic boundary condition. The grid points are distributed as

xi = i ∗ 0.01 + 0.003 ∗ sin[(i − 0.2) ∗ (i + 6.1789) ∗ i], i = 0, 1, . . . , 99.
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Figure 4.1. Linear advection of a pyramid function over 100 ir-
regular cells on domain [0, 1] with the size of the largest cell 4
times that of the smallest cell. CFL = 0.5, T = 10. Computed
by the first order upwind scheme with and without backward error
compensation (BF).

The solutions at the final time T = 10 are shown in Figure 4.1. The result for
triangular mesh is shown in Section 5.

5. Application to the level set method

Besides equation (2.1), since the velocity field could create a large gradient in
Φ, there is usually an auxiliary equation to solve until reaching the steady state at
each time step [30],

(5.1)
∂Φ
∂τ

+ sign(Φ)(| � Φ| − 1) = 0.

This procedure is supposed to transform the Φ into a signed distance function
without changing its zero level set. This step also helps clean the error pollution
coming from the “skeleton”, i.e., the nonsmooth area of the level set function. As
in [30], equation (5.1) can be written as

(5.2) Φ̃τ + W · �Φ̃ = S(Φ̃0),

where W = S(Φ̃0) � Φ̃/| � Φ̃| and S(Φ̃0) is the sign function of Φ̃0, S(Φ̃0) = 1, if
Φ̃0 > 0; S(Φ̃0) = −1 if Φ̃0 < 0. Φ̃0 is the initial value for (5.2) and is the current
level set function obtained by solving equation (2.1). We only discuss the cases in
2D, and the indices i or (i, j) ∈ Z2 will be used throughout the rest of the paper.



BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS 655

5.1. New modifications to the redistancing procedure. We first compute
equation (2.1) using the CIR scheme with backward error compensation to obtain
the approximate level set function Φn at the time tn. Then let Φ̃0 = Φn and solve
equation (5.2) for a few time steps (e.g., m1 steps). Then replace Φn by Φ̃m1 and
finish the redistancing procedure at this time.

We use a slightly modified center difference to approximate W . For example,
∂Φ̃
∂x (xi,j) is approximated by (Φ̃i+1,j−Φ̃i−1,j)/(2∆x) if Φ̃i+1,j−Φ̃i,j and Φ̃i,j−Φ̃i−1,j

are of the same sign; by maxmod{(Φ̃i+1,j−Φ̃i,j)/∆x, (Φ̃i,j−Φ̃i−1,j)/∆x} otherwise,
where

maxmod{a, b} =
{

a, if |a| > |b|,
b, otherwise,

and similarly for the approximation of ∂Φ̃
∂y (xi,j). This modification gives a more

accurate normal direction of the interface in the unresolved region of the interface,
e.g., near the place where the interfaces are about to have topological changes.

At each time of solving equation (5.2), given Φ̃m at the time τm, we compute
equation (5.2) only at places, say xi,j , to obtain Φ̃m+1

i,j where either
(A) the absolute value of the difference between Φ̃m

i,j and one of its neighbors is
greater than their distance ∆x, i.e., at least one of the four statements is true,

|Φ̃m
i,j − Φ̃m

i±1,j | > 1.1∆x, |Φ̃m
i,j − Φ̃m

i,j±1| > 1.1∆x; or

(B) Φ̃m
i,j is of the same sign with Φ̃m

k,l for all integers k, l such that |k − i| ≤ 1
and |l − j| ≤ 1.

For other grid nodes, say xp,q, simply let Φ̃m+1
p,q = Φ̃m

p,q. This allows us to use
a simple low cost first order upwind scheme to discretize equation (5.2) without
generating large diffusion or distortion, yet keeps an upper bound for the norm of
the gradient of Φ̃ at the equilibrium state.

Remarks. 1. Note that for an exact signed distance function φ, the absolute value of
the difference between two φ values at any two points is no more than the distance
between the two points. Condition (A) detects the violation of this property and
corrects it, which ensures (at equilibrium state) an upper bound for the Euclidean
norm of the discrete gradient of the redistanced level set function (1.1 in 1D, 1.1

√
2

in 2D if the discrete gradient is approximated by one-sided or center difference).
For some problems, e.g., an expanding bubble with initial radius about ∆x, the
level set function Φn could become flatter and flatter near the interface without
redistancing. Condition (B) addresses the problem.

