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DISCRETISATION OF AN INFINITE DELAY EQUATION

T. SENGADIR

Abstract. In this paper, a Banach phase space containing BC(−∞, 0] and
contained in C(−∞, 0] is defined with which existence of a solution and conver-

gence of a discrete scheme are proved for an infinite delay differential equation.

1. Introduction and preliminaries

In this paper we prove the existence of a solution and convergence of a discrete
scheme for the following functional differential equations with infinite delay.

x′(t) = ax(t) +
∞∑

k=1

bkx(t − τk) , t ≥ 0,

x(θ) = φ(θ) , θ ∈ (−∞, 0].(1.1)

Here a is a non-zero real, b = {bk}∞k=1 ∈ l1, with bk �= 0 for all k ≥ 1, {τk}∞k=1 is a
strictly increasing sequence of strictly positive reals such that limk→∞ τk = ∞ and
φ : (−∞, 0] −→ R is continuous.

By standard arguments, it can be shown that the solution to this problem gives
rise to a semigroup on BUC(−∞, 0] whose generator is the derivative operator. If
this derivative is replaced by a finite difference, unlike in the case of a finite delay
equation, we get an infinite system of first order differential equations. To get a
finite system of discretised equations, we can confine ourselves to a finite interval
at each stage of computation. But, consider u ∈ BUC(−∞, 0] and the sequence
{un} of functions defined as

un(x) = u(x), x ∈ [−n, 0],
= u(−n) x ∈ (−∞,−n].

Now, we can easily see that, in general, limn→∞ ‖un −u‖∞ �= 0. So, approxima-
tion schemes which use the initial data restricted to finite intervals at every stage
may not converge. In this paper, we define a phase space which enables us to prove
a convergence result for a finite difference scheme. This scheme uses the initial data
confined to a finite interval at every stage of computation.

It is well known that unlike in the case of finite delays, the choice of a phase
space for the infinite delay equation is a difficult one. [1], [3], [4], [5] and [2] are
some of the references in this direction. For a Frechét space approach refer to [7].
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If x is the solution of a delay differential equation, then the function ϕt defined
as ϕt(θ) = x(t + θ) is considered as the state of the system at t. In general, ϕt

is an element of an infinite dimensional Banach space and its finite dimensional
approximations are studied. These finite dimensional approximations are solutions
of a system of differential equations. For example, refer to [9]. In [10], the finite
dimensional approximations belong to spline functions.

Approximation of infinite delay equations are examined in [11]. For detailed
references, see [12].

Our results on discretisation are based on Theorem 1.7 which is a version of the
Trotter-Kato theorem proved in [6]. The following definitions and results in the
theory of semigroups will be needed. [8] is a standard reference in this context.

Definition 1.1. Let (X, ‖‖) be a Banach space. A one parameter family of bounded
linear maps Tt : X → X, t ∈ [0,∞) is said to be a strongly continuous semigroup
of bounded linear operators on X if

(i) T0 = I,
(ii) Tt+s = TtTs for every t, s ≥ 0,
(iii) limt→0 ‖Ttx − x‖ = 0, x ∈ X.

Definition 1.2. A semigroup of bounded linear operators on X is said to be of
class G(M, ω, X) if there exist constants M ≥ 1 and ω ∈ R such that ‖Tt‖ ≤
Meωt. A strongly continuous semigroup of class G(1, 0, X) is called a semigroup of
contractions.

Definition 1.3. Let the linear operator A be defined as follows:

D(A) =
{

x ∈ X : lim
h→0+

Thx − x

h
exists

}
.

For x ∈ D(A), Ax is defined as

Ax = lim
h→0+

Thx − x

h
.

We say that A generates the semigroup Tt or that A is the infinitesimal generator
of Tt.

Theorem 1.4. If Tt is a semigroup of bounded linear operators, then there are
constants M ≥ 1 and w ∈ R such that T is of the class G(M, ω, X). Further, its
infinitesimal generator A is a closed and densely defined linear operator which is
unique.

Besides, if B : X −→ X is a bounded linear operator, then it generates a semi-
group which is given by Tt = etB.

Definition 1.5. Let X be a real Banach space and X∗ its dual. For x ∈ X,
F (x) ⊆ X∗ is defined as

F (x) =
{
η ∈ X∗ : 〈x, η〉 = ‖x‖2 = ‖η‖2

}
.

A closed operator A with a dense domain D(A) is said to be dissipative if for every
x ∈ D(A), there is η ∈ F (x) such that 〈Ax, η〉 ≤ 0.

Theorem 1.6 (Lumer-Philips). If A is dissipative and there is λ0 > 0 such that
the range R(λ0I − A) of λ0I − A is X, then A is the infinitesimal generator of a
strongly continuous semigroup of contractions.
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The following version of Trotter-Kato approximation is proved in [6].
Let X and Xn be a Banach spaces with norms ‖.‖ and ‖‖n. For every n =

1, 2, . . . , there exist bounded linear operators Pn : X −→ Xn and En : Xn −→ X
satisfying the following:

(1) ‖Pn‖ ≤ M1, ‖En‖n ≤ M2 where M1 and M2 are independent of n;
(2) ‖EnPnx − x‖ −→ 0 as n → ∞ for all x ∈ X;
(3) PnEn = In where In is the identity operator on Xn.

Theorem 1.7. Let A : D(A) −→ X be a closed and densely defined operator in
the class G(M, ω, X) and An : Xn −→ Xn be bounded linear maps in G(M, ω, Xn).
Let the semi-groups generated by A and An be denoted by Tt and Tn

t . Then the
following are equivalent:

(a) For all u ∈ D(A) there exists a sequence un ∈ Xn such that

lim
n→∞

Enun = u and lim
n→∞

EnAnun = Au.

(b) limn→∞ ‖EnTn
t Pnx − Ttx‖ → 0 as n → ∞ for all x ∈ X.

We require the following definitions and results in the subsequent sections:
Let J ⊂ R be a non-compact interval and let Jk be an increasing sequence of

compact intervals such that
⋃∞

n=1 Jk = J . Let b = {bk} ∈ l1. For u ∈ C(J), define
pk(u) = supx∈Jk

|u(x)|. C(J) is a Frechét space whose topology is given by the
family of semi-norms {pk : k ∈ N}. We shall define a Banach space whose norm
is given by a “linear combination” of these semi-norms. As a consequence of our
assumption that {bk} ∈ l1, BUC(J) is contained in the new Banach space. Its
topology is weaker than that of BUC(J) and stronger than that of C(J).

Definition 1.8. Let Jk and the sequence {bk} be as above. Define Cσ(J) as

Cσ(J) =

{
u ∈ C(J) :

∞∑
k=1

|bk|pk(u) < ∞
}

.

Further, ‖‖σ : C(J) → R
+ is defined as ‖u‖σ =

∑∞
k=1 |bk|pk(u).

Proposition 1.9. ‖‖σ is a norm on the space Cσ(J) and with respect to this norm,
Cσ(J) is a Banach space. The space BUC(J) is continuously embedded in Cσ(J).
Further, we have the following criterion for convergence in this Banach space:

Let un be a sequence of functions in Cσ(J) and u ∈ Cσ(J). Assume the follow-
ing:

(i) For a fixed k,
lim

n→∞
pk(un − u) = 0.

(ii) There exists a sequence {αk} of non-negative reals with
∑∞

k=1 |bk|αk < ∞
with

pk(un − u) ≤ αk

for all n and k.
Then,

lim
n→∞

un = u.
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Proof. We only prove the convergence criterion. The other assertions are easy to
see:

∞∑
k=1

|bk|pk(un − u) =
N∑

k=1

|bk|pk(un − u) +
∞∑

k=N+1

|bk|pk(un − u).

For a fixed N , the limit of the finite sum as k → ∞ is zero by (i). The limit of the
infinite sum is also zero because of (ii) and

∑∞
k=1 |bk|αk < ∞.

Let n ∈ N. Consider the finite dimensional vector space R
n2+1. We define the

norm ‖.‖n on R
n2+1 as follows:

‖v‖n =
n∑

k=1

|bk|max {|v0|, |v1|, . . . , |vkn|} +
∞∑

k=n+1

|bk|max {|v0|, |v1|, . . . , |vn2 |}

Here v = (v0, v1, . . . , vn, vn+1, vn+2, . . . , v2n, . . . , vn2) .

2. A phase space for the infinite delay equation

Let a, {bk}, and τk be as in the previous section. Let [x] be the largest integer
less than or equal to x. Define m1 = [−τ1] and mk as [−τi] where i is the smallest
positive integer such that −τi < mk−1. It is clear that mk is a strictly decreasing
sequence of negative integers and −τk ∈ [−mk, 0].

The space Cσ(−∞, 0] is defined as

Cσ(−∞, 0] =

{
φ ∈ C(−∞, 0] :

∞∑
k=1

|bk| sup
θ∈[mk,0]

|φ(θ)| < ∞
}

.

The proof of the next proposition follows from Proposition 1.9.

Proposition 2.1. For φ ∈ Cσ(−∞, 0] define

‖φ‖σas‖φ‖σ =
∞∑

k=1

|bk| sup
θ∈[mk,0]

|φ(θ)|.

Then ‖‖σ is a norm on Cσ(−∞, 0] and Cσ(−∞, 0] is a Banach space.

Next we define a linear operator A as follows: Let

D(A) =
{
φ ∈ C1(−∞, 0] : φ, φ′ ∈ Cσ(−∞, 0] and φ′(0) = Lφ

}
where L : Cσ(−∞, 0] → R as Lφ = aφ(0)+

∑∞
k=1 bkφ(−τk) for φ ∈ D(A), Aφ = φ′.

Theorem 2.2. The operator A defined above generates a strongly continuous semi-
group {Tt : t ≥ 0} of bounded linear operators on Cσ(−∞, 0]. Further, for a given
φ ∈ Cσ(−∞, 0], the map x : R −→ R defined as

x(t) = φ(t), t ∈ (−∞, 0],
x(t) = [Ttφ](0) t ∈ (0,∞),

is a unique solution to (1.1).

Remark. If we can show directly that A generates a semigroup Tt, then defining
x(t) = (Ttφ)(0), we get a solution to (1.1). The standard procedure to show that an
unbounded linear operator generates a semigroup, is to use the Hille-Yosida theorem
([8]). But the estimations involved are difficult to obtain. It can be shown that for
φ ∈ Cσ(−∞, 0], (1.1) has a unique solution and then we define the semigroup via
the solution to (1.1).
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Lemma 2.3. Let φ ∈ Cσ(−∞, 0]. The problem (1.1) has a unique solution x :
R −→ R. Further, for any t ∈ [0,∞), there is a constant c(t) > 0 such that

(2.1) sup
s∈[0,t]

|x(s)| ≤ c(t)‖φ‖σ.

Sketch of the Proof. Consider t ∈ [0, τ1].
∑∞

k=1 bkφ(t − τk) converges uniformly on
[0, τ1]. Further,

sup
t∈[0,τ1]

|
∞∑

k=1

bkφ(t − τk)| ≤ ‖φ‖σ.

Define y1 : [0, τ1] → R as the unique solution to the initial value problem

x′(t) = ax(t) +
∞∑

k=1

bkφ(t − τk),

x(0) = φ(0).(2.2)

We have

y1(t) = φ(0)eat + eat

∫ t

0

e−as

( ∞∑
k=1

bkφ(s − τk)

)
ds.

Define x1 : (−∞, τ1] −→ R as

x1(s) = φ(s), s ∈ (−∞, 0]
= y1(s), s ∈ [0, τ1].

Clearly,

(2.3) sup {|x1(t)| : t ∈ [0, τ1]} ≤
(

sup
t∈[0,τ1]

eat

)
|φ(0)| +

(
sup

t∈[0,τ1]

eat − 1
a

)
‖φ‖σ.

Here, note that for r > 0, ear−1
a > 0 for all a �= 0. From the estimate

|b1|(|φ(0)|) ≤ |b1| sup
θ∈[−τ1,0]

|φ(θ)| ≤ ‖φ‖σ,

we get

(2.4) sup {|x1(t)| : t ∈ [0, τ1]} ≤
(

sup
t∈[0,τ1]

eat

)
1
|b1|

‖φ‖σ +

(
sup

t∈[0,τ1]

eat − 1
a

)
‖φ‖σ.

Now, we claim that for each k ∈ N, there exists a function xk : (−∞, kτ1] with
the following properties:

(i) For each t ∈ [0, kτ1],
∞∑

i=1

bixk(t − τi)

converges and this summation defines a continuous function on [0, kτ1].
(ii) xk is the unique solution to

x′(t) = ax(t) +
∞∑

k=1

bixk(t − τi), for t ∈ [0, kτ1],

x(θ) = φ(θ), for t ∈ (−∞, 0].(2.5)

(iii) There exist constants ck ≥ 0 such that

sup {|xk(t)| : t ∈ [(k − 1)τ1, kτ1]} ≤ ck(‖φ‖σ).
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The case k = 1 is already proved and the above claim can be proved by induction.
The solution to (1.1) is obtained by patching up the functions xk. Note that

for every t ≥ 0, there is k such that t ∈ [kτ1, (k + 1)τ1] With this k, define c(t) =
max {c1, c2, . . . , ck} and (2.1) is proved.

Proof of Theorem 2.2. Let φ ∈ Cσ(−∞, 0] and xφ be the unique solution to (1.1).
Define Tt(φ) as

[Ttφ](θ) = φ(t + θ), if t + θ ≤ 0
= xφ(t + θ) if t + θ > 0.

Fix t ≥ 0. For θ ∈ [mk, 0], t + θ ≤ [mk, t]. We can get the estimate

‖Ttφ‖σ = (c(t)‖b‖1 + 1) ‖φ‖σ.

From the above estimate, it follows that Ttφ ∈ Cσ(−∞, 0] and that Tt is a bounded
linear map.

Next, we prove that

(2.6) lim
t→0

(Ttφ − φ) = 0.

Define pk(φ) = supθ∈[mk,0]|φ(θ)|. Fix k ∈ N and consider

pk(Ttφ − φ) = sup
θ∈[mk,0]

|(Ttφ)(θ) − φ(θ)|

= sup
θ∈[mk,0]

|xφ(t + θ) − xφ(θ)|.

Clearly, x is uniformly continuous in [mk, 1]. Thus, given ε, there is δ∗ > 0 such
that |x(s1) − x(s2)| ≤ ε whenever s1, s2 ∈ [mk, 1] and |s1 − s2| < δ∗. Now, let θ ∈
[mk, 0] and |t| ≤ min(1, δ∗). We have mk ≤ t+θ ≤ 1. Thus, |xφ(t+θ)−xφ(θ)| ≤ ε.

Thus, by taking δ = min(1, δ∗), the following holds: Given ε > 0, there is δ such
that for all |t| ≤ δ ⇒ pk(Ttφ − φ) ≤ ε. That is, for a fixed k,

(2.7) lim
t→0

pk(Ttφ − φ) = 0.

Now, for any t ∈ [0, 1],

(2.8) pk(Ttφ − φ) ≤ max

(
pk(φ), sup

s∈[0,1]

|x(s)|
)

.

Now, (2.7) follows from (2.8), (2.9), and Proposition 1.9.
It is easy to see that Tt+s = TtTs and hence Tt is a semi-group on Cσ(−∞, 0].

Further, we can show that limh→0+
Thφ−φ

h exists if and only if φ ∈ D(A) and for
such a φ this limit is equal to φ′. The proof is complete. �

3. The space Cσ(−∞, 0] and a piecewise linear interpolation

In this section, we construct a sequence of piecewise linear approximation Snφ
for elements of Cσ(−∞, 0].

Let mk be as in Section 2.
For a given n ∈ N, consider the interval [mn, 0] and its n sub-intervals [mk, mk−1],

k = 1, 2, . . . , n. Divide each of these sub-intervals into n intervals of length = hk,n =
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mk−1−mk

n . Thus, we get n2 + 1 points θi, i = 0, 1, 2, . . . , n2 of the interval [mn, 0]
which are given by

θkn+j = mk + j

(
mk−1 − mk

n

)
,

where k = 1, 2, . . . , n,j = 0, 1, . . . , (n − 1) and m0 = 0.
The quantity ω(φ, k, h), known as the modulus of continuity, is defined as

ω(φ, k, h) = sup {φ(θ1) − φ(θ2)| : θ1, θ2 ∈ [mk, 0], |θ1 − θ2| ≤ h} .

The following result is well known:
For fixed k ∈ N and φ continuous on [mk, 0], limh→0 ω(φ, k, h) = 0.
Define Snφ : (−∞, 0] −→ R as follows: On [mn, 0], Snφ is the piecewise linear

interpolation to φ at the above n2+1 points and on (−∞, mn] it is identically equal
to φ(mn). Explicitly, for θ ∈ [θkn+j+1, θkn+j ],

Snφ(θ) = φ(θkn+j)
[
1 +

θ − θkn+j

hk,n

]
− φ(θkn+j+1)

[
θ − θkn+j

hk,n

]
.

Theorem 3.1. Snφ converges to φ in the Banach space Cσ(−∞, 0]; that is,

lim
n→∞

‖Snφ − φ‖σ = 0.

Proof. We can also express Snφ as

Snφ =
n2∑
i=0

φ(θi)Bi

where Bi : (−∞, 0] → R’s are defined as follows:

B0(θ) =
−θ

θ1
+ 1, θ ∈ [θ1, 0]

= 0 elsewhere,

Bi(θ) =
θ − θi+1

θi − θi+1
, θ ∈ [θi+1, θi]

=
θ − θi−1

θi − θi−1
, θ ∈ [θi, θi−1]

= 0 elsewhere,

B2
n =

θ − θn2−1

θ2
n − θn2−1

, θ ∈ [θn2 , θn2−1]

= 1 θ ∈ (−∞, mn]
= 0 elsewhere.

Since each Bi is bounded and uniformly continuous, Bi ∈ Cσ(−∞, 0] and hence
Snφ ∈ Cσ(−∞, 0]. Let h∗

n,k = max {hn,j : j = 1, 2, . . . , k}. Let k be fixed and
n > k. Note that θn = m1, θ2n = m2,. . . , and θn2 = mn. Thus, for a fixed k,
limn→∞ h∗

n,k = 0. The estimate

pk(φ − Snφ) ≤ 3ω
(
φ, mk, h∗

n,k

)
is easily obtained. Now, since k is fixed and limn→∞ h∗

n,k = 0, we have

(3.1) lim
n→∞

pk(Snφ − φ) = 0.
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For all k, we have pk(Snφ) ≤ pk(φ). Finally, for all k, we obtain

(3.2) pk(Snφ − φ) ≤ 2pk(φ)

Now the convergence of Snφ to φ follows from (3.1), (3.2), and Proposition 1.9.

4. A finite difference scheme for the infinite delay equation

In this section we show the convergence of a finite difference scheme to the
solution of the infinite delay equation.

Let θi, i = 0, 1, 2, . . . , n2 be as in the previous section. Define Pn : Cσ(−∞, 0] →
R

n2+1 as [Pn(φ)]i = φ(θi). Further, define En : R
n2+1 −→ Cσ(−∞, 0] as follows:

For v ∈ R
n2+1, Env is the piecewise linear function taking values (Env)(θi) = vi

and (Env)(θ) = vn2 for all θ ∈ (−∞, mn]. Clearly, Env =
∑n2

i=0 viBi.
Now, consider ‖Env‖σ. From the definitions of Env and the norm ‖.‖σ, it is

clear that

‖Env‖σ =
n∑

k=1

|bk|max {|v0|, |v1|, . . . , |vkn|} +
∞∑

k=n+1

|bk|max {|v0|, |v1|, . . . , |vn2 |} .

The following result holds:

Proposition 4.1.
(1) ‖Pn‖ ≤ M , ‖En‖n ≤ 1 where M is independent of n,
(2) ‖EnPnφ − φ‖σ −→ 0 as n → ∞ for all φ ∈ Cσ.
(3) PnEn = In where In is the identity operator on Xn.

Proof. We find that if ‖‖n is the norm in R
n2+1 as defined in Section 1, then

‖Env‖σ = ‖v‖n. Thus ‖En‖ = 1. Now, EnPnφ is nothing but Snφ where Sn is
the piecewise linear approximation of φ defined in Section 3. So, limn→∞ EnPnφ =
limn→∞ Snφ = φ and hence (2) holds. By the uniform boundedness principle, we
have the existence of M ≥ 0 such that ‖Sn‖ ≤ M for all n ∈ N. Now ‖Pnφ‖n =
‖EnPnφ‖σ = ‖Snφ‖σ ≤ M‖φ‖σ. Thus, (1) holds. (3) is obvious from the definition
of Pn and En.

Next, we discretise A by using finite differences as follows: Define An : R
n2+1 →

R
n2+1 as

(An(v))i =
(vi−1 − vi)
θi−1 − θi

, i = 1, 2, 3, . . . , n2,

(An(v))0 = L[(Env)].

Theorem 4.2. Let A and Tt be as in Proposition 2.1 and let An be as above. Let
T

(n)
t be the semigroup generated by An. We have

lim
n→∞

‖EnT
(n)
t Pnφ − Tt(φ)‖σ = 0.

We shall apply Theorem 1.7 to prove this result. First, we need the following
lemma.

Lemma 4.3. Fix v∈R
n2+1. Define the function l : {1, 2, . . . , n} →

{
0, 1, 2, . . . , n2

}
as

l(k) = max {0 ≤ i ≤ kn : |vi| ≥ |vj | for all j ∈ {0, 1, ..kn}} .
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Define ξ ∈ (Rn2+1)∗ as follows:

〈w, ξ〉 =
n∑

k=1

|bk|sign vl(k)wl(k) +
∞∑

k=n+1

|bk|sign vl(n)wl(n).

Then, the continuous linear functional η is defined as η = ‖v‖ξ ∈ F (v).

Proof.

|〈w, ξ〉| ≤
n∑

k=1

|bk||wl(k)| +
∞∑

k=n+1

|bk||wl(n)|

≤
n∑

k=1

|bk|max {|wi| : 0 ≤ i ≤ kn} +
∞∑

k=n+1

|bk|max
{
|wi| : 0 ≤ i ≤ n2

}
= ‖w‖n.

Furthermore,

〈v, ξ〉 =
n∑

k=1

|bk||vl(k)| +
∞∑

k=n+1

|bk||vl(n)|

=
n∑

k=1

|bk|max {|vi| : 0 ≤ i ≤ kn} +
∞∑

k=n+1

|bk|max
{
|vi| : 0 ≤ i ≤ n2

}
= ‖v‖n.

So, it is clear that ‖ξ‖ = 1. Now, it is easy to see that η = ‖v‖ξ ∈ F (v).

Proof of Theorem 4.2. Since An is a bounded linear operator, it generates the semi-
group T

(n)
t = etAn . We prove that each An is in the class G(1, ω, Xn) where

ω > ‖L‖‖b‖. Consider Bn = An − ωIn where ω > ‖L‖‖b‖ and In is the identity
operator on R

n2+1. We prove that there exists η ∈ F (v) such that 〈Bnv, η〉 ≤ 0.
For v ∈ D(An) = R

n2+1, let ξ ∈ (Rn2+1)∗ and η ∈ F (v) be as in the lemma above.
Let us observe that for all k = 1, . . . , n with l(k) �= 0, |vl(k)| ≥ |vl(k)−1|. Thus,∣∣∣∣∣∣

∑
k∈l−1(0)

|bk|sign(vl(k))L(Env)

∣∣∣∣∣∣ +

∣∣∣∣∣
∞∑

k=n+1

|bk|sign(vl(n))L(Env)

∣∣∣∣∣ ≤ ‖b‖‖L‖‖En‖‖v‖n

≤ (‖b‖‖L‖)‖v‖n.

Now,

〈Bnv, ξ〉 = 〈Anv, ξ〉 − 〈ωv, ξ〉

=
n∑

k=1

|bk|sign(vl(k))(Anv)l(k) +
∞∑

k=n+1

|bk|sign(vl(n))(Anv)l(n) − ω‖v‖n

=
∑

k/∈l−1(0)

|bk|sign(vl(k))
vl(k)−1 − vl(k

θl(k)−1 − θl(k)
+

∑
k∈l−1(0)

|bk|sign(vl(k))L(Env)

+
∞∑

k=n+1

|bk|sign(vl(n))(Anv)l(n) − ω‖v‖n.
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Now we consider two cases, namely l(n) = 0 and l(n) �= 0. If l(n) = 0, then
(Anv)l(n) = L(Env) and we have the estimate

〈Bnv, ξ〉 =
∑

k/∈l−1(0)

|bk|sign(vl(k))
vl(k)−1 − vl(k

θl(k)−1 − θl(k)

+
∑

k∈l−1(0)

|bk|sign(vl(k))L(Env)

+
∞∑

k=n+1

|bk|sign(vl(n))L(Env) − ω‖v‖n

≤
∑

k∈l−1(0)

|bk|sign(vl(k))L(Env)

+
∞∑

k=n+1

|bk|sign(vl(n))L(Env) − ω‖v‖n

≤ 0.

If l(n) �= 0, then (Anv)l(n) = vl(n)−1−vl(n)

θl(n)−1−θl(n)
and we have the estimate

〈Bnv, ξ〉 =
∑

k/∈l−1(0)

|bk|sign(vl(k))
vl(k)−1 − vl(k

θl(k)−1 − θl(k)

+
∑

k∈l−1(0)

|bk|sign(vl(k))L(Env)

+
∞∑

k=n+1

|bk|sign(vl(n))
vl(n)−1 − vl(n)

θl(n)−1 − θl(n)
− ω‖v‖n

≤
∑

k∈l−1(0)

|bk|sign(vl(k))L(Env) − ω‖v‖n

≤ 0.

Thus, 〈Bnv, η〉 = 〈Bnv, ‖v‖nξ〉 ≤ 0. It is elementary to check that if λ is a real
eigenvalue of Bn, then λ ≤ 0. Thus, since R

n2+1 is finite dimensional, if λ > 0, then
λIn −Bn is invertible and in particular onto. Thus, by Theorem 1.6, it follows that
Bn = Anv − λIn generates a contraction semigroup. But e−ωtTn

t is the semigroup
generated by Bn. Thus, ‖e−ωtTn

t ‖ ≤ 1 for all n. We get ‖Tn
t ‖ ≤ eωt. Let Tt be

of class G(MA, ωA, X). Now, let ω0 = max {ωA, ω}. We have now proved that
A ∈ G(MA, ω0, X) and An ∈ G(MA, ω0, Xn).

To complete the proof, we need to check (a) of Theorem 1.7. Choose φ ∈ D(A)
and vn ∈ R

n2+1 as vn = Pn(φ). Thus, (vn)i = φ(θi) and Envn = EnPnφ = Snφ.
So, limn→∞ Envn = φ. Next, we have to prove that EnAnvn → Aφ.

By the mean value theorem, for every i = 1, 2, . . . , n2 there exists ζi ∈ [θi, θi−1]
such that

φ′(ζi) =
φ(θi−1) − φ(θi)

θi−1 − θi
.
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Therefore,

‖EnAnvn(x) − Aφ)‖σ

= ‖
n2∑
i=1

(φ(θi−1) − φ(θi)
θi−1 − θi

Bi + L(Snφ)B0 − φ′‖σ

= ‖
n2∑
1=1

φ′(ζi)Bi + L(Snφ)B0 − φ′‖σ

≤ ‖
n2∑
i=1

φ′(ζi)Bi + L(Snφ)B0 −
n2∑
i=0

φ′(xi)Bi‖σ + ‖
n2∑
i=0

φ′(θi)Bi − φ′‖σ

≤ ‖
n2∑
i=1

(φ′(ζi) − φ′(θi))Bi + L(Snφ)B0 − φ′(0)B0‖σ + ‖
n2∑
i=0

φ′(θi)Bi − φ′‖σ.

Now, ‖
∑n2

k=0 φ′(xi)Bi − φ′‖σ = ‖Sn(φ′) − φ′‖σ and hence by Theorem 3.1,
limn→∞ ‖

∑n2

k=0 φ′(θi)Bi − φ′‖σ = 0. We need to prove that

(4.1) lim
n→∞

‖
n2∑
i=1

(φ′(ζi) − φ′(θi))Bi + L(Snφ)B0 − φ′(0)B0‖σ = 0.

Since limn→∞ L(Snφ) = L(φ), there is c > 0 such that |L(Snφ)| ≤ c for all n. For
k < n,

pk

⎛
⎝ n2∑

i=1

(φ′(ζi) − φ′(θi))Bi + L(Snφ)B0 − φ′(0)B0

⎞
⎠ ≤ 3pk(φ′) + c.

For k ≥ n,

pk

⎛
⎝ n2∑

i=1

(φ′(ζi) − φ′(θi))Bi + L(Snφ)B0 − φ′(0)B0

⎞
⎠ ≤ 3pn(φ′) + c ