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UNIVARIATE SPLINES: EQUIVALENCE OF
MODULI OF SMOOTHNESS AND APPLICATIONS

KIRILL A. KOPOTUN

Abstract. Several results on equivalence of moduli of smoothness of univari-
ate splines are obtained. For example, it is shown that, for any 1 ≤ k ≤ r + 1,
0 ≤ m ≤ r − 1, and 1 ≤ p ≤ ∞, the inequality n−νωk−ν(s(ν), n−1)p ∼
ωk(s, n−1)p, 1 ≤ ν ≤ min{k, m + 1}, is satisfied, where s ∈ Cm[−1, 1] is
a piecewise polynomial of degree ≤ r on a quasi-uniform (i.e., the ratio of
lengths of the largest and the smallest intervals is bounded by a constant)
partition of an interval. Similar results for Chebyshev partitions and weighted
Ditzian–Totik moduli of smoothness are also obtained. These results yield sim-
ple new constructions and allow considerable simplification of various known
proofs in the area of constrained approximation by polynomials and splines.

1. Introduction and main results

This paper investigates properties of various moduli of smoothness of univariate
piecewise polynomial functions (splines). It turns out that the classical estimates
of moduli of smoothness of functions via appropriate moduli of their derivatives
can be reversed if the functions being considered are splines. This observation has
several applications, and, in particular, yields simple new constructions and allows
considerable simplification of various known proofs of Jackson type inequalities for
constrained approximation by polynomials and smooth splines (see Section 5 on
“Applications” for more detail).

Let Sr(zn) be the space of all piecewise polynomial functions of degree r (order
r + 1) with the knots zn := (zi)n

i=0, −1 =: z0 < z1 < · · · < zn−1 < zn := 1.
In other words, we say that s ∈ Sr(zn) if, on each interval (zi, zi+1), 0 ≤ i ≤
n − 1, s is in Πr, where Πr denotes the space of algebraic polynomials of degree
≤ r. Usually, piecewise polynomials from Sr(zn) are called “splines” (or “splines
of minimal defect”) if they possess continuous (r − 1)st derivatives. In this paper,
we refer to all piecewise polynomials from Sr(zn) as splines. In other words, we
do not have any a priori assumptions on their smoothness or even continuity at
the knots zn. We also assume that a spline and its derivatives are defined at the
knots by continuity, if possible, and not defined otherwise, and that all derivatives
of splines from Sr(zn) are understood “pointwise” (for example, the first derivative
of a characteristic function of an interval [a, b] is identically 0 except for the points
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a and b, where it is undefined). We emphasize that, with these assumptions, if
s ∈ Sr(zn) and m ∈ N, then s(m) ∈ Smax{r−m,0}(zn) and, in fact, s(m) = 0 a.e. if
m ≥ r + 1.

As usual, Lp(J), 0 < p ≤ ∞, denotes the space of all measurable functions f

on J such that ‖f‖Lp(J) < ∞, where ‖f‖Lp(J) :=
(∫

J
|f(x)|p dx

)1/p if p < ∞, and
‖f‖L∞(J) := ess supx∈J |f(x)|. We also denote ‖f‖p := ‖f‖

Lp[−1,1]. It is well known
that ‖ · ‖Lp(J) is a norm (and Lp(J) is a Banach space) if 1 ≤ p ≤ ∞, and that it
is a quasi-norm if 0 < p < 1.

For k ∈ N0, let

∆k
h(f, x, J) :=

⎧⎪⎨
⎪⎩

k∑
i=0

(
k

i

)
(−1)k−if(x − kh/2 + ih), if x ± kh/2 ∈ J ,

0, otherwise,

be the kth symmetric difference, and let ∆k
h(f, x) := ∆k

h(f, x, [−1, 1]). The kth
modulus of smoothness of a function f ∈ Lp(J) is defined by

ωk(f, t, J)p := sup
0<h≤t

‖∆k
h(f, ·, J)‖Lp(J) ,

and we also denote

ωk(f, J)p := ωk(f, |J |, J)p and ωk(f, t)p := ωk(f, t, [−1, 1])p .

Note that ∆0
h(f, x, J) := f(x) and, hence, ω0(f, t, J)p := ‖f‖

Lp(J).
For a partition zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1} of the interval

[−1, 1], denote the scale of the partition zn by

(1.1) ϑ := ϑ(zn) := max
0≤j≤n−1

|Jj±1|
|Jj |

,

where Jj := [zj , zj+1] with zj := −1, j < 0, and zj := 1, j > n, and |J | := meas J .
Throughout this paper, c(γ1, γ2, . . . ) denote positive constants which depend

only on the parameters γ1, γ2, . . . (note that c(p, . . . ) depends on p only as p → 0)
and which may be different on different occurrences. At the same time, ci, i =
0, 1, . . . , 7, denote positive constants which are fixed throughout the paper.

Theorem 1.1 (Local estimates). Let s ∈ Sr(zn), r ∈ N, and J = [zµ1 , zµ2 ] with
µ2 − µ1 ≤ c0 for some constant c0. Then, for any 1 ≤ k ≤ r + 1 and 0 < p ≤ ∞,
we have

(1.2) ωk−ν(s(ν), J)p ≤ c(r, ϑ, c0, p)|J |−νωk(s, J)p ,

for all ν = 1, . . . , k.

We say that A is equivalent to B and write A ∼ B if there exists a positive
constant c such that c−1A ≤ B ≤ cA. We refer to this constant c as an equivalence
constant.

It is well known that inequality (1.2) can be reversed in the case p ≥ 1 if s(ν−1)

is continuous (see (2.3)). Together with Theorem 1.1 this immediately implies the
following.

Corollary 1.2 (Local estimates: Equivalence of moduli of smoothness). Let s ∈
Sr(zn)∩Cm[−1, 1], r ∈ N, 0 ≤ m ≤ r − 1, and J = [zµ1 , zµ2 ] with µ2 − µ1 ≤ c0 for
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some constant c0. Then, for any 1 ≤ k ≤ r + 1 and 1 ≤ p ≤ ∞, we have

|J |νωk−ν(s(ν), J)p ∼ ωk(s, J)p , 1 ≤ ν ≤ min{k, m + 1} .

Equivalence constants above depend only on r, ϑ and c0.

Remark 1.3. Inequality (1.2) can also be reversed in the case 0 < p < 1. This
implies that all results stated in this paper for 1 ≤ p ≤ ∞ have their analogs in
the case 0 < p < 1 as well. Proofs (some of which are rather involved) as well as
corresponding corollaries on equivalence of (global) moduli of smoothness in the
case 0 < p < 1 will appear elsewhere.∗

We are now ready to state several corollaries of Theorem 1.1 involving global
moduli of smoothness of splines on various partitions. First, we consider the case
when zn is uniform or, more generally, quasi-uniform.

Suppose that δmax := δmax(zn) := max0≤j≤n−1 |Jj | and δmin := δmin(zn) :=
min0≤j≤n−1 |Jj |. We say that zn is ∆-quasi-uniform if ∆ := δmax/δmin is bounded
by a constant independent of n, and denote such partition by u∆

n . Note that the
1-quasi-uniform partition un := u1

n is just the uniform partition of [−1, 1] into n
subintervals of equal lengths.

If zn = u∆
n , then clearly 2/(n∆) ≤ δmin ≤ 2/n ≤ δmax ≤ 2∆/n, and ϑ(zn) ≤ ∆.

Therefore, δmin ∼ δmax ∼ n−1 with equivalence constants depending only on ∆.

Theorem 1.4 (Quasi-uniform partition). Let u∆
n , n ∈ N, be a ∆-quasi-uniform

partition of [−1, 1], and let s ∈ Sr(u∆
n ), r ∈ N. Then, for any 1 ≤ k ≤ r + 1 and

0 < p ≤ ∞, we have

(1.3) ωk−ν(s(ν), n−1)p ≤ c(r, ∆, p)nνωk(s, n−1)p ,

for all ν = 1, . . . , k.

Together with the inequality (2.3) this now implies the following result on equiv-
alence of classical moduli of smoothness of splines on quasi-uniform partitions.

Corollary 1.5 (Quasi-uniform partition: Equivalence of moduli of smoothness).
Let u∆

n , n ∈ N, be a ∆-quasi-uniform partition of [−1, 1], and let s ∈ Sr(u∆
n ) ∩

Cm[−1, 1], r ∈ N, 0 ≤ m ≤ r − 1. Then, for any 1 ≤ k ≤ r + 1 and 1 ≤ p ≤ ∞, we
have

(1.4) n−νωk−ν(s(ν), n−1)p ∼ ωk(s, n−1)p , 1 ≤ ν ≤ min{k, m + 1} .

Equivalence constants above depend only on r and ∆.

Remark 1.6. For m = k − 1, (1.4) was proved by Hu and Yu [12] and by Hu [10]
for uniform and quasi-uniform partitions, respectively. In fact, if we set m = k− 1,
then Corollary 1.5 (with an additional restriction k ≤ r) becomes Theorem 1 in
[10] (and so, in the case k ≤ m + 1 ≤ r, it follows from [10, Theorem 1]). Also, in
the case k = r + 1 and m = r − 1, Corollary 1.5 follows from Theorem 2 of [10]
(where (1.4) was proved for all k ≥ r + 1 in the case m = r − 1).

The weighted Ditzian–Totik (DT-) kth modulus of smoothness of a function
f ∈ Lp[−1, 1], 0 < p ≤ ∞, is defined by

ωϕ
k,ν(f, t)p := sup

0<h≤t

∥∥∥ϕ(·)ν∆k
hϕ(·)(f, ·)

∥∥∥
p

,

∗K. A. Kopotun, On equivalence of moduli of smoothness of splines in Lp, 0 < p < 1, J. Ap-

prox. Theory 143 (2006), no. 1, 36–43.
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where ϕ(x) :=
√

1 − x2. If ν = 0, then

ωϕ
k (f, t)p := ωϕ

k,0(f, t)p = sup
0<h≤t

‖∆k
hϕ(·)(f, ·)‖p

is the usual DT-modulus [9]. Also, note that

ωϕ
0,ν(f, t)p := ‖ϕνf‖p .

Remark 1.7. It is possible that ϕνf ∈ Lp[−1, 1] and ωϕ
k,ν(f, t)p = ∞. For example,

this is the case for f(x) = (1 + x)−1, k = ν = 1 and 1 < p < 2.

We now obtain several corollaries for splines with Chebyshev knots. We say that
zn is a Chebyshev partition (and zi’s are Chebyshev knots) if zn = tn := (ti)n

i=0,
where ti := cos

(
(n−i)π

n

)
, 0 ≤ i ≤ n.

Theorem 1.8 (Chebyshev knots). Let tn be a Chebyshev partition of [−1, 1]. If
s ∈ Sr(tn), r ∈ N, then, for any 1 ≤ k ≤ r + 1 and 0 < p ≤ ∞, we have

(1.5) ωϕ
k−ν,ν(s(ν), n−1)p ≤ c(r, p)nνωϕ

k (s, n−1)p ,

for all 1 ≤ ν ≤ k.

The following result now immediately follows from Theorems 1.8 and 6.1 (in the
case k = ν, see also [9, (2.4.4)]).

Corollary 1.9 (Chebyshev knots: Equivalence of moduli for 1 ≤ p ≤ ∞). Let
s ∈ Sr(tn) ∩ Cm[−1, 1], r ∈ N, 0 ≤ m ≤ r − 1. Then, for any 1 ≤ k ≤ r + 1,
1 ≤ ν ≤ min{k, m + 1} and 1 ≤ p ≤ ∞, we have

(1.6) n−νωϕ
k−ν,ν(s(ν), n−1)p ∼ ωϕ

k (s, n−1)p .

Equivalence constants above depend only on r.

The paper is organized as follows. In Section 2, we recall some classical properties
of the moduli of smoothness and algebraic polynomials, as well as discuss some
auxiliary results for Chebyshev partitions. Theorems 1.1, 1.4 and 1.8 are proved in
Section 3. General applications for constrained approximation by polynomials and
smooth splines are given in Section 4, and Section 5 is devoted to applications in
the area of monotone and convex approximation. Finally, an important property of
the weighted DT-moduli needed to obtain Corollary 1.9 is established in Section 6.

2. Auxiliary results

2.1. Classical moduli of smoothness. The following properties of the moduli
of smoothness are well known (see, e.g., [8, 16]).

(i) For f ∈ Lp(J), 0 < p ≤ ∞, we have

(2.1) ωk+1(f, t, J)p ≤ 2max{1,1/p}ωk(f, t, J)p , k ∈ N ,

and

(2.2) ωk(f, λt, J)p ≤ c(k, p)(λ + 1)k−1+max{1,1/p}ωk(f, t, J)p , λ > 0 .

(ii) If f (ν−1) ∈ AC(J), ν ∈ N, and f (ν) ∈ Lp(J), 1 ≤ p ≤ ∞, then

(2.3) ωk+ν(f, t, J)p ≤ tνωk(f (ν), t, J)p .

Note that this inequality is no longer true in general if 0 < p < 1.
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(iii) If f ∈ Lp[a, b], 0 < p < ∞, and γ ∈ N, then (see [16, Lemma 7.2])

(2.4) ωγ(f, δ, [a, b])p
p ≤ c(γ, p)

δ

∫ δ

0

∫ b

a

|∆γ
h(f, x, [a, b])|p dx dh .

(iv) Suppose that f ∈ Lp[−1, 1], 0 < p < ∞, and k, µ ∈ N. Then (see, e.g.,
[7, 16]),

(2.5)
n−µ−1∑

j=0

ωk

⎛
⎝f,

j+µ⋃
i=j

Ji

⎞
⎠

p

p

≤
{

c(k, ∆, µ, p) ωk(f, n−1)p
p , if zn = u∆

n ,
c(k, µ, p) ωϕ

k (f, n−1)p
p , if zn = tn .

2.2. Algebraic polynomials. We now recall several well known facts about alge-
braic polynomials which are frequently used in the proofs.

Lemma 2.1 (Whitney’s inequality). For any f ∈ Lp[a, b], 0 < p ≤ ∞, there exists
qk−1 ∈ Πk−1 such that

(2.6) ‖f − qk−1‖Lp[a,b] ≤ Cωk(f, [a, b])p .

Lemma 2.2. For any polynomial qr ∈ Πr, 0 < p ≤ ∞, and intervals I and J such
that I ⊆ J , we have
(2.7)

|J |1/p‖q(ν)
r ‖L∞(J) ∼ ‖q(ν)

r ‖Lp(J) ≤ c (r, |J |/|I|, p) |J |−ν‖qr‖Lp(I) , 0 ≤ ν ≤ r ,

where equivalence constants depend only on r and p (as p → 0).

2.3. Chebyshev partitions. Suppose that tn is a Chebyshev partition, recall that
Jj := [tj , tj+1], 0 ≤ j ≤ n − 1, and denote

Dδ := {x| 1 − δϕ(x)/2 ≥ |x|} \ {±1} =
{

x| |x| ≤ 4 − δ2

4 + δ2

}
.

Observe that Dδ = ∅ if δ > 2, and note that ∆k
hϕ(x)(f, x) is defined to be identically

0 if x �∈ Dkh.
It is a simple exercise to show that, for

α :=
min{µ1 + µ2, 2n − µ1 − µ2}
min{2µ1 + 1, 2n − 2µ1 − 1} ,

4α

π2
|µ1−µ2||Jµ1 |≤|tµ1−tµ2 |≤

π2α

4
|µ1−µ2||Jµ1 | , 0≤µ1≤n − 1 , 0≤µ2≤n .

Therefore, for large n, x ∈ Jj ∩Dmh and 0 < h ≤ n−1, since ϕ(x) ≤ n|Jj | (see, e.g.,
[17, (17.4)]), we have{

x +
(
i − m

2

)
hϕ(x)

}m

i=0
⊂

[
tj −

m|Jj |
2

, tj+1 +
m|Jj |

2

]
∩ [−1, 1] ⊂ Ij ,

where Ij := Ij,m := [tj−3m, tj+4+3m] (recall that ti := −1 for i < 0, and ti := 1 for
i > n).

3. Proofs of the main results

In all proofs in this section, we only consider the case 0 < p < ∞ since, for
p = ∞, considerations are similar and, in fact, proofs are simpler.
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3.1. Proof of Theorem 1.1. Note that if s were assumed to be sufficiently
smooth we could reduce the proof of (1.2) to the case ν = k using the inequal-
ity ωk−ν(s(ν), J)p ≤ c|J |k−ν

∥∥s(k)
∥∥

Lp(J)
. However, this inequality is not true for

nonsmooth functions (a characteristic function of an interval is an obvious coun-
terexample), and so this approach is not possible.

Everywhere in this proof, qk−1 denotes a polynomial of degree ≤ k−1 such that
‖s − qk−1‖Lp(J) ≤ cωk(s, J)p (existence of such qk−1 is guaranteed by Whitney’s
inequality (2.6)). For any 1 ≤ ν ≤ k, denoting sj := s

∣∣
Jj

and using (2.7), we have∣∣∣∆k−ν
h (s(ν), x, J)

∣∣∣ =
∣∣∣∆k−ν

h (s(ν) − q
(ν)
k−1, x, J)

∣∣∣ ≤ 2k−ν
∥∥∥s(ν) − q

(ν)
k−1

∥∥∥
L∞(J)

≤ c(k) max
µ1≤j≤µ2−1

∥∥∥s
(ν)
j − q

(ν)
k−1

∥∥∥
L∞(Jj)

≤ c(r, p) max
µ1≤j≤µ2−1

|Jj |−ν−1/p ‖sj − qk−1‖Lp(Jj)

≤ c(r, ϑ, c0, p)|J |−ν−1/p ‖s − qk−1‖Lp(J) ≤ c(r, ϑ, c0, p)|J |−ν−1/pωk(s, J)p ,

which immediately implies (1.2).

3.2. Quasi-uniform partition: Proof of Theorem 1.4. Since u∆
n is ∆-quasi-

uniform, δmax ∼ δmin ∼ |Jj | ∼ n−1 for all 0 ≤ j ≤ n− 1 with equivalence constants
depending only on ∆. Using (2.2) we have

ωk−ν(s(ν), n−1)p = ωk−ν

(
s(ν),

k

nδmin
· δmin

k

)
p

≤ c(k, ∆, p)ωk−ν(s(ν), δmin/k)p .

Now, for any 0 < h < δmin/k and x ∈ Jj , 0 ≤ j ≤ n−1, such that ∆k−ν
h (s(ν), x) �= 0,

all points x − (k − ν)h/2 + ih, 0 ≤ i ≤ k − ν, are either in Jj−1 ∪ Jj or Jj ∪ Jj+1.
Therefore,

ωk−ν(s(ν), δmin/k)p
p = sup

0<h≤δmin/k

∥∥∥∆k−ν
h (s(ν), ·)

∥∥∥p

p
(3.1)

= sup
0<h≤δmin/k

n−1∑
j=0

∥∥∥∆k−ν
h (s(ν), ·)

∥∥∥p

Lp(Jj)

≤ 2 sup
0<h≤δmin/k

n−1∑
j=1

∥∥∥∆k−ν
h (s(ν), ·, Jj−1 ∪ Jj)

∥∥∥p

Lp(Jj−1∪Jj)

≤ 2
n−1∑
j=1

ωk−ν(s(ν), Jj−1 ∪ Jj)p
p

≤ c(r, ∆, p)
n−1∑
j=1

|Jj−1 ∪ Jj |−pν ωk(s, Jj−1 ∪ Jj)p
p

≤ c(r, ∆, p)npν
n−1∑
j=1

ωk(s, Jj−1 ∪ Jj)p
p ≤ c(r, ∆, p)npνωk(s, n−1)p

p ,

where the last inequality follows from (2.5).
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3.3. Chebyshev knots: Proof of Theorem 1.8. Recall from Section 2 that
Ij,k−ν =

[
tj−3(k−ν), tj+4+3(k−ν)

]
, denote Ij := Ij,k−ν , and, for each 0 ≤ j ≤ n− 1,

let qj ∈ Πk−ν−1 be such that
∥∥s(ν) − qj

∥∥
Lp(Ij)

≤ cωk−ν(s(ν), Ij)p (qj exists by
Lemma 2.1, and we assume that qj ≡ 0 if ν = k). Then, using Theorem 1.1 and
the inequality ϕ(x) ≤ n|Jj |, x ∈ Jj , we have

ωϕ
k−ν,ν(s(ν), n−1)p

p = sup
0<h≤n−1

∥∥∥ϕν∆k−ν
hϕ (s(ν), ·)

∥∥∥p

p

= sup
0<h≤n−1

n−1∑
j=0

∥∥∥ϕν∆k−ν
hϕ (s(ν), ·)

∥∥∥p

Lp(Jj)

≤
n−1∑
j=0

nνp|Jj |νp sup
0<h≤n−1

∥∥∥∆k−ν
hϕ (s(ν) − qj , ·)

∥∥∥p

Lp(Jj)

≤ c(k, p)nνp
n−1∑
j=0

|Jj |νp
∥∥∥s(ν) − qj

∥∥∥p

Lp(Ij)

≤ c(k, p)nνp
n−1∑
j=0

|Jj |νpωk−ν(s(ν), Ij)p
p

≤ c(r, p)nνp
n−1∑
j=0

ωk(s, Ij)p
p ≤ c(r, p)nνpωϕ

k (s, n−1)p
p ,

where the last inequality follows from (2.5).

4. Constrained approximation by polynomials and smooth splines

In this section, it is convenient to state the results simultaneously for the quasi-
uniform and Chebyshev partitions of [−1, 1], and so we need the following notation:

(4.1) wm(g(ν), t)p :=
{

ωm(g(ν), t)p , if zn = u∆
n ,

ωϕ
m,ν(g(ν), t)p , if zn = tn .

Let M be a fixed class of functions, which we refer to as “constraints class”. For
example, M could be the class of all monotone, or all convex, or all k-monotone
functions, or the class of functions changing their k-monotonicity at a certain num-
ber of points, or a class of functions having certain other shape characteristics on
various subsets of [−1, 1], etc.

Recall that the Sobolev space Wν(Lp) is a collection of all functions f with an
absolutely continuous (ν − 1)st derivative such that f (ν) ∈ Lp[−1, 1].

Theorem 4.1 (Constrained polynomial approximation). Let n, m, ν ∈ N, ν ≤ m,
f ∈ Lp[−1, 1] ∩ M, 0 < p ≤ ∞, where M is some constraints class, and let Wν be
some smoothness class of functions which is contained in the Sobolev space Wν(Lp).
Suppose that zn is either a quasi-uniform or a Chebyshev partition of [−1, 1], and
suppose also that the following assumptions are satisfied.

Assumption 1. For any g ∈ Wν ∩M there exists a polynomial qn ∈ Πn ∩M such
that

‖g − qn‖p ≤ c1n
−νwm−ν(g(ν), n−1)p .



938 K. A. KOPOTUN

Assumption 2. For some r ≥ m − 1, there exists a spline s ∈ Sr(zn) ∩ M ∩ Wν

such that
‖f − s‖p ≤ c2wm(f, n−1)p .

Then, there exists a polynomial pn ∈ Πn ∩ M such that

‖f − pn‖p ≤ cwm(f, n−1)p ,

where c = c(c1, c2, r, m, ν, p), and c depends also on ∆ in the case for a ∆-quasi-
uniform partition zn.

Proof. If, by Assumption 2, s ∈ Sr(zn) ∩ M ∩ Wν is such that

‖f − s‖p ≤ cwm(f, n−1)p ,

we use Assumption 1 to conclude that there exists a polynomial pn ∈ Πn ∩ M

satisfying
‖s − pn‖p ≤ cn−νwm−ν(s(ν), n−1)p .

Therefore, using Theorems 1.4 and 1.8, we have

‖f − pn‖p ≤ c ‖f − s‖p + c ‖s − pn‖p

≤ c ‖f − s‖p + cn−νwm−ν(s(ν), n−1)p ≤ c ‖f − s‖p + cwm(s, n−1)p

≤ c ‖f − s‖p + cwm(f, n−1)p ≤ cwm(f, n−1)p . �

We can use the same idea to show how piecewise polynomials having “minimal”
smoothness can be replaced by smoother splines.

Theorem 4.2 (Constrained approximation by smooth splines). Let n, m, ν, µ ∈ N,
ν ≤ m, f ∈ Lp[−1, 1] ∩ M, 0 < p ≤ ∞, where M is some constraints class, and let
Wν be some smoothness class of functions which is contained in the Sobolev space
Wν(Lp). Suppose that zn is either a quasi-uniform or a Chebyshev partition of
[−1, 1], and suppose also that the following assumptions are satisfied.

Assumption 1. For any g ∈ Wν ∩ M and any r ≥ m − 1, there exists a spline
s̃ ∈ Sr(zn) ∩ M ∩ C

µ[−1, 1] such that

‖g − s̃‖p ≤ c3n
−νwm−ν(g(ν), n−1)p .

Assumption 2. For some r ≥ m − 1, there exists a spline s ∈ Sr(zn) ∩ M ∩ Wν

such that
‖f − s‖p ≤ c4wm(f, n−1)p .

Then, for any r ≥ m − 1, there exists a spline sn ∈ Sr(zn) ∩ M ∩ Cµ[−1, 1] such
that

‖f − sn‖p ≤ cwm(f, n−1)p ,

where c = c(c3, c4, r, m, ν, µ, p), and c depends also on ∆ in the case for a ∆-quasi-
uniform partition zn.

The proof is exactly the same as that of Theorem 4.1 and will be omitted.

Remark 4.3. Suppose that f in Theorems 4.1 and 4.2 is assumed to be in Wl(Lp)
for some 0 ≤ l < ν, and Assumptions 2 are replaced by the following.
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Assumption 2′. For some r ≥ m−1, there exists a spline s ∈ Sr(zn)∩M∩Wν such
that ‖f − s‖p ≤ cn−lwm−l(f (l), n−1)p. Then, there exists a polynomial pn ∈ Πn∩M

or a spline sn ∈ Sr(zn) ∩ M ∩ Cµ[−1, 1] such that their errors of approximation of
f are bounded by cn−lwm−l(f (l), n−1)p.

The proof is exactly the same as that of Theorem 4.1.

5. Applications

Given k ≥ 0 and a set I ⊂ R, a function f is said to be k-monotone on [−1, 1]
if its kth divided differences [x0, . . . , xk]f are nonnegative for all choices of (k + 1)
distinct points x0, . . . , xk in [−1, 1]. We denote the class of all such functions by
Mk, and note that M1 and M2 are the collections of all nondecreasing and convex
functions, respectively.

For a function f ∈ Lp[−1, 1], 0 < p ≤ ∞, we denote by

E(f, F)p := inf
g∈F

‖f − g‖p

the error of Lp-approximation of f by elements from the set F ⊂ Lp[−1, 1]. In
particular,

E(k)
r (f, zn)p := E(f, Sr(zn) ∩ Mk)p

and
Ẽ(k)

r (f, zn)p := E(f, Sr(zn) ∩ Mk ∩ C
r−1[−1, 1])p

are the errors of Lp-approximation of f by splines from Sr(zn) and from Sr(zn) ∩
Cr−1 (i.e., having maximum smoothness) which are k-monotone on [−1, 1].

The following theorem basically says that if a certain Jackson type estimate is
valid for all Cν functions, then it is also valid for Cν−1 splines (i.e., if a function
being approximated is a spline, then the smoothness requirement may be slightly
relaxed).

Lemma 5.1. Let ν ∈ N, m, r ∈ N0, 0 < p ≤ ∞, and let s ∈ Sr(zn) ∩ Mk, k ∈ N,
be in Cν−1[−1, 1]. Then, for any ε > 0, there exists a function g ∈ Cν [−1, 1] ∩ Mk

such that

(5.1) ωm(g(ν), n−1)p ≤ c(m, r, ν, p) ωm(s(ν), n−1)p

and

(5.2) ‖g − s‖p ≤ ε .

Moreover, if 0 < p < ∞, or p = ∞ and zn = tn, the following inequality is also
satisfied:

(5.3) ωϕ
m,ν(g(ν), n−1)p ≤ c(m, r, ν, p) ωϕ

m,ν(s(ν), n−1)p .

Proof. Since any function in Mk is necessarily in Ck−2(−1, 1), a spline in Mk has to
be in Ck−2[−1, 1]. Therefore, we can assume that ν ≥ k − 1. Also, we can assume
that ωm(s(ν), n−1)p �= 0 and ωϕ

m,ν(s(ν), n−1)p �= 0 (otherwise, s is a polynomial and,
hence, is certainly in C

ν).
Let δ > 0 be a small positive number to be determined later, and denote ∆sν

j :=
s(ν)(zj+)− s(ν)(zj−), 1 ≤ j ≤ n−1. For each 1 ≤ j ≤ n−1 such that ∆sν

j �= 0, we
define Oj := [zj −δ, zj ] if ∆sν

j > 0, and Oj := [zj , zj +δ] if ∆sν
j < 0. For x ∈ Oj , let

g(ν) be a liner polynomial interpolating s(ν) at the endpoints of Oj . In other words,
g(ν) is the line through (zj − δ, s(ν)(zj − δ)) and (zj , s

(ν)(zj+)) if ∆sν
j > 0, and the
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line through (zj , s
(ν)(zj−)) and (zj + δ, s(ν)(zj + δ)) if ∆sν

j < 0. For all other x, we
set g(ν)(x) := s(ν)(x). We now define g to be such that g(l)(−1) = s(l)(−1) for all
0 ≤ l ≤ ν − 1 and, hence,

(5.4) g(x) − s(x) =
1

(ν − 1)!

∫ x

−1

(x − t)ν−1(g(ν)(t) − s(ν)(t)) dt , x ∈ [−1, 1] .

Clearly, g ∈ Cν [−1, 1]. Also, since s(ν+1) is bounded, it is possible to choose δ to be
so small that g(ν)(x) ≥ s(ν)(x) for all x �= zj . It is also clear from the construction
that, if s(ν) is nondecreasing, then so is g(ν). In particular, this implies that, if
ν = k − 1 or ν = k, then g ∈ Mk. If ν ≥ k + 1, we can use (5.4) and the inequality
g(ν) ≥ s(ν) a.e. to conclude that g(k)(x) ≥ s(k)(x) for all x ∈ [−1, 1], and so g ∈ Mk

in this case as well.
Since

∥∥g(ν) − s(ν)
∥∥

L∞[−1,1]
is bounded and meas{x|g(ν)(x) �= s(ν)(x)} → 0 as

δ → 0, we conclude that (5.2) is satisfied for sufficiently small δ > 0. Similarly
(using the inequalities w(f1 +f2, t)p ≤ cw(f1, t)p + cw(f2, t)p and w(f, t)p ≤ c ‖f‖p,
where w is ωm or ωϕ

m,ν), (5.1) and (5.3) are valid for sufficiently small δ > 0 if
0 < p < ∞, since

∥∥g(ν) − s(ν)
∥∥

p
→ 0 as δ → 0.

Hence, it remains to prove (5.1) and (5.3) in the case p = ∞. Assume that δ > 0
is so small that

∥∥s(ν) − g(ν)
∥∥

L∞(Oj)
≤ 2|∆sν

j | for all j such that ∆sν
j �= 0 (such δ

exists since s(ν) is continuous to the left and to the right of zj). Since it immediately
follows from the definition that |∆sν

j | ≤ ωm(s(ν), n−1)∞ for all 1 ≤ j ≤ n − 1, this
implies that ∥∥∥s(ν) − g(ν)

∥∥∥
∞

≤ 2ωm(s(ν), n−1)∞ .

Therefore,

ωm(g(ν), n−1)∞ ≤ c
∥∥∥s(ν) − g(ν)

∥∥∥
∞

+ ωm(s(ν), n−1)∞ ≤ cωm(s(ν), n−1)∞ ,

and (5.1) is proved.
To prove (5.3) for p = ∞ and zn = tn, note that, by the definition, ϕ(zj)ν∆sν

j ≤
ωϕ

m,ν(s(ν), n−1)∞. Suppose now that x0 ∈ [−1, 1] and 0 < h0 ≤ n−1 are such that

ωϕ
m,ν(g(ν), n−1)∞ ≤ 2ϕ(x0)ν

∣∣∣∆m
h0ϕ(x0)

(g(ν), x0)
∣∣∣ .

Then, denoting I(x0, h0, m) := [x0 − mh0ϕ(x0)/2, x0 + mh0ϕ(x0)/2] and taking
into account that ϕ(x0) ≤ c(m)ϕ(zj), for all zj ∈ I(x0, h0, m) (in fact, we do not
need the condition zn = tn for this inequality to hold, it’d be sufficient to require
that min{1 − zn−1, 1 + z1} ≥ cn−2) , we have

ωϕ
m,ν(g(ν), n−1)∞

≤ cϕ(x0)ν
∣∣∣∆m

h0ϕ(x0)
(s(ν), x0)

∣∣∣ + cϕ(x0)ν
∥∥∥g(ν) − s(ν)

∥∥∥
L∞(I(x0,h0,m))

≤ cωϕ
m,ν(s(ν), n−1)∞ + cϕ(x0)ν max

{
∆sν

j |1 ≤ j ≤ n − 1 , zj ∈ I(x0, h0, m)
}

≤ cωϕ
m,ν(s(ν), n−1)∞ ,

and the proof is complete. �

Taking into account Lemma 5.1, Theorems 4.1 and 4.2 can now be restated for
uniform partitions and M := Mk, k ∈ N, as follows (note that we combined both
statements into one). We also remark that analogs of Corollary 5.2 are certainly
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valid for other kinds of partitions (quasi-uniform and Chebyshev) as well, and we
only state it here for the uniform partition for simplicity.

Corollary 5.2. Let k, m, n, ν ∈ N be such that m ≥ ν, and let f ∈ Lp[−1, 1]∩Mk,
0 < p ≤ ∞. Suppose that un is a uniform partition of [−1, 1], K is either Πn or
Sr(un) ∩ C

µ[−1, 1], and the following assumptions are satisfied.

Assumption 1. For any g ∈ Cν [−1, 1] ∩ Mk,

E(g, K ∩ Mk)p ≤ c5n
−νωm−ν(g(ν), n−1)p .

Assumption 2. For some r ∈ N, r ≥ m − 1,

E(f, Sr(un) ∩ C
ν−1[−1, 1] ∩ Mk)p ≤ c6ωm(f, n−1)p .

Then,
E(f, K ∩ Mk)p ≤ cωm(f, n−1)p ,

where c = c(c5, c6, r, m, ν, p), and c depends also on µ if K = Sr(un) ∩ Cµ[−1, 1].

5.1. Monotone and convex spline approximation. The following corollary
states that, for any monotone function f , there exists a spline of whatever smooth-
ness we need whose order of approximation is bounded by cω2(f, n−1)p. It is well
known that ω2 cannot be replaced by ω3 (see [19]). While this theorem is known
for splines of small degrees, it is new for arbitrary r.

Corollary 5.3. For f ∈ Lp[−1, 1] ∩ M1, 1 ≤ p ≤ ∞, and any r ∈ N,

Ẽ(1)
r (f,un)p ≤ cω2(f, n−1)p .

Proof. It was shown by Chui, Smith and Ward [3] (see also DeVore [5] in the case
p = ∞) that, for g ∈ W1(Lp) ∩ M1, 1 ≤ p ≤ ∞, and r ∈ N,

Ẽ(1)
r (g,un)p ≤ cn−1ω(g′, n−1)p .

It is well known that there is a spline s ∈ S1(un) ∩ C[−1, 1] ∩ M1 such that

‖s − f‖p ≤ cω2(f, n−1)p .

(In the case p = ∞, we can simply take a piecewise linear function interpolating
f at the knots in un. If p < ∞, one can use the same argument as in [6], for
example.) Finally, Corollary 5.2 with k = 1, ν = 1, m = 2, µ = r − 1, and
K = Sr(un) ∩ C

r−1[−1, 1] completes the proof. �
The following result is an analog of Corollary 5.3 for convex spline approximation

in L∞[−1, 1]. It follows from [19] that ω3 in (5.5) cannot be replaced by ω4. The
author is not aware of analogs of (5.6) in the Lp metric for p < ∞ (except for the
cases r = 2 and r = 3 which were considered in [6]). Hence, it is still unresolved if
Corollary 5.4 is valid with Lp, p < ∞, replacing L∞ everywhere in its statement.

Corollary 5.4. For f ∈ C[−1, 1] ∩ M2 and any r ≥ 2,

(5.5) Ẽ(2)
r (f,un)∞ ≤ cω3(f, n−1)∞ .

Proof. It follows from a result of Beatson [1] that, for g ∈ C2[−1, 1]∩M2 and r ≥ 2,

(5.6) Ẽ(2)
r (g,un)∞ ≤ c(r)n−2ω(f ′′, n−1)∞ .

Ivanov and Popov [13] proved that, for a convex function f on [−1, 1],

(5.7) Ẽ
(2)
2 (f,un)∞ ≤ cω3(f, n−1)∞ .
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Now, Corollary 5.2 with k = 2, ν = 2, m = 3, µ = r − 1, and K = Sr(un) ∩
Cr−1[−1, 1] completes the proof. �

5.2. Monotone and convex polynomial approximation.

Corollary 5.5 (Shevchuk [18]). For f ∈ C1[−1, 1] ∩ M1, r ∈ N and n ≥ r,

(5.8) E(f, Πn ∩ M1)∞ ≤ c(r)n−1ωr(f ′, n−1)∞ .

Note that pointwise estimates (which are stronger than (5.8)) were obtained in
[18].

Proof. It was shown by Leviatan and Mhaskar [15] that, for g ∈ C
1[−1, 1]∩M1 and

r ∈ N,

Ẽ
(1)
r+1(g,un)∞ ≤ cn−1ωr+1(g′, n−1)∞ .

Also, DeVore [4] proved that for any g ∈ Cr[−1, 1] ∩ M1,

E(g, Πn ∩ M1)∞ ≤ c(r)n−rω(f (r), n−1)∞ .

Now, the same proof as that of Theorem 4.1 (see also Remark 4.3) completes the
proof of the corollary. �

Corollary 5.6 (Hu, Leviatan and Yu [11]). If f ∈ C[−1, 1] ∩ M2 and n ≥ 2, then

E(f, Πn ∩ M2)∞ ≤ cω3(f, n−1)∞ .

Proof. It follows from a result of Manya (see [18, Theorem 17.2]) that, for g ∈
C2[−1, 1] ∩ M2 and n ≥ 2,

E(g, Πn ∩ M2)∞ ≤ cn−2ω(f ′′, n−1)∞ .

Now, the estimate (5.7) and Corollary 5.2 with k = 2, ν = 2, m = 3, and K = Πn

complete the proof. �

Corollary 5.7. If f ∈ Lp[−1, 1] ∩ M2, 1 ≤ p < ∞ and n ≥ 2, then

E(f, Πn ∩ M2)p ≤ cω3(f, n−1)p .

Proof. It was shown in [14] that for any g ∈ C
1[−1, 1] ∩ M2 and n ≥ 2,

E(f, Πn ∩ M2)p ≤ cn−1ω2(f ′, n−1)p , 1 ≤ p < ∞ .

Now, the estimate Ẽ
(2)
2 (g,un)p ≤ cω3(g, n−1)p, for every convex g ∈ Lp[−1, 1] (see

[6, Theorem 2.3]), and Corollary 5.2 with k = 2, ν = 1, m = 3, and K = Πn

complete the proof. �

In order to use Corollary 5.2 to obtain an estimate in terms of ωϕ
3 (f, n−1)∞

for convex polynomial approximation (established in [14] with a rather long and
technical proof) we would need a convex C

4 spline on a Chebyshev partition yielding
an estimate in terms of ωϕ

3 (f, n−1)∞. At present, the author is not aware of any
such results. Hence, it is an open problem to prove analogs of Corollaries 5.3 and
5.4 for splines on Chebyshev partitions, as well as to investigate the validity of other
Jackson type estimates involving moduli of derivatives of functions. The following
has been partially resolved only in some cases (for example, polynomial constrained
approximation in the case p = ∞).
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Open Problem 5.8. Let k = 1 or 2, and 0 < p ≤ ∞. For each ν ∈ N0, determine
all m ∈ N0 so that for all f ∈ Cν [−1, 1] ∩ Mk,

Ẽ(k)
r (f, tn)p ≤ c(m, ν)n−νωϕ

m,ν(f (ν), n−1)p , r ≥ m + ν − 1 ,

or
E(f, Πn ∩ Mk)p ≤ c(m, ν)n−νωϕ

m,ν(f (ν), n−1)p , n ≥ m + ν − 1.

6. Appendix: Properties of ωϕ
k,m(f, t)p moduli

Surprisingly, the following theorem seems to be new. Note that the inequality
[9, Corollary 6.3.3 (b)] cannot be used with ϕ =

√
1 − x2.

Theorem 6.1. For k, ν ∈ N and f ∈ W
ν(Lp), 1 ≤ p ≤ ∞,

ωϕ
k+ν(f, t)p ≤ c(k, ν)tνωϕ

k,ν(f (ν), t)p.

Proof. We only consider the case p < ∞ since considerations for p = ∞ are much
simpler. Let n ≥ (k + ν)/2 and suppose that tn is a Chebyshev partition. Recall
(see Section 2) that Ij,k+ν =

[
tj−3(k+ν), tj+4+3(k+ν)

]
, denote Ij := Ij,k+ν , and for

each 0 ≤ j ≤ n − 1, let qj ∈ Πk+ν−1 be such that ‖f − qj‖Lp(Ij) ≤ cωk+ν(f, Ij)p

(qj exists by Lemma 2.1). Then,

ωϕ
k+ν(f, n−1)p

p = sup
0<h≤n−1

∥∥∥∆k+ν
hϕ (f, ·)

∥∥∥p

p

= sup
0<h≤n−1

n−1∑
j=0

∫
Jj

∣∣∣∆k+ν
hϕ(x)(f − qj , x)

∣∣∣p dx

≤ c sup
0<h≤n−1

n−1∑
j=0

k+ν∑
i=0

∫
Jj∩D(k+ν)h

|(f − qj)(x + (i − (k + ν)/2)hϕ(x))|p dx .

Now, since x+(i− (k + ν)/2)hϕ(x) ∈ Ij and, as can be verified by straightforward
computations, d

dx (x + (i − (k + ν)/2)hϕ(x)) ≥ 1/2, for all x ∈ Jj ∩ D(k+ν)h and
0 < h ≤ n−1 (provided that n is sufficiently large, n ≥ (k + ν)/2 will do), using the
substitution y = x + (i − (k + ν)/2)hϕ(x) we get

ωϕ
k+ν(f, n−1)p

p ≤ c

n−1∑
j=0

‖f − qj‖p
Lp(Ij)

≤ c

n−1∑
j=0

ωk+ν(f, Ij)p
p

≤ c
n−1∑
j=0

|Ij |−1

∫ |Ij |

0

∫
Ij

∣∣∆k+ν
h (f, x)

∣∣p dx dh ,

where the last inequality follows from (2.4). Now, taking into account the identity

∆k+1
h (f, x) =

∫ h/2

−h/2

∆k
h(f ′, x + u) du,

which implies

∆k+ν
h (f, x) =

∫ h/2

−h/2

. . .

∫ h/2

−h/2

∆k
h(f (ν), x + u1 + · · · + uν) du1 . . . duν ,
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and using Hölder’s inequality we have

ωϕ
k+ν(f, n−1)p

p ≤ c

n−1∑
j=0

|Ij |−1

∫ |Ij |

0

∫
Ij

h(p−1)ν

∫ h/2

−h/2

. . .

∫ h/2

−h/2

×
∣∣∣∆k

h(f (ν), x + u1 + · · · + uν)
∣∣∣p du1 . . . duνdxdh

≤ c
n−1∑
j=0

|Ij |−1

∫ |Ij |

0

h(p−1)ν

∫ h/2

−h/2

. . .

∫ h/2

−h/2

∫
Ij

×
∣∣∣∆k

h(f (ν), x + u1 + · · · + uν)
∣∣∣p dxdu1 . . . duνdh

≤ c
n−1∑
j=0

|Ij |−1

∫ |Ij |

0

h(p−1)ν

∫ h/2

−h/2

. . .

∫ h/2

−h/2

∫
Ij+u1+···+uν

×
∣∣∣∆k

h(f (ν), x)
∣∣∣p dxdu1 . . . duνdh .

For Ij = [a, b], we now denote Ĩj := [a − ν|Ij |/2, b + ν|Ij |/2] ∩ [−1, 1], and note
that Ij +u1 + · · ·+uν ∩ [−1+ kh/2, 1− kh/2] ⊂ Ĩj for ui ∈ [−h/2, h/2], 1 ≤ i ≤ ν,
and 0 < h ≤ |Ij |. Therefore,

ωϕ
k+ν(f, n−1)p

p ≤ c

n−1∑
j=0

|Ij |−1

∫ |Ij |

0

hpν

∫
Ĩj

∣∣∣∆k
h(f (ν), x)

∣∣∣p dx dh

≤ c

n−1∑
j=0

|Ij |−1

∫
Ĩj

∫ |Ij |/ϕ(x)

0

ϕ(x)pν+1hpν
∣∣∣∆k

hϕ(x)(f
(ν), x)

∣∣∣p dh dx .

Now, |Ij |/ϕ(x) ∼ n−1 for all x ∈ Ĩj \ (J0 ∪ Jn−1). If x ∈ (J0 ∪ Jn−1) ∩ Dkh,
then 4kh/(4 + k2h2) ≤ ϕ(x) ≤ sin(πn−1), which can only happen if h ≤ (8/k)n−1.
Therefore,

ωϕ
k+ν(f, n−1)p

p ≤ c

n−1∑
j=0

∫
Ĩj

∫ cn−1

0

ϕ(x)|Ij |−1hpν
∣∣∣ϕ(x)ν∆k

hϕ(x)(f
(ν), x)

∣∣∣p dh dx

≤ c

∫ cn−1

0

nhpν
∥∥∥ϕν∆k

hϕ(f (ν), ·)
∥∥∥p

p
dh ≤ cn−pνωϕ

k,ν(f (ν), cn−1)p
p .

Hence, the inequality

ωϕ
k+ν(f, n−1)p ≤ cn−νωϕ

k,ν(f (ν), c7n
−1)p

is proved for all n ≥ (k + ν)/2 (and without loss of generality we can assume that
c7 ≥ 1).

Now, given 0 < t ≤ 2/(k + ν) (for t > 2/(k + ν), we use the fact that
ωϕ

k+ν(f, t)p = ωϕ
k+ν(f, 2/(k + ν))p), we let n ≥ (k + ν)/2 be such that c7n

−1 ≤ t <

2c7n
−1 (there may be more than one n), and using the inequality ωϕ

k+ν(f, λt)p ≤
c(λ + 1)k+νωϕ

k+ν(f, t)p (see [9, Theorem 4.1.2]), we obtain

ωϕ
k+ν(f, t)p ≤ ωϕ

k+ν(f, 2c7n
−1)p ≤ cωϕ

k+ν(f, n−1)p

≤ cn−νωϕ
k,ν(f (ν), c7n

−1)p ≤ ctνωϕ
k,ν(f (ν), t)p ,

and the proof is now complete. �
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