This procedure is an improvement of the procedure proposed in [3], where condi-
tion (A) is replaced by (A1) |Φ̃m

i | > ∆x. The problem with (A1) is that when two
interfaces are about to merge, the narrow region between them will not be redis-
tanced, and the unbalanced redistancing on both sides of an interface could create
an artificial movement of the interface and delay the merging process. Condition
(A) has solved this problem as shown in the following numerical examples. In ac-
tual implementation, we use the condition ((A2)|Φ̃m

i | > 1.1∆x or (A) or (B)) to
determine if the redistancing is necessary at a grid point or not in order to reduce
the computational cost of the “if” statement, and the computational results are
essentially the same as using the condition ((A) or (B)).

2. Russo and Smereka [22] seem to be the first to realize that not changing the
values of the level set function at grid nodes adjacent to the interface produces
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Table 5.1. Rotation of a circle: the maximum error between the
computed and exact level set functions at grid nodes near the in-
terface, computed by the CIR scheme with backward error com-
pensation, CFL = 3.

∆x error without redistancing order error with redistancing order
2 0.623 - 0.454 -
1 0.110 2.50 0.154 1.56

0.5 0.0262 2.07 0.0536 1.52
0.25 0.00638 2.04 0.0208 1.37

good results in redistancing. In [22], they propose that the upwind discretization
of equation (5.2) should not go across the interface. So the value of the level set
function at a grid node adjacent to the interface is instead recomputed by its value
divided by the norm of the approximated gradient of the level set function at the
grid node. In one remark of [22], the approximated gradient is chosen such that
the values of the level set function at the grid nodes adjacent to the interface are
unchanged during the redistancing.

We first conduct a convergence test with and without the redistancing. We
compute the rotation of a circle around the point (50, 50) for one revolution in the
domain [0, 100]× [0, 100]. The circle is initially centered at (50, 75) with radius 15.
The velocity field is given as (u, v) = ( π

314 (50− y), π
314 (x− 50)). Every point of this

circle is supposed to move along the local velocity field. One revolution occurs at
the time T = 628. The initial level set function Φ is set to be a signed distance
function which is negative inside the circle and positive outside. The maximum
error between the computed and exact level set functions at grid nodes near the
interface is shown in Table 5.1. Clearly we have the second order convergence for
the CIR scheme with backward error compensation without redistancing, and the
simple redistancing procedure causes the order of convergence to lie between 1 and
2. However, for interfaces containing singular points, the redistancing improves the
resolution (with only a fraction of the cost for computing equation (2.1)) as shown
in the following examples.

In the next example we replace the circle with a cutout circle. It is the so-called
Zalesak’s Problem [33], which is one of the difficult test problems for the level
set method or volume of fluid method, because of their Eulerian representation of
the interface. (Lagrangian-type methods, e.g., [8, 20, 7, 32] etc., could perform
better for this problem.) Initially the cutout circle is centered at (50, 75) with
radius 15. The slot being cut out has width 5 and length 25. The challenge for
computation is that this disk has corner points, curves, straight lines, and a very
narrow slot (when the mesh size is 1 or 0.5, the slot width is 5 or 10 times the mesh
cell size, respectively). In the first test we compute this problem with N = 100
(∆x = 1) and CFL factor 3. Equation (2.1) is computed by the CIR scheme with
backward error compensation and redistancing. In all the following test examples,
equation (5.2) is computed for only two time steps with the CFL factor 0.25 after
solving equation (2.1) for each time step. In Figure 5.1 the computed disk (dash
line) is drawn against the exact one (solid line) after one (left figure) and two
revolutions (right figure). The results seem to match the ones computed by the
coupled level set and volume-of-fluid method [29]. In Figure 5.2, the mesh is refined
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Table 5.2. Rotation of a slotted disk: average distance between
the exact interface and the one computed by the CIR scheme with
backward error compensation and redistancing, CFL=3.

∆x average distance order
1 0.138 -

0.5 0.0497 1.47
0.25 0.0211 1.23
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Figure 5.1. Zalesak’s Problem. Comparison of a slotted disk that
has been rotated one (left) and two revolutions (right). The level
set equation is computed by the CIR scheme with backward error
compensation and redistancing, CFL=3, 100 × 100 (∆x = 1).

with N = 200 (∆x = 0.5). The average distances (defined and computed as in [28])
between the exact and computed interfaces are shown in Table 5.2 for three meshes:
100 × 100, 200 × 200 and 400 × 400. The relative errors of the computed disk area
A are plotted against time for the three meshes; see Figure 5.3.

