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ON THE FINITE ELEMENT METHOD
FOR ELLIPTIC PROBLEMS

WITH DEGENERATE AND SINGULAR COEFFICIENTS

DANIEL ARROYO, ALEXEI BESPALOV, AND NORBERT HEUER

Abstract. We consider Dirichlet boundary value problems for second order
elliptic equations over polygonal domains. The coefficients of the equations
under consideration degenerate at an inner point of the domain, or behave
singularly in the neighborhood of that point. This behavior may cause singu-
larities in the solution. The solvability of the problems is proved in weighted
Sobolev spaces, and their approximation by finite elements is studied. This
study includes regularity results, graded meshes, and inverse estimates. Ap-
plications of the theory to some problems appearing in quantum mechanics
are given. Numerical results are provided which illustrate the theory and con-
firm the predicted rates of convergence of the finite element approximations
for quasi-uniform meshes.

1. Introduction

Let Ω ⊂ R
2 =

{
x = (x1, x2)

∣∣xi ∈ R, i = 1, 2
}

be a convex polygonal domain,
and let Ω = Ω ∪ ∂Ω. Assume that the origin O = (0, 0) is an interior point of Ω,
and denote by r = r(x) =

(
x2

1 + x2
2

)1/2 the distance of x ∈ Ω to the origin O.
We shall consider the following problem:

(1.1) − div
(
a r2β ∇u

)
+ b r2α u = f in Ω,

u = 0 on ∂Ω,

where α > −1 and β > −1 are real, and a and b are measurable functions satisfying
the inequalities

(1.2) 0 < a ≤ a(x) ≤ a, 0 < b ≤ b(x) ≤ b almost everywhere in Ω.

Observe that the coefficients of the equation in (1.1) degenerate at the origin or
have singular behavior in the neighborhood of this point (unless α = β = 0). Later
we shall also study problems of this type in the nondivergence form. Such problems
with degenerate or singular coefficients appear, e.g., in quantum mechanics when
modeling the motion of particles in potential fields.
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Depending on the coefficients a, b and the parameters α and β, the solution of
(1.1) can be infinite at the origin (the case of a strong singularity, u /∈ H1(Ω)). Reg-
ular or weakly singular solutions (u ∈ H1(Ω) but u /∈ H2(Ω)) may also appear. Due
to the nonregular coefficients and in the presence of strong singularities the stan-
dard formulation of problem (1.1) in the Sobolev space H1(Ω) is not appropriate.
In this paper we present a framework which deals with all these cases.

At present there exist several approaches to treat boundary value problems with
degenerate (singular) data. These approaches usually depend on the character of
the arising singularities. In the one-dimensional case, such problems and their
finite element approximations were investigated in [13, 9]. The finite element ap-
proximation for the special case of a right-hand side with the Dirac δ-distribution
was analyzed in [1, 19, 8, 7]. A class of problems where the coefficients and the
right-hand side function have singularities on the boundary is treated in [15, 16].
The problem similar to (1.1) with degenerate (singular) coefficients and a strongly
singular solution at a boundary point was considered in [17, 18, 5, 4]. In these
papers the case α = β − 1 was studied. For that case, using a special variational
formulation in weighted Sobolev-Kondrat′ev spaces, the unique solvability of the
problem was proved and various finite element approximations (the h-, p-, and the
h-p versions) were investigated.

The aim of this paper is to present a weak formulation of problem (1.1) which
ensures unique solvability, to construct a finite element scheme, and to analyze its
convergence. Depending on the specific problem (behavior of the coefficients) the
solution of (1.1) behaves singularly. For such cases we prove that the use of graded
meshes ensures an optimal rate of convergence. We also present regularity results
and prove for some cases the optimality or quasi-optimality of the a priori error
estimates. For model problems we report on several numerical experiments which
confirm our theoretical results for quasi-uniform meshes.

The paper is organized as follows. In §2 we introduce the basic notation and
formulate the main results. In §2.1 we present a variational formulation of problem
(1.1), establish its unique solvability (Theorem 2.1), construct the finite element
scheme, and state a priori error estimates for this approximation on quasi-uniform
and graded meshes (Theorem 2.2). In this subsection we also study the regularity of
the solution to problem (1.1) (Theorem 2.3) and prove the quasi-optimality of the a
priori error estimate on quasi-uniform meshes (Theorem 2.4). Theorem 2.5 proves
an inverse estimate in weighted Besov spaces which also serves to prove optimality
of a priori error estimates. In §2.2 we demonstrate how the theory applies to two
kinds of problems in nondivergence form appearing in quantum mechanics. In order
to prove the main results, in §3 we first collect some technical lemmas regarding the
properties of weighted Sobolev spaces and give the proofs of the theorems. Finally,
§4 presents some numerical results illustrating and confirming the theory.

2. Main results

Before stating the main results let us introduce the spaces and norms which will
be used.

Throughout the paper, we shall assume that Ω ⊂ B, where B is the unit disk
with center at the origin. For any real η we shall denote by L2,η(Ω) the space of
functions which are square integrable with the weight r2η on Ω, furnished with the
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following inner product and norm:

(u, v)L2,η(Ω) =
∫
Ω

r2η(x)u(x)v(x)dx, ‖u‖L2,η(Ω) = (u, u)1/2
L2,η(Ω).

For η = 0, we have the classical Lebesgue space of index 2 on Ω: L2,0(Ω) = L2(Ω).
Now, for any integer k ≥ 1, we introduce the space Hk

η0,η1,...,ηk
(Ω) with real

ηl > −1 (l = 0, 1, . . . , k) as the completion of the set of all infinitely differentiable
functions on Ω under the norm defined by

‖u‖2
Hk

η0,η1,...,ηk
(Ω) =

k∑
l=0

‖rηl |Dlu|‖2
L2(Ω).

Here, |Dlu|2(x) =
∑

|λ|=l |Dλu(x)|2 =
∑

|λ|=l

∣∣∣ ∂|λ|u(x)

∂x
λ1
1 ∂x

λ2
2

∣∣∣2, λ = (λ1, λ2), λi ≥ 0, are

integers (i = 1, 2), and |λ| = λ1 + λ2. If η0 = η1 = · · · = ηk = 0, then we obviously
have the standard Sobolev space Hk(Ω) with the norm ‖ · ‖Hk(Ω) and semi-norm
|u|Hk(Ω) = ‖Dku‖L2(Ω). If k = 2, and η0 = η1 = 0, η2 = η ∈ [0, 1), then according
to [11] we shall use the notation H2

0,0,η(Ω) = H2,2
η (Ω). Quoting [10, Lemma 8.4.1.2]

observe that

(2.1) H2,2
η (Ω) ⊂ C0(Ω),

where C0(Ω) is the space of continuous functions on Ω, furnished with the norm

‖u‖C0(Ω) = max
x∈Ω

|u(x)|.

By
◦
H

1
η0,η1

(Ω) we denote the completion of the set of all infinitely differentiable
functions with compact support in Ω, under the norm ‖ · ‖H1

η0,η1
(Ω).

We shall also use the Besov spaces defined by interpolation between the above
weighted spaces. We use the theory of interpolation spaces developed, e.g., in [3].

For u ∈
◦
H

1
η0,η1

(Ω) we set

K(t, u) = inf
u=v+w

(
‖v‖H1

η0,η1
(Ω) + t ‖w‖H2

η0,η1,η2
(Ω)

)
.

Here, v and w must satisfy the homogeneous boundary conditions, i.e., v ∈
◦
H

1
η0,η1

(Ω)

and w ∈ H2
η0,η1,η2

(Ω)∩
◦
H

1
η0,η1

(Ω). Then for θ ∈ (0, 1) the Besov space Xθ =

X(1, η0, η1, 2, η2, θ,∞) is defined as the set of all functions u ∈
◦
H

1
η0,η1

(Ω) satisfying

‖u‖Xθ
= sup

t>0
{t−θK(t, u)} < ∞.

2.1. The model problem in divergence form. We begin by investigating the
model problem (1.1) in divergence form. In §2.2 below, we demonstrate how the
theory applies to some problems which are not given in divergence form.

We shall assume that the right-hand side function f in (1.1) is in the space
L2,µ(Ω), µ ∈ R. We define a bilinear form associated with the elliptic operator in
(1.1) by

A(u, v) =
∫
Ω

(
a r2β ∇u∇v + b r2α u v

)
dx
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and the linear functional

F (v) =
∫
Ω

f v dx.

Then problem (1.1) can be posed in the following weak form:

(2.2) find u ∈
◦
H

1
α,β(Ω) satisfying A(u, v) = F (v) for all v ∈

◦
H

1
α,β(Ω).

Theorem 2.1. Let

µ ≤
{
−α, if −1 < β < 0,

max {−α, 1 − β}, if β > 0,

and let
µ < 1, if β = 0.

Then, for given f ∈ L2,µ(Ω), there exists a unique weak solution u ∈
◦
H

1
α,β (Ω) to

problem (1.1), and there holds (for a constant C independent of f)

(2.3) ‖u‖H1
α,β(Ω) ≤ C ‖f‖L2,µ(Ω).

For the approximate solution of problem (1.1) we apply the finite element method
(FEM), with quasi-uniform or graded meshes. The scheme of the FEM is con-
structed on the basis of the weak formulation (2.2).

Let ∆ =
{
Ωi

∣∣ i = 1, . . . , m
}

(m ≥ 3) be a triangulation of Ω. We require that
the singularity point O is an interior node of the mesh. The intersection of any
triangles Ωi, Ωk ∈ ∆ (i 
= k) is a common vertex, an entire side, or empty. For each
triangle Ωi ∈ ∆ we shall denote by hi (respectively, hi) the maximal (respectively,
the minimal) length of the sides of Ωi, and by di the distance between the origin O
and Ωi.

Let T be the standard triangle T =
{
(ξ1, ξ2)

∣∣ 0 < ξ1 < 1, 0 < ξ2 < ξ1

}
in

the plane O′ξ1ξ2. Then, for each Ωi ∈ ∆ there exists a linear transformation Mi

mapping T onto Ωi, and the Jacobian Ji of the transformation Mi satisfies

(2.4) σ h2
i ≤ |Ji| ≤ h2

i ,

where σ > 0 is independent of i (it is known that |Ji| ≥ h2
i sin θi, where θi de-

notes the minimal angle of Ωi; therefore the constant σ in (2.4) controls the shape
regularity of the triangulation ∆, and 0 < σ < 1).

Following [2] we introduce graded meshes. For a mesh parameter h ∈ (0, 1) and
a grading parameter κ ∈ [0, 1) the triangulation ∆(h, κ, σ) =

{
Ωi

∣∣ i = 1, . . . , m
}

is
called a graded mesh if:

i) for any element Ωi 
� O there holds σh rκ(x) ≤ hi ≤ σ−1 h rκ(x), x ∈ Ωi;
ii) for any element Ωi � O there holds

σ h sup
x∈Ωi

rκ(x) ≤ hi ≤ σ−1 h sup
x∈Ωi

rκ(x).

Of course, selecting κ = 0 one obtains quasi-uniform meshes.
It has been proved in [2, Lemma 4.1] that the number N of vertices in ∆(h, κ, σ)

is bounded as N ≤ Ch−2 with C > 0 independent of h but depending in general on
Ω, κ, and σ. Therefore one can estimate the error of approximation on the graded
mesh in terms of h.



ELLIPTIC PROBLEMS WITH DEGENERATE AND SINGULAR COEFFICIENTS 513

For the mesh ∆ = ∆(h, κ, σ) (or sequence of meshes for a sequence of mesh
parameters h → 0, fixed κ, and σ bounded from below by a positive number) we
define the finite element space Sh = Sh(κ, σ) in the usual way as

Sh(κ, σ) =
{

v ∈ C0(Ω)
∣∣∣ v = 0 on ∂Ω, (v|Ωi

◦ Mi) is a linear function on T
}

,

and consider the following discrete problem:

(2.5) find uh ∈ Sh such that A(uh, v) = F (v) for all v ∈ Sh.

It is obvious that Sh ⊂
◦
H

1
α,β(Ω) for any α > −1 and β > −1. Therefore the existence

and uniqueness of the approximate solution uh ∈ Sh follow by the Lax-Milgram
lemma from the properties of A(u, v) and F (v) (see the proof of Theorem 2.1). In
addition, using the same arguments as in the proof of Cea’s lemma (see [6]), we
obtain

(2.6) ‖u − uh‖H1
α,β(Ω) ≤

max{a, b}
min{a, b} inf

v∈Sh

‖u − v‖H1
α,β(Ω).

In the following, if not specified otherwise, C denotes a generic positive constant
which is independent of the mesh parameter h but may depend on σ in (2.4) and
the mesh grading parameter κ.

The following result states the convergence of the finite element scheme. In
particular, under the assumed regularity, the optimal rate of linear convergence is
always achievable by appropriate mesh grading.

Theorem 2.2. Let α > −1, β > −1, and γ = min {α+1, β}+ε for some ε ∈ [0, 1).
Let uh ∈ Sh(κ, σ) be the finite element approximation of the weak solution u to

problem (1.1). Assume that u ∈
◦
H

1
α,β(Ω) ∩ H2

α,β,γ(Ω). Then there holds

(2.7) ‖u − uh‖H1
α,β(Ω) ≤ C

{
h ‖u‖H2

α,β,γ(Ω) if ε ≤ κ < 1,

h
1−ε
1−κ ‖u‖H2

α,β,γ(Ω) if 0 ≤ κ < ε.

Interpolating between
◦
H

1
α,β(Ω) and H2

α,β,γ(Ω) we obtain the following a priori
error estimate for less regular functions.

Corollary 2.1. Let α > −1, β > −1, and γ = min {α+1, β}+ε for some ε ∈ [0, 1).
Let uh ∈ Sh(κ, σ) be the finite element approximation of the weak solution u to
problem (1.1). If u ∈ Xθ = X(1, α, β, 2, γ, θ,∞) with θ ∈ (0, 1), then

(2.8) ‖u − uh‖H1
α,β(Ω) ≤ C

{
hθ ‖u‖Xθ

if ε ≤ κ < 1,
h

1−ε
1−κ θ ‖u‖Xθ

if 0 ≤ κ < ε.

Under the condition α ≥ β − 1 we prove the regularity of the solution to (1.1)
as assumed in Theorem 2.2.

Theorem 2.3. Let α > −1, β ≥ 0, and α ≥ β − 1. Let u ∈
◦
H

1
α,β(Ω) be the weak

solution to problem (1.1) for given right-hand side f ∈ L2,µ(Ω). Then there exists
ε ∈ [0, 1) such that u ∈ H2

α,β,β+ε(Ω) provided that µ ≤ −β + ε. Moreover,

(2.9) ‖u‖H2
α,β,β+ε(Ω) ≤ C ‖f‖L2,µ(Ω).
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A remaining question is the optimality of the error estimates (2.7), (2.8). Here,
we give a partial answer. For sufficiently graded meshes (κ ≥ ε) the linear conver-
gence is optimal since piecewise linear polynomials are used in the finite element
scheme. For quasi-uniform meshes we show the quasi-optimality of (2.7) by study-
ing an example (see Theorem 2.4). For θ ≤ 1/2 and for graded meshes with grading
parameter κ = ε, and under additional assumptions on the mesh construction, the
optimality of (2.8) can be proved by an inverse estimate; see [2, Theorem 6.1]. Such
an estimate is given by Theorem 2.5 below.

Let us consider problem (1.1) with right-hand side function f given such that

(2.10) u = umodel := rλχ(r).

Here, λ 
= 0, χ is a C∞ cut-off function, χ(r) = 1 for 0 ≤ r ≤ ρ, χ(r) = 0 for r ≥ 2ρ,

and ρ > 0 is sufficiently small. To ensure umodel ∈
◦
H

1
α,β(Ω) ∩ H2

α,β,min {α+1,β}+ε(Ω)
for some ε ∈ [0, 1), we assume λ > 1−min {α + 1, β}− ε. In the following theorem
we give the lower bound for the error of the finite element approximation of this
model solution. For simplicity we shall consider only the case α + 1 ≥ β.

Theorem 2.4. Let α > −1, β > −1, and α + 1 ≥ β. Let uh ∈ Sh(κ = 0, σ) be
the finite element approximation (with quasi-uniform meshes) of the model solution
umodel given by (2.10) with λ > 1 − β − ε. Then there holds

(2.11) ‖umodel − uh‖H1
α,β(Ω) ≥ C hβ+λ.

By Theorem 2.4 we conclude that for any ε ∈ [0, 1) there exists a function

umodel ∈
◦
H

1
α,β(Ω) ∩ H2

α,β,β+ε(Ω) such that for any ε̃ > 0 there holds

‖umodel − uh‖H1
α,β(Ω) ≥ C h(1−ε)+ε̃.

Here, uh ∈ Sh(κ, σ) with κ = 0 is the finite element approximation of umodel. The
constant C in the above estimate may depend on ε̃. This proves that for quasi-
uniform meshes the error estimate (2.7) is quasi-optimal.

Now we state an inverse estimate which proves the optimality of (2.8) (in the
case κ = ε, θ ≤ 1/2) and for special mesh sequences, see [2, Section 6].

Theorem 2.5. Let α > −1, β ≥ 0, α + 1 ≥ β, and ε ∈ [0, 1). Then there exists a
constant C > 0 such that for any u ∈ Sh(κ = ε, σ) and θ ∈ (0, 1/2] there holds

(2.12) ‖u‖X(1,α,β,2,β+ε,θ,∞) ≤ C h−θ ‖u‖H1
α,β(Ω).

2.2. Applications to some other problems with degenerate and singular
coefficients. In this section we study problems where the differential operator is
not given in divergence form. Let us consider

(2.13) − a r2β ∆u + b r2α u = f in Ω,
u = 0 on ∂Ω,

where f ∈ L2,µ(Ω), α, β, and µ are real, and a, b are measurable functions satis-
fying the inequalities

0 < a ≤ a(x) ≤ a, 0 < b ≤ b(x) ≤ b almost everywhere in Ω.

Problems of this kind appear, e.g., in quantum mechanics when describing the
motion of particles in a centrally symmetric potential field U(r) ≈ rs. In particular,
our results below are applicable to the equations describing the motion of particles
in the Coulomb field (β = 0, α = −1

2 ) and in the field with potential energy
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U(r) ≈ r−2 (β = 0, α = −1). In the classical physical literature such problems are
usually studied by an asymptotic analysis; see, e.g., [14, Chapter V and §49].

In the following we consider two cases for which one can apply the results of §2.1
without additional restrictions on the coefficients of the equation in (2.13).

1) Let α > β − 1. In this case we denote

b1(x) =
b(x)
a(x)

, f1(x) =
f(x)
a(x)

r−2β(x).

Introducing the bilinear form

A1(u, v) =
∫
Ω

(
∇u∇v + b1 r2(α−β) u v

)
dx

and the linear functional

F1(v) =
∫
Ω

f1 v dx,

we give a weak formulation to problem (2.13):

(2.14) find u ∈
◦
H

1
α−β,0(Ω) satisfying A1(u, v) = F1(v) for all v ∈

◦
H

1
α−β,0(Ω).

Theorem 2.6. Let α > β − 1 and µ < 1 − 2β. Then for any f ∈ L2,µ(Ω) there
exists a unique weak solution to problem (2.13).

The finite element scheme for problem (2.13) is the same as in §2.1, except that
A and F in (2.5) are replaced by A1 and F1, respectively. One has the following
analogues of Theorems 2.2 and 2.3.

Theorem 2.7. Let α > β−1, and ε ∈ [0, 1). Let uh ∈ Sh(κ, σ) be the finite element

approximation of the solution u to problem (2.13). If u ∈
◦
H

1
α−β,0(Ω)∩H2

α−β,0,ε(Ω),
then there holds

‖u − uh‖H1
α−β,0(Ω) ≤ C

{
h ‖u‖H2

α−β,0,ε(Ω) if ε ≤ κ < 1,

h
1−ε
1−κ ‖u‖H2

α−β,0,ε(Ω) if 0 ≤ κ < ε.

Theorem 2.8. Let α > β−1, and let u ∈
◦
H

1
α−β,0(Ω) be the weak solution to problem

(2.13) for the given right-hand side f ∈ L2,µ(Ω). Then there exists ε ∈ [0, 1) such
that u ∈ H2

α−β,0,ε(Ω) provided that µ ≤ −2β + ε. Moreover,

‖u‖H2
α−β,0,ε(Ω) ≤ C ‖f‖L2,µ(Ω).