The CIR scheme can be applied to irregular meshes. Applying the backward
error compensation to it is essentially calling it 3 times. Therefore once a first
order code is written down for an irregular mesh, the backward error compensation
algorithm can be applied without too much work. In Kim et al. [13], the Zalesak’s
disk is initially put on the triangulated surface of a 3D sphere; see Figure 5.4. The
slot is between 5 to 6 times the size of a triangular cell. There is a constant angular
velocity field rotating around the Z-axis. In Figure 5.5, the level set method is
computed by the first order CIR scheme. In Figure 5.6, the level set method is
computed by the first order CIR scheme with backward error compensation. In
both cases, the redistancing procedure is also implemented by the first order CIR
scheme. Improved results similar to those on rectangular meshes can be observed
in Figure 5.6, which clearly demonstrate the effectiveness of the backward error
compensation algorithm on triangular meshes. Simulations of smoke advection on
adaptive quad-tree meshes with backward error compensation algorithm have also
been explored in [13] and are successful.

5.2. Interfaces moving with nonsmooth velocity. The velocity field directing
the interface movement usually contains singularities. For example, if the inter-
face is moving along its normal direction and contains corner points, the velocity
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Figure 5.2. Zalesak’s Problem. Comparison of a slotted disk that
has been rotated one (left) and two revolutions (right). The level
set equation is computed using the CIR scheme with backward
error compensation and redistancing, CFL = 3, 200 × 200 (∆x =
0.5).
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Figure 5.3. Zalesak’s Problem. Relative area loss of the slotted
disk as a function of time. The level set equation is computed using
the CIR scheme with backward error compensation and redistanc-
ing, CFL = 3.

field is not continuous at these corner points. Simply applying the backward error
compensation to compute the level set equation (2.1) may generate artifacts where
the velocity field is not smooth. We propose two simple techniques to address the
problem.
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Figure 5.4. Zalesak’s disk on a sphere. Reprinted from [13].

Figure 5.5. Zalesak’s disk after one (left) and two (right) revo-
lutions, computed by the CIR scheme. Reprinted from [13].

5.2.1. Local turn-off of the error compensation. The simplest way to overcome this
problem is to set the backward compensation term (in the backward error com-
pensation algorithm) to be zero wherever the nonsmoothness in the velocity field
is detected. In the following examples we use the following detector. For a velocity
field V = (u, v) in 2D defined on a uniform mesh, if at the grid point (xi, yj)

(5.3)
||Vi+1,j − 2Vi,j + Vi−1,j || ≤ min(||Vi+1,j − Vi,j ||, ||Vi,j − Vi−1,j ||) and
||Vi,j+1 − 2Vi,j + Vi,j−1|| ≤ min(||Vi,j+1 − Vi,j ||, ||Vi,j − Vi,j−1||),

we use the backward error compensation; otherwise we set the backward compen-
sation term to zero. The advantage of this technique is its simplicity. Since the
CIR scheme has very small diffusion compared to other first order schemes, it is
good at maintaining the sharp corners of the interface without generating artifacts.
However, this technique is sensitive to the choice of the nonsmoothness detector.
When the nonsmoothness of the velocity field stays for a long time, this technique
usually introduces too much diffusion into the solution.
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Figure 5.6. Zalesak’s disk after one (left) and two (right) revolu-
tions, computed by the CIR scheme with backward error compen-
sation. Reprinted from [13].

Remark. A lower cost version of condition (5.3) can be formulated as

(5.4) |ui+1,j − 2ui,j + ui−1,j | ≤ min(|ui+1,j − ui,j |, |ui,j − ui−1,j |) and
|vi,j+1 − 2vi,j + vi,j−1| ≤ min(|vi,j+1 − vi,j |, |vi,j − vi,j−1|).

When used with the local constant velocity technique introduced in Section 5.2.3,
which is almost as accurate as the full backward error compensation algorithm, the
difference between (5.3) and (5.4) is small in our numerical experiments. Note that
one could also replace the u and v in (5.4) by their absolute values, which will also
detect the stationary points of the velocity field.

5.2.2. Improved interpolation technique for the CIR scheme. The first order CIR
scheme can generate some grid effects when the local velocity is almost zero. Con-
sider equation (2.1) in 1D with the velocity v(0) = 0, v(x) > 0 for x < 0 and
v(x) < 0 for x > 0. Initially the level set function is φ(x, 0) = −|x| + 0.5. This
corresponds to the case that two interfaces at x = 0.5 and −0.5 are about to merge.
If computed with the first order CIR scheme, φ(0, t) will be 0.5 for all t > 0, i.e.,
the two interfaces will never merge. See Figure 5.9. This phenomenon reminds us
of the entropy-violating solution in the case of a sonic rarefaction wave when using
Roe’s approximate Riemann solver [21] for solving the Euler equation. There are
many methods to fix the problem, such as Harten and Hyman [9], Osher [18], and
Tadmor [31]. We are going to use a “velocity splitting” strategy, or a Lax–Friedrich
framework analogous to the one used in the finite difference ENO scheme (Shu
and Osher [23]). Recalling the CIR scheme (2.2), the following modified scheme
can be used in every step of the backward error compensation algorithm (includ-
ing the local constant velocity method in Section 5.2.3), only at places where the
nonsmoothness of the velocity field is detected

(5.5)
Φ̃(xi, tn+1) = Φ(x̂i + δe, tn),
˜̃Φ(xi, tn+1) = Φ(x̂i − δe, tn),
Φ(xi, tn+1) = 1

2{Φ̃(xi, tn+1) + ˜̃Φ(xi, tn+1)},
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Figure 5.7. Shrinking Zalesak’s Slotted Disk. Normal velocity
0.2, ∆x = ∆y = 1, ∆t = 0.4∆x. Left: local turn-off of backward
error comp. as in Section 5.2.1, T = 11, 17, 23, 29. Right: local
constant velocity method as in Section 5.2.3 at times T =
11, 17, 23, 31.
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Figure 5.8. 4 expanding circles of slightly different radii. Normal
velocity 0.2, ∆x = ∆y = 1, ∆t = 0.4∆x. Left: local turn-off of
backward error comp. as in Section 5.2.1, T = 0, 11, 26, 40. Right:
local constant velocity method as in Section 5.2.3, T = 9, 11, 27, 40.
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V>0 V=0 V<0 V>0 V=0 V<0

Figure 5.9. A nonmerging situation caused by the first order CIR scheme.

where x̂i = xi − v(xi, tn)∆tn, Φ(y, tn) is the local linear spatial interpolation of
{Φ(xj, tn)} at point y, e is a unit vector not aligned with the grid, and δ ∈ (0, ∆x)
is a small perturbation factor. We choose δe = (0.2∆x, 0.2∆x) in 2D and δe =
(0.2∆x, 0.2∆x, 0.2∆x) in 3D throughout the computation.

When the backward error compensation algorithm is applied, this technique re-
duces artifacts near interface corners and places where there are topological changes
of the interface.

5.2.3. Local constant velocity technique in the computation of the error compen-
sation term. We can locally freeze the velocity field in the first two steps of the
backward error compensation algorithm, motivated by the less diffusive results for
Zalesak’s Problem in which the velocity field is smooth. For every grid point xi

where the nonsmoothness of the velocity field is detected, do the following two
steps:
Step 1. Solve the equation ∂φ

∂t + v̄i · �φ = 0 forward in time to obtain Φ̃n+1 by the
CIR scheme (2.2), with Φn being the initial value at time tn and v̄i(x) =
v(xi, tn) for any x.

Step 2. Solve the same equation backward in time by the same method to obtain
Φ̆n

i . This is equivalent to solving the time reversed equation ∂φ
∂t −v̄i ·�φ = 0

forward in time by (2.2) for a time step ∆tn, with Φ̃n+1 being the initial
value.

Note that Φ̃n+1 at only a few grid points needs to be calculated in Step 1 in order
to obtain Φ̆n

i in Step 2. For all other grid points Φ̆n
i can be obtained in batch

by the first two steps of the backward error compensation algorithm described in
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Figure 5.10. Relative volume error (V (t) − 4
3π0.153)/( 4

3π0.153)
against time. Solid line: 1003 mesh; dash line: 2003 mesh.
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Section 2. After Φ̆n
i at every grid point xi is computed, we resume the original

nonhomogeneous velocity field v(x, t) and perform the usual Steps 3 and 4 of the
backward error compensation algorithm.

Remarks. 1. Note that near singular points of the velocity field, essentially all
numerical schemes degenerate to no more than first order. Being able to approxi-
mate the exact solution without generating excessive diffusion near singular points
is important, and it is usually nontrivial to do. This technique does not seem to be
sensitive to the choice of the nonsmoothness detector for the velocity field in the
sense that one could apply it to a larger set of grid points containing those where
there are singularities in the velocity field, without introducing excessive diffusion.
In fact we have even applied this local constant velocity algorithm to all grid points
in the computation of Zalesak’s Problem and generated similar (slightly worse) re-
sults as in Figure 5.1. On the other hand, for this problem, if we set the backward
compensation term to zero for all grid points (i.e., apply the method of Section
5.2.1 everywhere), the slotted disk will shrink to almost nothing (with ∆x = 1)
after one revolution.

2. We have also tried to use v̄i(x) = v(xi, tn+1) for any x in Step 2 of the above
algorithm, for many of our test examples and the results are similar.

3. The backward error compensation algorithm can also be used as an interpo-
lation technique (3rd order in smooth region) for Lipschitz continuous data. For
example, given the Φ values at grid points {xi}, we can obtain an approximate Φ
value at a point y as follows. First set v ≡ (xj − y)/∆x, where xj is a grid point
closest to y. Then solve equation (2.1) by the CIR scheme with backward error
compensation for one step with the time step size ∆x. The new Φ value at xj will
be the interpolated Φ value at y. This is similar to the idea of extending a quan-
tity defined on the interface to a neighborhood of the interface with a PDE-based
method; see [34, 1]. Since it only requires local linear interpolation in space, it
could be easily adapted to a triangular mesh or other irregular meshes. This will
be further explored in the future.

5.3. Examples. We present an example based on the slotted disk shown in Fig-
ure 5.1 in which the disk is shrinking with a normal speed 0.2. (The velocity field
is v = −0.2 � φ/| � φ|.) The disks at the different times are plotted in Figure 5.7.
At the time T = 11 we can see that the upper corners of the slot become rounded
and the lower corners stay sharp, which coincide with the entropy solution. Note
that the exact annihilation time is T = 31.25. When computed by the method in
Section 5.2.1, the disk vanishes between the times T = 29 and 30. Computed by
the method in Sections 5.2.2 and 5.2.3, the disk vanishes between the times T = 31
and 32, which shows that the method has smaller diffusion near singularities.

Next we compute the merging of 4 circles expanding with constant normal ve-
locity 0.2. The velocity field is given as v = 0.2 � φ/| � φ|. The level set function
is initially set to be negative inside the circles. The results are shown in Figure 5.8.
Clearly all methods are able to maintain the sharp corners after merging without
generating artifacts. The exact annihilation time of the inner part is estimated to
be between T = 27 and 27.7. At the time T = 27 we can see from the graph that
the inner part computed by the method in Sections 5.2.2 and 5.2.3 still exist (it
disappears at T = 28), while the one computed by the method in Section 5.2.1 has
vanished between T = 26 and 27.
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Figure 5.11. Deformation of a ball on a 1003 mesh at times 0, 1
5 ,

2
5 , 3

5 , 4
5 , 5

5 , 6
5 , 7

5 , 9
5 , 11

5 , 13
5 , 3.

Finally we conduct a test on the Enright problem [4]. It is a 3D sphere deformed
by an incompressible flow field proposed by Leveque [15]. The computational do-
main is [0, 1]× [0, 1]× [0, 1] with 100×100×100 uniform rectangular cells. Initially
a sphere of radius 0.15 is centered at (0.35, 0.35, 0.35). The velocity field is given
by

u(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz)g(t),
v(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz)g(t),
w(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz)g(t),
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where g(t) = cos(πt/T ) and T = 3. From the velocity field, one can see that the
deforming process is time-reversed at t = T/2 and will restore the original sphere
at t = T . At t = T/2, the 3D sphere has been deformed to be like a pancake, where
some parts are as thin as the size of a grid cell. We compute the problem with the
methods in Sections 5.2.2 and 5.2.3. The time step size is chosen with CFL factor
0.2 and no larger than 0.2∆x. The computational results are shown at different
times in Figure 5.11. On a 1.8 GHz processor (AMD Opteron 244), the computation
takes 2 hours and 28 seconds. From the graphs we can see that the deformed sphere
starts to break down near its thinnest part at T = 1.2. Since the recovered sphere
at t = T depends sensitively on the thickness of the deformed one at t = T/2,
when the level set representation of the interface is at its limit, we observe large
errors at later stages. The particle level set method [4] uses Lagrangian particles to
correct the level set solution and is very accurate in recovering the sphere. However,
compared to a standard high order implementation of the level set method (80%
volume error at t = T in a comparison test in [4]), the percentage volume error is
small (under 4.5% during the computational time interval; see Figure 5.10). The
computational results on a 200× 200× 200 mesh can be found in Figure 5.12. The
volume error is within 2.3%; see Figure 5.10.

Figure 5.12. Deformation of a ball on a 2003 mesh at times 7
5 , 13

5 , 3.
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