2) Let α = β − 1. For the sake of simplicity, in this case we restrict ourselves to
the model problem

(2.15) −∆u + b r−2 u = f in Ω,
u = 0 on ∂Ω,

where f ∈ L2,µ(Ω), µ ∈ R, and b is a measurable function such that 0 < b ≤ b(x) ≤
b almost everywhere in Ω.

Observe that the general case of problem (2.13) with α = β−1 can be reduced to
(2.15) by multiplying the differential equation by a−1r−2β. This situation, where
α = −1 and β = 0 in (2.15), however, is not directly covered by our analysis.
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Instead, we multiply the differential equation in (2.15) by r2ε (ε > 0 is fixed).
Then, integration by parts gives the bilinear form

Aε(u, v) =
∫
Ω

(
r2ε ∇u∇v + ∇(r2ε)∇u v + b r2(ε−1) u v

)
dx

and the linear functional

Fε(v) =
∫
Ω

r2εf v dx.

We then formulate problem (2.15) in the following weak form:

(2.16) find u ∈
◦
H

1
ε−1,ε(Ω) satisfying Aε(u, v) = Fε(v) for all v ∈

◦
H

1
ε−1,ε(Ω).

Theorem 2.9. Let ε ∈ (0,
√

2b /2). Then, for any given f ∈ L2,1+ε(Ω), there exists

a unique weak solution u ∈
◦
H

1
ε−1,ε(Ω) to problem (2.15).

Now we use the finite element scheme of §2.1 and define the approximate solution
uh ∈ Sh as in (2.5) with A and F replaced by Aε and Fε, respectively. Then we
have the following result on the error of the finite element approximation.

Theorem 2.10. Let ε ∈ (0,
√

2b /2) and ε̃ ∈ [0, 1). Let uh ∈ Sh(κ, σ) be the

finite element approximation of the solution u to problem (2.15). If u ∈
◦
H

1
ε−1,ε

(Ω) ∩ H2
ε−1,ε,ε+ε̃(Ω), then

‖u − uh‖H1
ε−1,ε(Ω) ≤ C

{
h ‖u‖H2

ε−1,ε,ε+ε̃(Ω) if ε̃ ≤ κ < 1,

h
1−ε̃
1−κ ‖u‖H2

ε−1,ε,ε+ε̃(Ω) if 0 ≤ κ < ε̃.

Remark 2.1. The case α = −1, β = 0 considered here is not covered by Theorem 2.3.
For the regularity results in this case we refer to [17].

Remark 2.2. If α < β−1, then problem (2.13) could also be treated in a similar way.
But in this case additional restrictions must be imposed on the elliptic operator
(in particular, on the coefficient b) to prove the solvability of the corresponding
variational problem.

3. Technical results and proofs of the main theorems

Before giving the proofs of the main results we collect some auxiliary results
regarding the weighted spaces H1

α,β and H2
α,β,γ . We shall also use the definitions

from §2 for the standard triangle T with vertices x(0) = (0, 0), x(1) = (1, 0), x(2) =
(1, 1), i.e., T = {(x1, x2) | 0 < x1 < 1, 0 < x2 < x1}. When it is not ambiguous we
write ‖ · ‖ for the norm ‖ · ‖L2(T ). Denoting by Γ a side of the triangle T , we shall
also deal with the space L2(Γ), which is defined in an obvious way.

Lemma 3.1. Let u be a function defined on the triangle T .
1) If β < 0, u is continuous on T , and ‖rβ|D1u|‖ < ∞, then there exists a

constant C > 0 depending merely on β such that

‖rβ−1[u − u(0, 0)]‖ ≤ C ‖rβ|D1u|‖.
2) If α > −1, β > 0, and u ∈ H1

α,β(T ), then there exists a positive constant
C depending on α and β such that

(3.1) ‖rβ−1u‖L2(T ) ≤ C ‖u‖H1
α,β(T ).
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T0 x 1

x2

P

RR 21/2 1

1

0

Figure 1. Notation used in the proof of Lemma 3.1.

Proof. The first statement is proved in [2] (see Lemma 4.3).
In order to prove (3.1) we divide T into the triangle

T0 = {(x1, x2) | 0 ≤ x1 ≤ 1/2, 0 ≤ x2 ≤ x1}

and the trapezoid P = {(x1, x2) | 1/2 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1} (see Figure 1). Let
us also introduce the finite sector SR = {(r, θ) | 0 ≤ r ≤ R, 0 ≤ θ ≤ π/4}, where
(r, θ) are polar coordinates.

Let R >
√

2. Since u ∈ H1(P ), there exists a smooth extension u ∈ H1(S2R\T0)
such that u(x) = u(x) on P , u(x) = 0 on S2R\S3R/2, and

(3.2) ‖u‖H1(S2R\T0) ≤ C ‖u‖H1(P ),

where C > 0 is independent of u.
Defining u(x) = u(x) on T0, we get a smooth extension of the function u ∈

H1
α,β(T ) to the sector S2R. Using inequality (3.2) and the boundedness of r and

r−1 on S2R\T0, we obtain

‖u‖2
H1

α,β(S2R) ≤ ‖u‖2
H1

α,β(T0)
+ C‖u‖2

H1(S2R\T0)

≤ ‖u‖2
H1

α,β(T0)
+ C‖u‖2

H1(P ) ≤ ‖u‖2
H1

α,β(T0)
+ C‖u‖2

H1
α,β(P )

≤ C‖u‖2
H1

α,β(T ).

(3.3)

Therefore we conclude that u ∈ H1
α,β(S2R), in particular, ‖rβ|D1u|‖L2(S2R) < ∞.

Since u(x) = 0 on the arc of the sector S2R, and β > 0, we use the following
inequality:

(3.4) ‖rβ−1u‖2
L2(S2R) ≤ β−2 ‖rβ|D1u|‖2

L2(S2R)

which stems from Hardy’s inequality [12, Theorem 255] after changing variables
and integrating with respect to θ (cf. [2, Lemma 4.3]).

Because u(x) = u(x) on T = T0 ∪ P , we get by (3.4) and (3.3)

‖rβ−1u‖2
L2(T ) ≤ ‖rβ−1u‖2

L2(S2R) ≤ C‖u‖2
H1

α,β(S2R) ≤ C‖u‖2
H1

α,β(T ).

�

In the case of a function u vanishing on the boundary ∂Ω we shall need the
following result.
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Lemma 3.2. Let β > 0, and let u be a function defined on Ω such that

‖rβ|D1u|‖L2(Ω) < ∞.

If u vanishes on the boundary ∂Ω, then

‖rβ−1u‖L2(Ω) ≤ β−1 ‖rβ|D1u|‖L2(Ω).

Proof. Let us consider the unit disk B with center at O. We have Ω ⊂ B. Extending
the function u by zero on B and applying inequality (3.4) to the extension u on B,
we get the result. �

Lemma 3.3. Let α > −1, β > −1, and −1 < γ < 1. If u ∈ H2
α,β,γ(T ), then u is

continuous on T , and

(3.5) ‖u‖C0(T ) ≤ C ‖u‖H2
α,β,γ(T ),

with C > 0 being independent of u.

Proof. Let u ∈ H2
α,β,γ(T ), and assume first that γ ∈ [0, 1). Applying statement 2)

of Lemma 3.1 to the functions u and ∂u
∂xi

(i = 1, 2), we obtain

‖u‖2 ≤ C
(
‖rαu‖2 + ‖r|D1u|‖2

)
≤ C

(
‖rαu‖2 + ‖D1u‖2

)
,

‖D1u‖2 =
2∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥2

≤ C

[
2∑

i=1

∥∥∥∥rβ ∂u

∂xi

∥∥∥∥2

+ ‖r|D2u|‖2

]
≤ C

[
‖rβ|D1u|‖2 + ‖rγ |D2u|‖2

]
.

Hence
‖u‖2

H2,2
γ (T )

= ‖u‖2 + ‖D1u‖2 + ‖rγ |D2u|‖2 ≤ C‖u‖2
H2

α,β,γ(T ),

and therefore u ∈ H2,2
γ (T ) with γ ∈ [0, 1).

Since H2,2
γ (T ) ⊂ C0(T ) by (2.1), and ‖u‖C0(T ) ≤ C‖u‖H2,2

γ (T ), we conclude that
u ∈ C0(T ), and inequality (3.5) holds.

If γ ∈ (−1, 0), then the statement of the lemma is also true, because in this case
H2

α,β,γ(T ) ⊂ H2
α,β,0(T ) ⊂ C0(T ) and

‖u‖C0(T ) ≤ C‖u‖H2
α,β,0(T ) ≤ C‖u‖H2

α,β,γ(T ). �

Lemma 3.4. Let α > −1, β > −1, and −1 < γ < 1. If u ∈ H2
α,β,γ(Ω), then u is

continuous on Ω, and
‖u‖C0(Ω) ≤ C ‖u‖H2

α,β,γ(Ω).

The proof is similar to that of Lemma 3.3.

Lemma 3.5. Let γ > 0, γ 
= 1, and let u ∈ H2
α,β,γ(T ); if γ ∈ (0, 1), assume

additionally that u(0, 0) = 0. Then for any ε ∈ [0, 1) one has v = rγ−εu ∈ H2,2
ε (T ),

v(0, 0) = 0, and

(3.6) ‖v‖H2,2
ε (T ) ≤ C ‖u‖H2

α,β,γ(T )

with a constant C > 0 which is independent of u.



ELLIPTIC PROBLEMS WITH DEGENERATE AND SINGULAR COEFFICIENTS 519

Proof. Differentiating the function v = rγ−εu with respect to polar coordinates
(r, θ) ∈ T , we find

‖v‖2 = ‖rγ−εu‖2,

‖D1v‖2 ≤ C
(
‖rγ−ε−1u‖2 + ‖rγ−ε|D1u|‖2

)
,

‖rε|D2v|‖2 ≤ C
(
‖rγ−2u‖2 + ‖rγ−1|D1u|‖2 + ‖rγ |D2u|‖2

)
.

Then for any ε ∈ [0, 1)

(3.7) ‖v‖2
H2,2

ε (T )
≤ C

(
‖rγ−2u‖2 + ‖rγ−1|D1u|‖2 + ‖rγ |D2u|‖2

)
.

Let γ ∈ (0, 1). Since in this case u(0, 0) = 0 by assumption, and u is continuous
on T by Lemma 3.3, we successively apply statements 1) and 2) of Lemma 3.1 to
obtain

‖rγ−2u‖2 ≤ C‖rγ−1|D1u|‖2 ≤ C
(
‖rαu‖2 + ‖rγ−1|D1u|‖2

)
and

‖rγ−1|D1u|‖2 ≤ C
(
‖rβ|D1u|‖2 + ‖rγ |D2u|‖2

)
.

The analogous inequalities are also valid for γ > 1. To prove them in that case it
is enough to use statement 2) of Lemma 3.1 twice.

Now, by inequality (3.7), we conclude that v ∈ H2,2
ε (T ), and (3.6) holds. In

order to prove that v(0, 0) = 0 for any ε ∈ [0, 1) we take ε1, ε2 ∈ (0, 1) such that
ε = ε1 − ε2. It has been established above that rγ−ε1u ∈ H2,2

ε1
(T ) ⊂ C0(T ) (see

Lemma 3.3). Therefore v(0, 0) =
(
rγ−εu

)
(0, 0) =

(
rγ−ε1u

)
(0, 0) rε2(0, 0) = 0. �

Remark 3.1. If γ = 0 or γ = 1, then the statement of Lemma 3.5 in general is not
true. In both these cases it is necessary to introduce a small parameter ε0 > 0 such
that ε + ε0 < 1 for ε ∈ [0, 1). Then we consider ‖v‖H2,2

ε+ε0
(T ) instead of ‖v‖H2,2

ε (T )

with v from before. Because u ∈ H2
α,β,γ(T ) ⊂ H2

α,β,γ+ε0
(T ), we apply Lemma 3.5

(assuming u(0, 0) = 0 for γ = 0) and establish that v = rγ−εu = r(γ+ε0)−(ε+ε0)u ∈
H2,2

ε+ε0
(T ), v(0, 0) = 0, and ‖v‖H2,2

ε+ε0
(T ) ≤ C‖u‖H2

α,β,γ(T ) for any ε ∈ [0, 1) and
sufficiently small ε0 > 0.

Lemma 3.6. Let α > −1, β > −1, and 0 ≤ γ < min {α + 1, β} + 1. Then the
space H2

α,β,γ(T ) is compactly imbedded in the space H1
α,β(T ).

Proof. Let
{
uj

}∞
j=1

be a bounded sequence in H2
α,β,γ(T ), and suppose that

uj(0, 0) = 0 for γ ∈ [0, 1). If γ > 0, and γ 
= 1, then, taking vj = rγ−εuj and
using Lemma 3.5, we get a bounded sequence

{
vj

}∞
j=1

in H2,2
ε (T ) for any ε ∈ [0, 1).

By Lemma 3.4 of [11], the space H2,2
ε (T ) is compactly imbedded in H1(T ). There-

fore there exists a subsequence, denoted again by
{
vj

}∞
j=1

, which converges to a
function ṽ ∈ H1(T ). This conclusion is also true when γ = 0 and γ = 1. In
fact,

{
vj

}∞
j=1

is bounded in H2,2
ε+ε0

(T ) for 0 < ε + ε0 < 1 (see Remark 3.1), and

H2,2
ε+ε0

(T )
c
⊂ H1(T ).

Now for 0 ≤ γ < min {α + 1, β} + 1 we denote ũ = r−γ+εṽ. Then for i = 1, 2
one has ∣∣∣∣∂ũ(x)

∂xi

∣∣∣∣ ≤ max {1, |γ − ε|}
(

r−γ−1+ε|ṽ(x)| + r−γ+ε

∣∣∣∣∂ṽ(x)
∂xi

∣∣∣∣) .
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Hence

(3.8)
‖rαũ‖2 = ‖rα−γ+εṽ‖2,

‖rβ|D1ũ|‖2 ≤ C
(
‖rβ−γ−1+εṽ‖2 + ‖rβ−γ+ε|D1ṽ|‖2

)
.

Since α > −1, β > −1, and 0 ≤ γ < min {α + 1, β}+ 1, there exists ε ∈ [0, 1) such
that 0 ≤ γ < min {α + 1, β}+ ε, and thereby, α + 1− γ + ε > 0 and β − γ + ε > 0.
Taking such an ε in the above arguments and using statement 2) of Lemma 3.1 we
deduce from (3.8) that

‖rαũ‖2 ≤ C
(
‖ṽ‖2 + ‖rα+1−γ+ε|D1ṽ|‖2

)
≤ C‖ṽ‖2

H1(T ),

‖rβ|D1ũ|‖2 ≤ C
(
‖ṽ‖2 + ‖rβ−γ+ε|D1ṽ|‖2

)
≤ C‖ṽ‖2

H1(T ).

Therefore ũ ∈ H1
α,β(T ). Similarly we have

‖uj − ũ‖H1
α,β(T ) = ‖r−γ+ε(vj − ṽ)‖H1

α,β(T ) ≤ C‖vj − ṽ‖H1(T ) → 0 as j → ∞.

It remains to consider the case when γ ∈ [0, 1) and uj(0, 0) = const 
= 0. Let us
define uj(x) = uj(x) − uj(0, 0). Using Lemma 3.3 we obtain

|uj(0, 0)| ≤ C‖uj‖H2
α,β,γ(T ),

‖uj‖H2
α,β,γ(T ) ≤ ‖uj‖H2

α,β,γ(T ) + C(α) |uj(0, 0)| ≤ C‖uj‖H2
α,β,γ(T ).

Thus uj ∈ H2
α,β,γ(T ) and uj(0, 0) = 0. Using the boundedness of

{
uj(0, 0)

}∞
j=1

and

the proof for the case uj(0, 0) = 0, we find a subsequence
{
uj

}∞
j=1

, a real number
A, and a function ũ ∈ H1

α,β(T ) such that uj(0, 0) → A, and uj = uj − uj(0, 0) → ũ

in H1
α,β(T ) as j → ∞. Then

‖uj − (ũ + A)‖H1
α,β(T ) ≤ ‖uj − ũ‖H1

α,β(T ) + ‖uj(0, 0) − A‖H1
α,β(T ) → 0 as j → ∞.

This completes the proof. �

Lemma 3.7. Let T be the standard triangle with vertices x(l) (l = 0, 1, 2), and
let x(3) be an interior point of T . Assume that α > −1, β > −1, and 0 ≤ γ <
min {α+1, β}+1. If u ∈ H2

α,β,γ(T ), then there exists a constant C > 0 independent
of u such that

(3.9) ‖u‖2
H2

α,β,γ(T ) ≤ C

(∥∥rγ |D2u|
∥∥2

L2(T )
+

3∑
l=1

∣∣u(x(l))
∣∣2) .

Proof. This statement is proved by making use of standard arguments relying on
the compactness property in Lemma 3.6 (see, e.g., [6]). �

In the following let Γ be the side {(x1, x2) | 0 < x1 < 1, x2 = 0} of the standard
triangle T .

Lemma 3.8. Let α > −1, β > 0, and u ∈ H1
α,β(T ). Then

(3.10) ‖rβ−1/2u‖L2(Γ) ≤ C ‖u‖H1
α,β(T ).



ELLIPTIC PROBLEMS WITH DEGENERATE AND SINGULAR COEFFICIENTS 521

Proof. Considering a sufficiently smooth function u defined on T , we have

u(x1, 0) = u(x1, x2) −
x2∫
0

∂u(x1, x̃2)
∂x̃2

dx̃2, x1 ∈ (0, 1), x2 ∈ (0, x1).

Hence, by the Schwarz inequality,

(3.11) u2(x1, 0) ≤ C

⎛⎝u2(x1, x2) + x2

x1∫
0

∣∣∣∣∂u(x1, x2)
∂x2

∣∣∣∣2dx2

⎞⎠ .

Multiplying (3.11) by x
2(β−1)

1 for β > 0 and integrating first with respect to x2 ∈
(0, x1), and then with respect to x1 ∈ (0, 1), we obtain

‖rβ−1/2u‖2
L2(Γ) ≤ C

(
‖xβ−1

1 u‖2
L2(T ) + ‖xβ

1 |D1u|‖2
L2(T )

)
≤ C

(
‖rβ−1u‖2

L2(T ) + ‖rβ|D1u|‖2
L2(T )

)
,

because x1 ≤ r =
√

x2
1 + x2

2 ≤ x1

√
2 on T .

It remains to apply inequality (3.1) and standard density arguments to get (3.10).
�

Proof of Theorem 2.1. Using assumptions (1.2) and the Schwarz inequality, we ob-

tain the continuity and
◦
H

1
α,β(Ω)-ellipticity of the bilinear form A(u, v).

If β > −1 and µ = −α, then we get the continuity of the linear functional by
applying the Schwarz inequality:

|F (v)| ≤
∫
Ω

|rµf | |rαv| dx ≤ ‖f‖L2,µ(Ω)‖v‖H1
α,β(Ω), v ∈

◦
H

1
α,β(Ω).

If β > 0 and µ = 1 − β, we additionally use Lemma 3.2 and obtain

|F (v)| ≤
∫
Ω

|rµf | |rβ−1v| dx ≤ ‖f‖L2,µ(Ω)‖rβ−1v‖L2(Ω)

≤ C‖f‖L2,µ(Ω)‖rβ|D1v|‖L2(Ω) ≤ C‖f‖L2,µ(Ω)‖v‖H1
α,β(Ω), v ∈

◦
H

1
α,β(Ω).

If β = 0 and µ < 1, then there exists ε > 0 such that µ ≤ 1 − ε, and similarly as
above we estimate

|F (v)| ≤ C‖f‖L2,µ(Ω)‖rε−1v‖L2(Ω) ≤ C‖f‖L2,µ(Ω)‖rε|D1v|‖L2(Ω)

≤ C‖f‖L2,µ(Ω)‖v‖H1
α,0(Ω), v ∈

◦
H

1
α,0(Ω).

Now applying the Lax-Milgram lemma we establish the existence and uniqueness
of a solution u ∈

◦
H

1
α,β(Ω) to (1.1), and inequality (2.3) follows. �

In order to prove Theorem 2.2 we shall obtain estimate (2.7) separately for the
finite elements having the origin as a vertex, and for the elements separated from
the singularity point O.

Let α > −1, β > −1, and assume that the weak solution u to problem (1.1)

belongs to the space
◦
H

1
α,β (Ω) ∩ H2

α,β,γ(Ω) with γ = min {α + 1, β} + ε for some
ε ∈ [0, 1). We shall denote by Ω0 the patch of the elements which have the origin
O as a vertex. Obviously Ω0 is a polygon, and O is an interior point.
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Figure 2. Notation used in the proof of Lemma 3.9.

Lemma 3.9. If u ∈ H2
α,β,γ(Ω0), then there exists a continuous function v defined

on Ω0 such that v = u at the vertices of Ω0, v is linear on each finite element
Ωi ⊂ Ω0, and

(3.12) ‖u − v‖2
H1

α,β(Ω0)
≤ C

∑
i: Ωi⊂Ω0

h
2(1−ε)
i ‖rγ |D2u|‖2

L2(Ωi)
.

Proof. Assume first that γ ≥ 0. Let us consider two standard triangles T1 = OAB1

and T2 = OAB2, and let Di (i = 1, 2) be an interior point of Ti (see Figure 2).
If U ∈ H2

α,β,γ(T1 ∪ T2), then U is continuous on T1 ∪ T2\{O}, and for i = 1, 2
there exists a linear function Ṽi interpolating U at the points A, Bi, Di. Applying
Lemma 3.7 to the function (U − Ṽi), we obtain for i = 1, 2

(3.13) ‖U − Ṽi‖2
H2

α,β,γ(Ti)
≤ C‖rγ |D2(U − Ṽi)|‖2

L2(Ti)
= C‖rγ |D2U |‖2

L2(Ti)

and

(3.14) ‖U − Ṽi‖2
H1

α,β(Ti)
≤ ‖U − Ṽi‖2

H2
α,β,γ(Ti)

≤ C‖rγ |D2U |‖2
L2(Ti)

.

Let Γ = {(ξ1, ξ2) | 0 < ξ1 < 1, ξ2 = 0} be the common side of T1 and T2. We
shall modify the functions Ṽi (i = 1, 2) in order to obtain a continuous piecewise
linear function V approximating U on T1 ∪ T2.

Denote
w(ξ1) =

[
Ṽ1(ξ) − Ṽ2(ξ)

]∣∣∣
Γ

, ξ1 ∈ [0, 1].

Observing that w(1) = 0, we find a linear polynomial W (ξ) defined on T2 such that

W (1,−1) = 0, W (ξ)
∣∣
Γ

= w(ξ1),
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and

(3.15) ‖W‖2
H1

α,β(T2) ≤ C‖rβ+1/2|D1w|‖2
L2(Γ) ≤ C

2∑
i=1

∥∥rβ+1/2
∣∣D1

(
U − Ṽi

)∣∣∥∥2

L2(Γ)
,

with C > 0 depending only on α and β.
Applying Lemma 3.8 to each function ∂

∂xj

(
U − Ṽi

)
(j = 1, 2) we get for i = 1, 2∥∥rβ+1/2

∣∣D1
(
U − Ṽi

)∣∣∥∥2

L2(Γ)

≤ C
(∥∥rβ

∣∣D1
(
U − Ṽi

)∣∣∥∥2

L2(Ti)
+

∥∥rβ+1
∣∣D2

(
U − Ṽi

)∣∣∥∥2

L2(Ti)

)
,

and, because γ = min {α + 1, β} + ε < β + 1,

≤ C
(∥∥rβ

∣∣D1
(
U − Ṽi

)∣∣∥∥2

L2(Ti)
+

∥∥rγ
∣∣D2

(
U − Ṽi

)∣∣∥∥2

L2(Ti)

)
.

Hence by (3.15) we have

(3.16) ‖W‖2
H1

α,β(T2)
≤ C

2∑
i=1

∥∥U − Ṽi

∥∥2

H2
α,β,γ(Ti)

.

Now we set V1(ξ) = Ṽ1(ξ) for ξ ∈ T1, and V2(ξ) = Ṽ2(ξ) + W (ξ) for ξ ∈ T2. Then
we deduce from (3.13), (3.14), and (3.16)

‖U − V1‖2
H1

α,β(T1)
= ‖U − Ṽ1‖2

H1
α,β(T1)

≤ C‖rγ |D2U |‖2
L2(T1),

‖U−V2‖2
H1

α,β(T2)
≤ C

(
‖U−Ṽ2‖2

H1
α,β(T2)

+‖W‖2
H1

α,β(T2)

)
≤ C

2∑
i=1

‖rγ |D2U |‖2
L2(Ti)

;

(3.17)

moreover V1(ξ)|Γ = V2(ξ)|Γ.
Using the above arguments and linear transformations Mi : T1 → Ωi (or, M̃i :

T2 → Ωi) for each finite element Ωi ⊂ Ω0, we construct a continuous function v
defined on Ω0 such that v = u at the vertices of Ω0, and the restrictions vi = v|Ωi

are linear polynomials. Furthermore, applying standard scaling arguments and
recalling that γ = min {α + 1, β} + ε, we get from (3.17)

‖u − v‖2
H1

α,β(Ω0)
=

∑
i: Ωi⊂Ω0

‖u − vi‖2
H1

α,β(Ωi)
≤ C

∑
i: Ωi⊂Ω0

h
2(1−ε)
i ‖rγ |D2u|‖2

L2(Ωi)
.

Then estimate (3.12) follows for γ ≥ 0. In particular, for β ∈ (−1, 0) and ε = −β ∈
(0, 1) we have γ = min {α + 1, β} + ε = 0, and the previous estimate yields

‖u − v‖2
H1

α,β(Ω0)
≤ C

∑
i: Ωi⊂Ω0

h
2(1+β)
i ‖D2u‖2

L2(Ωi)

provided that u ∈ H2
α,β,0(Ω0).

Observe that γ ∈ (−1, 0) if and only if β ∈ (−1, 0) and ε ∈ [0,−β). Moreover,
γ = β + ε. In this case, if u ∈ H2

α,β,γ(Ω0), then u ∈ H2
α,β,0(Ω0), and we obtain by
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the previous estimate

‖u − v‖2
H1

α,β(Ω0)
≤ C

∑
i: Ωi⊂Ω0

h
2(1+β)
i ‖D2u‖2

L2(Ωi)

≤ C
∑

i: Ωi⊂Ω0

h
2(1+β)
i h

−2(β+ε)
i ‖rγ |D2u|‖2

L2(Ωi)

= C
∑

i: Ωi⊂Ω0

h
2(1−ε)
i ‖rγ |D2u|‖2

L2(Ωi)
.

This finishes the proof. �

Proof of Theorem 2.2. By Cea’s lemma (see (2.6)) we only need to construct a
piecewise polynomial v ∈ Sh(κ, σ) that satisfies (2.7). We divide this construction
into three parts: the approximation close to the singularity and the approximation
away from the singularity for quasi-uniform meshes (i) and graded meshes (ii).

Approximation on Ω0 (close to the singularity). By Lemma 3.9 we find a
piecewise polynomial v0 that interpolates u at all vertices of Ω0 except O such that
there holds

(3.18) ‖u − v0‖2
H1

α,β(Ω0)
≤ C

∑
j: Ωj⊂Ω0

h
2(1−ε)
j ‖rγ |D2u|‖2

L2(Ωj)
.

Using the definition of the graded mesh for elements Ωj ⊂ Ω0 one has

hj ≤ σ−1h sup
x∈Ωj⊂Ω0

rκ(x) ≤ Chhκ
j ,(3.19)

hj ≥ σ h sup
x∈Ωj⊂Ω0

rκ(x) ≥ Chhκ
j .(3.20)

Estimates (3.18) and (3.19) imply for any κ ∈ [0, 1)

(3.21) ‖u − v0‖2
H1

α,β(Ω0)
≤ Ch

2(1−ε)
1−κ ‖rγ |D2u|‖2

L2(Ω0)
.

Approximation on elements separated from the singularity. For elements
Ωi separated from the singularity point we use standard interpolation results to
find a linear polynomial vi that interpolates u at the vertices of Ωi such that

‖u − vi‖2
L2(Ωi)

≤ C h4
i ‖D2u‖2

L2(Ωi)
,(3.22)

‖D1(u − vi)‖2
L2(Ωi)

≤ C h2
i ‖D2u‖2

L2(Ωi)
.(3.23)

For elements Ωi with O 
∈ Ωi one finds that there holds

(3.24) C1h
1

1−κ ≤ hi ≤ C2h.

(i) Case κ = 0 (quasi-uniform meshes). Recalling that α+1 > 0, γ ≤ α+1+ε,
and di ≤ r ≤ di + Chi on Ωi, we deduce from (3.22) that

‖rα(u − vi)‖2
L2(Ωi)

≤ (di + Chi)2α+2

d2
i

‖u − vi‖2
L2(Ωi)

≤ C
(di + Chi)2α+2

d2
i

h4
i ‖D2u‖2

L2(Ωi)

≤ C

(
di + Chi

di

)2(α+2+ε)
h4

i

(di + Chi)2(1+ε)

∥∥rγ |D2u|
∥∥2

L2(Ωi)
.

(3.25)
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Similarly from (3.23) we get
(3.26)∥∥rβ|D1(u − vi)|

∥∥2

L2(Ωi)
≤ C

(
di + Chi

di

)2(β+2)
h2

i

(di + Chi)2ε

∥∥rγ |D2u|
∥∥2

L2(Ωi)
.

Observe that there exists a constant C > 1 independent of i but depending on the
regularity of ∆ such that 1 < di+Chi

di
≤ C. Therefore estimates (3.25) and (3.26)

yield

(3.27) ‖u − vi‖H1
α,β(Ωi) ≤ C h1−ε

i

∥∥rγ |D2u|
∥∥

L2(Ωi)
≤ C h1−ε

∥∥rγ |D2u|
∥∥

L2(Ωi)
.

(ii) Case κ > 0 (graded meshes). Recalling that γ ≤ α + 1 + ε we deduce from
(3.22) and (3.24) that

‖rα(u − vi)‖L2(Ωi) ≤ C
(hi

h

)α
κ

h2
i ‖D2u‖L2(Ωi) ≤ C

(hi

h

)−1−ε
κ

h2
i ‖rγ |D2u|‖L2(Ωi)

= C
(
h

1− ε
κ

i h
ε
κ

)(
h

1− 1
κ

i h
1
κ

)
‖rγ |D2u|‖L2(Ωi)

≤ C

{
h ‖rγ |D2u|‖L2(Ωi) if ε ≤ κ < 1,
h

1−ε
1−κ ‖rγ |D2u|‖L2(Ωi) if 0 < κ < ε.

(3.28)

Using (3.23) and similar calculations we obtain

(3.29) ‖rβ|D1(u − vi)|‖L2(Ωi) ≤ C

{
h ‖rγ |D2u|‖L2(Ωi) if ε ≤ κ < 1,
h

1−ε
1−κ ‖rγ |D2u|‖L2(Ωi) if 0 < κ < ε.

Eventually we define v ∈ Sh(κ, σ) by v := v0 on Ω0 and v := vi on Ωi for elements
Ωi separate from O. Then, combining estimates (3.21), (3.27) in the case κ = 0
and combining (3.21), (3.28), (3.29) in the case κ > 0, we obtain (2.7). �

Now we analyze the regularity of problem (1.1), and prove Theorem 2.3. For
simplicity we consider problem (1.1) with constant coefficients a ≡ 1 and b ≡ 1.
The extension of our arguments and results to the general case is standard. We
also note that the weak solution u to problem (1.1) belongs to H2(Ω\B̄δ) for any
disk Bδ ⊂ Ω, because Ω is a convex polygon. Thus we conclude that in order to
prove Theorem 2.3 one needs to study the regularity of the weak solution to the
following problem:

(3.30) Lu := − div
(
r2β ∇u

)
+ r2α u = f in Bδ,

u = 0 on ∂Bδ

(here, Bδ ⊂ Ω denotes the disk of radius δ with center at the origin).
First, let us prove several auxiliary results. To simplify notation we shall write

‖ · ‖ for the norm ‖ · ‖L2(Bδ).

Lemma 3.10. Let α > −1, β ≥ 0, and α ≥ β − 1. Assume that the function u
defined on Bδ satisfies u = 0 on ∂Bδ, and for some η > −1 there hold

‖rη−1u‖ + ‖rη|D1u|‖ < +∞ and Lu ∈ L2,η+1−2β(Bδ).

Then

(3.31) ‖rη+1|D2u|‖ ≤ C
(
‖Lu‖L2,η+1−2β(Bδ) + ‖rη−1u‖ + ‖rη|D1u|‖

)
.
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Proof. For any η1, η2 one has

rη1 div(rη2∇u) = ∆(rη1+η2u) − (∇rη1+η2 + rη2∇rη1) · ∇u − ∆rη1+η2u.

Using this identity and simple calculations we find

rη+1−2βLu = −∆(rη+1u) +
[
2(η + 1 − β)rη∇u · ∇r

+
(
(η + 1)2rη−1 + rη+1+2(α−β)

)
u
]

=: L0u + L1u.

(3.32)

Applying the regularity of the Laplacian we have

‖L0u‖2 = ‖ − ∆(rη+1u)‖2 ≥ C|rη+1u|2H2(Bδ)

≥ C1‖rη+1|D2u|‖2 − C2

(
‖rη−1u‖2 + ‖rη|D1u|‖2

)
.

(3.33)

On the other hand, (3.32) yields
(3.34)
‖L0u‖ = ‖rη+1−2βLu − L1u‖ ≤ ‖Lu‖L2,η+1−2β(Bδ) + C

(
‖rη−1u‖ + ‖rη|D1u|‖

)
(here we also used the assumption α ≥ β − 1).

Then the statement of the lemma follows from inequalities (3.33) and (3.34). �

Remark 3.2. Let α > −1, β = 0, and let u ∈
◦
H

1
α,0(Bδ) be the weak solution to

problem (3.30) for given f ∈ L2,µ(Bδ) with µ < 1. Then u satisfies the assumptions
of Lemma 3.10 for any η > 0. In fact, by using Lemma 3.2 we check that

‖rη−1u‖ + ‖rη|D1u|‖ ≤ C‖rη|D1u|‖ ≤ C‖u‖H1
α,0(Bδ),

and Lu = f ∈ L2,µ(Bδ) ⊂ L2,η+1(Bδ), because µ < 1.
Thus by Lemma 3.10 we conclude that u ∈ H2

α,0,η+1(Bδ) for any η > 0. Now
applying Lemma 3.5 we prove that for any small η > 0 the function r2ηu =
rη+1−(1−η)u is continuous on B̄δ and (r2ηu)(0, 0) = 0.

Lemma 3.11. Let α > −1, β ≥ 0, and α ≥ β − 1. Let u ∈
◦
H

1
α,β(Bδ) be the weak

solution to problem (3.30) for given f ∈ L2,µ(Bδ). Then there exists λ > 0 such
that

(3.35) ‖rβ−λ−1u‖ + ‖rβ−λ|D1u|‖ ≤ C‖f‖L2,µ(Bδ),

provided that µ ≤ (1 − β) − λ.

Proof. We shall consider the cases β > 0 and β = 0 separately.
1) Let α + 1 ≥ β > 0. Instead of (3.30) we shall consider the problem

(3.36) − div
(
r2β−2λ ∇u

)
+ r2β ∇r−2λ · ∇u + r2α−2λ u = r−2λ f in Bδ,

u = 0 on ∂Bδ.

Observe that problem (3.30) is reduced to (3.36) by multiplying the differential
equation in (3.30) by r−2λ and performing elementary calculations. Let us consider
the bilinear form corresponding to (3.36):

A2(u, v) =
∫
Bδ

(
r2(β−λ) ∇u∇v − 2λr2(β−λ)−1∇u∇r v + r2(α−λ) u v

)
dx.



ELLIPTIC PROBLEMS WITH DEGENERATE AND SINGULAR COEFFICIENTS 527

Its continuity is proved by using the Schwarz inequality and Lemma 3.2, provided
that α − λ > −1 and β − λ > 0. To prove the

◦
H

1
α−λ,β−λ(Bδ)-ellipticity of A2(u, v)

we write

(3.37) A2(u, u) = ‖rβ−λ|D1u|‖2 − 2λ

∫
Bδ

r2(β−λ)−1∇u∇r u dx + ‖rα−λu‖2.

Applying Lemma 3.2 one has∣∣∣∣2λ

∫
Bδ

r2(β−λ)−1∇u∇r u dx

∣∣∣∣ ≤ 2λ ‖rβ−λ|D1u|‖ ‖rβ−λ−1u‖ ≤ 2λ

β − λ
‖rβ−λ|D1u|‖2.

Then we obtain the desired property from (3.37):

A2(u, u) ≥
(

1 − 2λ

β − λ

)
‖u‖2

H1
α−λ,β−λ(Bδ),

provided 0 < λ < β/3.
The linear functional F2(v) corresponding to problem (3.36) is continuous if

f ∈ L2,µ(Bδ) with µ ≤ (1 − β) − λ. In fact, for these values of µ and for any

v ∈
◦
H

1
α−λ,β−λ(Bδ) one has

|F2(v)|=
∣∣∣∣ ∫
Bδ

r−2λfvdx

∣∣∣∣ ≤ ‖r−λ+1−βf‖ ‖rβ−λ−1v‖ ≤ C‖f‖L2,µ(Bδ)‖v‖H1
α−λ,β−λ(Bδ).

Now for any 0 < λ < β/3 the existence and uniqueness of the weak solution

u ∈
◦
H

1
α−λ,β−λ(Bδ) to problem (3.36) is obtained by the Lax-Milgram lemma. More-

over
‖u‖H1

α−λ,β−λ(Bδ) ≤ C ‖f‖L2,µ(Bδ).

Since α − λ > −1 and β − λ > 0, it remains to apply Lemma 3.2 once again, and
inequality (3.35) follows for β > 0.

2) Let α > −1 and β = 0 (note that α > β − 1). Then problem (3.30) reads

(3.38) −∆u + r2α u = f in Bδ,
u = 0 on ∂Bδ.

For some ρ ∈ (0, δ/2) we introduce a cut-off function χ(r) satisfying{
χ(r) = 0 for 0 ≤ r ≤ ρ, χ(r) = 1 for r ≥ 2ρ,

χ ∈ C∞(R+), 0 ≤ χ(r) ≤ 1.

Let us consider the function v such that

∇v = r−2λ χ∇u in Bδ for λ > 0.

This function can be defined by solving

(3.39) −∆v = f̃ in Bδ,
v = 0 on ∂Bδ,

where f̃ = − div(r−2λχ∇u) = −χ∇r−2λ · ∇u − r−2λ ∇χ · ∇u − r−2λχ∆u.



528 DANIEL ARROYO, ALEXEI BESPALOV, AND NORBERT HEUER

Note that f̃ ∈ L2(Bδ), and problem (3.39) has a unique solution v ∈
◦
H

1(Bδ) ∩
H2(Bδ). Taking v as the test function in the integral identity for problem (3.38),
using the Schwarz inequality and Lemma 3.2 we have∫

Bδ

r−2λ|∇u|2χdx =
∫
Bδ

|∇u||∇v|dx =
∫
Bδ

(fv − r2αuv)dx

≤ ‖r1−λf‖‖rλ−1v‖ + ‖r2α+1−λu‖‖rλ−1v‖

≤ C
(
‖r1−λf‖ + ‖r2α+2−λ|∇u|‖

)
‖rλ|∇v|‖

≤ C
(
‖f‖L2,µ(Bδ) + ‖u‖H1

α,0(Bδ)

)
‖r−λχ|∇u|‖,

provided that 0 < λ < 2α + 2 and µ ≤ 1 − λ.
Hence for any ϑ > 0 we find∫
Bδ

r−2λ|∇u|2χdx ≤ Cϑ

∫
Bδ

r−2λ|∇u|2χdx +
C

ϑ

(
‖f‖2

L2,µ(Bδ) + ‖u‖2
H1

α,0(Bδ)

)
.

Then taking ϑ > 0 sufficiently small and using the analogue of inequality (2.3) we
obtain for any ρ ∈ (0, δ/2)∫

Bδ\B2ρ

r−2λ|∇u|2dx ≤
∫
Bδ

r−2λ|∇u|2χdx ≤ C‖f‖2
L2,µ(Bδ)

with constant C > 0 independent of ρ. Therefore, letting ρ → 0 we derive

(3.40) ‖r−λ|D1u|‖ ≤ C‖f‖L2,µ(Bδ),

provided that 0 < λ < 2α + 2 and f ∈ L2,µ(Bδ) with µ ≤ 1 − λ.
It remains to show that for λ > 0 there holds

(3.41) ‖r−λ−1u‖ ≤ C‖r−λ|D1u|‖.

In fact, recalling Remark 3.2 and applying statement 1) of Lemma 3.1 we have for
any η̃ > 0:

‖r−λ−1u‖ = ‖r−λ−1−η̃(rη̃u)‖
≤ C‖r−λ−η̃|D1(rη̃u)|‖ ≤ Cη̃‖r−λ−1u‖ + C‖r−λ|D1u|‖.

Now taking η̃ > 0 small enough we obtain (3.41). Then inequality (3.35) for β = 0
follows from (3.40) and (3.41). �

Proof of Theorem 2.3. As mentioned above one needs to study the regularity of
the weak solution to problem (3.30). By Lemma 3.11 there exists λ > 0 such that
inequality (3.35) holds if f = Lu ∈ L2,µ(Bδ) ⊂ L2,1−β−λ(Bδ). Thus, for given
f ∈ L2,µ(Bδ) with µ ≤ 1− β − λ, all assumptions of Lemma 3.10 are satisfied with
η := β − λ, and therefore

‖rβ−λ+1|D2u|‖ ≤ C‖f‖L2,µ(Bδ), µ ≤ 1 − β − λ.

Now taking λ := 1−ε for some ε ∈ [0, 1) we obtain the assertion of the theorem. �
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Proof of Theorem 2.4. Let Ω1 be an element touching the singularity point O, let
Rh̃ = {(r, θ) | 0 < r < h̃, 0 < θ < θ0} ⊂ Ω1, h̃ = h/2, and let uh(x) = ax1 + bx2 + c
for x ∈ Ω1. Then for h sufficiently small (such that diam(Ω1) < ρ; note that ρ was
used to define the cut-off function χ in (2.10)) one has

‖umodel − uh‖2
H1

α,β(Ω) ≥ ‖rβ|D1(umodel − uh)|‖2
L2(Rh̃)

≥
θ0∫
0

h̃∫
0

r2β
(
λrλ−1 cos θ − a

)2
r dr dθ

=
λ2h̃2β+2λ

2β + 2λ

θ0∫
0

cos2 θdθ

+

[
a2θ0

h̃2β+2

2β + 2
− 2λa sin θ0

h̃2β+λ+1

2β + λ + 1

]

≥ λ2h̃2β+2λ (cos θ0 sin θ0 + θ0)
4(β + λ)

− sin2 θ0(2β + 2)
(2β + λ + 1)2 θ0

λ2h̃2β+2λ

=
λ2C1(θ0)
C2(θ0)

h2(β+λ),

where

C1(θ0) = ((β + λ) + (β + 1))2(sin 2θ0 + 2θ0)θ0 − 16 sin2 θ0(β + λ)(β + 1),

C2(θ0) = 22(β+λ)+3θ0(β + λ)(2β + λ + 1)2 > 0.

Considering C1(θ0) as a quadratic function of (β+λ) it is easy to show that C1(θ0) >
0 for any θ0 > 0. This finishes the proof. �

Proof of Theorem 2.5. We shall follow the guidelines of the proof of Lemma 4.6
in [2]. Let u ∈ Sh(ε, σ). We need to show that for any t > 0 and θ ∈ (0, 1/2]

(3.42) K(t, u) = inf
u=v+w

(
‖v‖H1

α,β(Ω) + t ‖w‖H2
α,β,β+ε(Ω)

)
≤ Ctθh−θ‖u‖H1

α,β(Ω).

Setting v := u, w := 0 we have for t ≥ h/4

K(t, u) ≤ ‖u‖H1
α,β(Ω) ≤ Ctθh−θ‖u‖H1

α,β(Ω).

Further, for any Ωi ∈ ∆(h, ε, σ) we denote N(Ωi) =
⋃
{Ωk; Ωk ∈ ∆(h, ε, σ), Ωk ∩

Ωi 
= ø}. In order to estimate K(t, u) for t ≤ h/4 we use the function w ∈
◦
H

1(Ω)
which was explicitly constructed in the proof of Lemma 4.6 in [2]. One has w ∈
C2(Ω), and for any Ωi ∈ ∆(h, ε, σ) there holds

sup
x∈Ωi

|D1w(x)| ≤ C sup
x∈N(Ωi)

[|u(x)| + |D1u(x)|],

sup
x∈Ωi

|D2w(x)| ≤ C δ−1
i sup

x∈N(Ωi)

[|u(x)| + |D1u(x)|],

meas {x ∈ Ωi; u(x) 
= w(x)} ≤ Chiδi,

with δi = h−1thi.
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Using these properties we obtain

‖D1(u − w)‖2
L2(Ωi)

≤ Chiδi sup
x∈N(Ωi)

1∑
l=0

|Dlu(x)|2 ≤ Ch−1
i δi

1∑
l=0

‖Dlu‖2
L2(N(Ωi))

,

(3.43)

‖D2w‖2
L2(Ωi)

≤ Ch−1
i δ−1

i

(
‖u‖2

L2(N(Ωi))
+ ‖D1u‖2

L2(N(Ωi))

)
.(3.44)

On the other hand, for any element Ωi ∈ ∆(h, ε, σ) and η ≥ 0 there holds

(3.45) Ch
2η

1−ε ‖v‖2
L2(Ωi)

≤ ‖rηv‖2
L2(Ωi)

if O ∈ Ωi

for any linear function v, and

‖rηv‖2
L2(Ωi)

≤ Ch
2η

1−ε ‖v‖2
L2(Ωi)

if O ∈ Ωi,(3.46)

C
(hi

h

) 2η
ε ‖v‖2

L2(Ωi)
≤ ‖rηv‖2

L2(Ωi)
≤ C

(hi

h

) 2η
ε ‖v‖2

L2(Ωi)
if O 
∈ Ωi, ε 
= 0,

(3.47)

d2η
i ‖v‖2

L2(Ωi)
≤ ‖rηv‖2

L2(Ωi)
≤ (di + Chi)2η‖v‖2

L2(Ωi)
if O 
∈ Ωi, ε = 0,(3.48)

for any v ∈ L2(Ωi). In fact, (3.45) follows by using scaling arguments, equivalence
of norms on finite-dimensional spaces and inequalities (3.19), (3.20); (3.46) follows
by scaling arguments and (3.19), (3.20); and (3.47) (respectively, (3.48)) is a direct
consequence of the definition of the graded (respectively, quasi-uniform) meshes.
Then applying estimates (3.43), (3.44) together with (3.45)–(3.48) we obtain for
any u ∈ Sh(ε, σ)

‖rβ|D1(u − w)|‖2
L2(Ωi)

≤ Ch−1
i δi‖u‖2

H1
β,β(N(Ωi))

∀Ωi ∈ ∆(h, ε, σ),

‖rβ+ε|D2w|‖2
L2(Ωj)

≤ Ch
2ε

1−ε h−1
j δ−1

j ‖u‖2
H1

β,β(N(Ωj))
≤ Ch−2 hj

δj
‖u‖2

H1
β,β(N(Ωj))

if O ∈ Ωj , ε ∈ [0, 1),

‖rβ+ε|D2w|‖2
L2(Ωi)

≤ C
(hi

h

)2

h−1
i δ−1

i ‖u‖2
H1

β,β(N(Ωi))
= Ch−2 hi

δi
‖u‖2

H1
β,β(N(Ωi))

if O 
∈ Ωi, ε 
= 0, and

‖rβ|D2w|‖2
L2(Ωi)

≤ Ch−1
i δ−1

i ‖u‖2
H1

β,β(N(Ωi))
≤ Ch−2hiδ

−1
i ‖u‖2

H1
β,β(N(Ωi))

if O 
∈ Ωi, ε = 0. Combining the above inequalities over all elements of the mesh,
recalling that δi = h−1thi, α + 1 ≥ β, and using Lemma 3.2 we derive

‖u − w‖H1
α,β(Ω) ≤ C‖rβ|D1(u − w)|‖L2(Ω) ≤ Ct1/2h−1/2‖u‖H1

β,β(Ω)

≤ Ct1/2h−1/2‖u‖H1
α,β(Ω),

‖w‖H2
α,β,β+ε(Ω) ≤ Ct−1/2h−1/2‖u‖H1

α,β(Ω).

Hence inequality (3.42) follows for t ∈ (0, h/4] and for any θ ∈ (0, 1/2]. �

Proof of Theorem 2.6. It suffices to prove that f1 ∈ L2,µ1(Ω) for some µ1 < 1. In
fact, let µ1 = µ + 2β < 1. Then

‖f1‖L2,µ1 (Ω) = ‖f a−1‖L2,µ(Ω) ≤ a−1 ‖f‖L2,µ(Ω) < ∞,

and the required statement follows from Theorem 2.1. �
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The results of Theorems 2.7 and 2.10 follow from Lemma 3.9 and Cea’s lemma
in the same way as in the proof of Theorem 2.2. Theorem 2.8 is an immediate
corollary of Theorems 2.3 and 2.6.

Proof of Theorem 2.9. Since 0 < b(x) ≤ b, and
∣∣∣ ∂r
∂xi

∣∣∣ ≤ 1 (i = 1, 2), we have by the
Schwarz inequality

|Aε(u, v)| ≤ ‖rε|D1u|‖L2(Ω)‖rε|D1v|‖L2(Ω)

+
∣∣∣∣ ∫
Ω

∇(r2ε)∇uvdx

∣∣∣∣ + b‖rε−1u‖L2(Ω)‖rε−1v‖L2(Ω),

and ∣∣∣∣ ∫
Ω

∇(r2ε)∇uvdx

∣∣∣∣ ≤ 2ε
2∑

i=1

∥∥∥∥rε

∣∣∣∣ ∂u

∂xi

∣∣∣∣∥∥∥∥
L2(Ω)

‖rε−1v‖L2(Ω)

≤ 2ε
√

2 ‖rε|D1u|‖L2(Ω) ‖rε−1v‖L2(Ω).

(3.49)

Hence, for all u, v ∈
◦
H

1
ε−1,ε(Ω),

|Aε(u, v)| ≤ C ‖u‖H1
ε−1,ε(Ω) ‖v‖H1

ε−1,ε(Ω).

On the other hand inequality (3.49) yields∫
Ω

∇(r2ε)∇uvdx ≥ − ε
√

2
(
δ ‖rε|D1u|‖2

L2(Ω) + δ−1‖rε−1v‖2
L2(Ω)

)
with arbitrary δ > 0. Therefore, recalling that b(x) ≥ b > 0 and ε ∈ (0,

√
2b /2),

we choose a δ ∈
(

ε
√

2
b , 1

ε
√

2

)
to obtain

Aε(u, u) =
∫
Ω

(
r2ε|∇u|2 + ∇(r2ε)∇u u + b r2(ε−1) u2

)
dx

≥ min
{

1 − εδ
√

2, b − εδ−1
√

2
}
‖u‖2

H1
ε−1,ε(Ω).

Since f ∈ L2,1+ε(Ω), we prove the continuity of Fε(v) by the Schwarz inequality:

|Fε(v)| ≤
∫
Ω

r2ε|f | |v| dx ≤ ‖f‖L2,ε+1(Ω) ‖v‖H1
ε−1,ε(Ω).

Thus, Aε(u, v) and Fε(v) satisfy the assumptions of the Lax-Milgram lemma with

respect to the space
◦
H

1
ε−1,ε(Ω), and the statement of the theorem follows. �

Remark 3.3. If Ω ⊂ R
3 is a convex polyhedral domain, then similar to the two-

dimensional case one can introduce the weighted space Hk
η0,η1,...,ηk

(Ω) with real
ηl > −3/2 (l = 0, 1, . . . , k). Then several results of this section remain valid,
however, with different restrictions for parameters. In particular, Lemma 3.1 is valid
for α > −3/2 and β 
= −1/2, Lemma 3.2 is true for β > −1/2, and Lemmas 3.3, 3.4
are satisfied for α, β > −3/2 and for −3/2 < γ < 1/2. Therefore, considering
problem (1.1) in Ω ⊂ R

3 with α, β > −3/2, one can introduce the variational
formulation analogous to (2.2) and prove its unique solvability. On the other hand,
the results regarding the convergence of finite element approximations follow from
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the interpolation theory relying on the compactness property (see Lemma 3.6) and
the estimate in Lemma 3.8. Lemma 3.6 and its corollary Lemma 3.7 are valid in R

3

for α > −3/2, β > −1, and −1/2 ≤ γ < min {α + 1, β} + 1/2. However, the proof
of Lemma 3.8 is not immediate in three dimensions. To overcome discontinuities in
the approximations in the neighborhood of the singularity point (this is the central
point in the proof of Lemma 3.9) one should use a different technique. For example,
Clément’s interpolation may work, but to our knowledge this is an open problem
in weighted spaces.

4. Numerical results

In this section we present numerical results which confirm the a priori error
estimates formulated in §2.2. For simplicity we use only uniform meshes. We
consider two types of model problems (cf. (2.13), (2.15)):

(4.1) Problem A. − ∆u + r−1u = f in Ω,
u = 0 on ∂Ω,

and

(4.2) Problem B. − ∆u + r−2u = g in Ω,
u = 0 on ∂Ω.

The weak formulations of problems (4.1) and (4.2) are given by (2.14) with α =
−1

2 , β = 0 and (2.16) with some ε ∈ (0,
√

2
2 ), respectively.

In our numerical examples we choose Ω = (−1, 1) × (−1, 1) and take the right-
hand side functions f, g in (4.1), (4.2) such that

(4.3) u(x1, x2) = (1 − x2
1)(1 − x2

2)r
η(x1, x2) ∈ V,

where V =
◦
H

1
− 1

2 ,0(Ω) for Problem A, and V =
◦
H

1
ε−1,ε(Ω) for Problem B.

For the corresponding finite element schemes we use uniform triangulations of
the domain and standard piecewise linear basis functions.

Observe that the lower coefficients in (4.1), (4.2) become infinite at the origin,
and singularities may also appear in the right-hand side functions f, g as well
as in solution (4.3). Therefore, we pay special attention to accurate numerical
integration over the elements in the neighborhood of the origin. The contributions
of these elements to the stiffness matrix and to the right-hand side vector of the
linear system are computed using the nonlinear Duffy transformation:

(4.4) M :

{
x1 = ξ1(c1 + (d1 − c1)ξ2),

x2 = ξ1(c2 + (d2 − c2)ξ2),

where (ξ1, ξ2) ∈ Q = [0, 1] × [0, 1], (x1, x2) ∈ Ωi, and Ωi is an element of the
mesh with the vertices O(0, 0), C(c1, c2), and D(d1, d2). For the Jacobian of this
transformation one has

J = ξ1(c1d2 − c2d1),

and for the weight function r(x1, x2) we derive

r(x1, x2) = (x2
1 + x2

2)
1/2 = ξ1

[
(c1 + (d1 − c1)ξ2)2 + (c2 + (d2 − c2)ξ2)2

]1/2
.

Thus transformation (4.4) allows us to separate variables in the integrands hav-
ing singularities. Then the integration of the singular part with respect to ξ1 is
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Table 1. The convergence of the method for the problems in Ex-
amples A1 and A2.

Example A1 Example A2
h N Eh Convergence rate Eh Convergence rate

0.500000 9 0.488279 — 0.627086 —
0.250000 49 0.277692 0.814 0.341157 0.878
0.125000 225 0.164437 0.755 0.176095 0.954
0.062500 961 0.102674 0.679 0.089463 0.976
0.041667 2209 0.079739 0.623 0.060021 0.984
0.031250 3969 0.067206 0.594 0.045183 0.987
0.025000 6241 0.059093 0.576 0.036238 0.988
0.020833 9025 0.053316 0.564 0.030255 0.989
0.017857 12321 0.048940 0.555 0.025971 0.990
0.015625 16129 0.045482 0.548 0.022752 0.991

performed analytically. The remaining regular part (a smooth function of ξ2) is
integrated numerically via the Romberg quadrature rule (see [20]).

In the numerical examples below we choose different values of the parameter η
in (4.3) to show how the method can treat various types of singularities. In each
case the approximate solutions uh are computed on a sequence of triangulations
and the corresponding relative errors Eh = ‖u−uh‖V

‖u‖V
are calculated. Using a double

logarithmic scale we plot Eh as a function of the dimension N of the finite element
space and compare the rate of convergence with the rate predicted by Theorems 2.7
and 2.10.

For Problem A we consider η = 0.5 (Example A1) and η = 1.2 (Example A2). In
the first case the solution has a weak singularity at the origin, because u ∈ H1(Ω),
but u /∈ H2(Ω). Observing that u ∈ H2

− 1
2 ,0,ε̃

(Ω) for any ε̃ > 0.5, we conclude by

Theorem 2.7 that the rate of convergence should be close to O(h0.5). The results of
the numerical computations for this case are given in Table 1, and Figure 3 shows
the decay of the error Eh(N) in comparison with the theoretically predicted rate
of convergence.

In Example A2 the solution to problem (4.1) is sufficiently smooth, u ∈ H2(Ω).
Therefore by Theorem 2.7 we expect the rate of convergence O(h), which is con-
firmed by the computations (see Table 1 and Figure 4).

The following three examples correspond to Problem B.
Example B1: η = −0.2. In this case we have a strongly singular solution. Indeed,

u is infinite at the origin and u /∈ H1(Ω). Taking ε = 0.65 in (2.16), we see that
u ∈ H2

ε−1,ε,ε+ε̃(Ω) for any ε̃ > 0.55. Hence the rate of convergence predicted by
Theorem 2.10 should be close to O(h1−ε̃) = O(h0.45). The numerical results are
presented in Table 2 and Figure 5. As in Example A1 we observe that the error
of approximation Eh decays with the growth of N , and the rate of convergence
approaches the rate predicted by our theory.

Example B2: η = 0.5. As in Example A1, here we consider the case of a
weakly singular solution. Taking ε = 0.6 in (2.16), one has u ∈ H2

ε−1,ε,ε(Ω), and
Theorem 2.10 predicts that the error Eh decays like O(h).
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Figure 3. The errors of approximation Eh for the problem in
Example A1.
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Figure 4. The errors of approximation Eh for the problems in
Examples A2, B2, and B3.
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Table 2. The convergence of the method for the problems in Ex-
amples B1, B2, B3.

Example B1 Example B2 Example B3

h N Eh Conv. rate Eh Conv. rate Eh Conv. rate

0.500000 9 0.327870 — 0.465402 — 0.761223 —

0.250000 49 0.184586 0.828 0.246925 0.914 0.420598 0.855
0.125000 225 0.109700 0.750 0.126183 0.968 0.215512 0.964
0.062500 961 0.069725 0.653 0.063817 0.983 0.108415 0.991
0.041667 2209 0.055008 0.584 0.042759 0.987 0.072358 0.997
0.031250 3969 0.046961 0.549 0.032171 0.989 0.054290 0.998
0.025000 6241 0.041734 0.528 0.025795 0.989 0.043440 0.999
0.020833 9025 0.037994 0.514 0.021534 0.990 0.036204 0.999
0.017857 12321 0.035148 0.505 0.018484 0.990 0.031033 0.999
0.015625 16129 0.032888 0.497 0.016193 0.991 0.027155 0.999
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Figure 5. The errors of approximation Eh for the problem in
Example B1.

Example B3: η = 2. In this example one has a smooth solution. We take
ε = 0.05 in (2.16), and obtain u ∈ H2

ε−1,ε,ε(Ω). Thus by Theorem 2.10 we expect
the rate of convergence to be O(h) in this case.

The results of computations for the problems in Examples B2, B3 are given in
Table 2, and are also shown in Figure 4. We see that in both these examples the
errors Eh decay like O(h).

Thus our numerical experiments confirm the theoretical error bounds given in
§2.2. The results of Example B3 also show the robustness of the method for suf-
ficiently small ε. On the other hand, the lack of the regularity of the solutions in
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Examples A1 and B1 does not allow us to achieve the rate of convergence O(h)
(this fact is also predicted by Theorems 2.7 and 2.10).
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Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C,

Concepción, Chile

E-mail address: darroyo@ing-mat.udec.cl

Computational Center, Far-Eastern Branch of the Russian Academy of Sciences,

Khabarovsk, Russia

E-mail address: albespalov@yahoo.com

BICOM, Department of Mathematical Sciences, Brunel University, Uxbridge UB8

3PH, United Kingdom

E-mail address: norbert.heuer@brunel.ac.uk

http://www.ams.org/mathscinet-getitem?mr=0337032
http://www.ams.org/mathscinet-getitem?mr=0337032
http://www.ams.org/mathscinet-getitem?mr=0628143
http://www.ams.org/mathscinet-getitem?mr=0628143

	1. Introduction
	2. Main results
	2.1. The model problem in divergence form
	2.2. Applications to some other problems with degenerate and singular coefficients

	3. Technical results and proofs of the main theorems
	Approximation on 0 (close to the singularity)
	Approximation on elements separated from the singularity
	(i) Case =0 (quasi-uniform meshes)
	(ii) Case >0 (graded meshes)

	4. Numerical results
	Acknowledgments
	References

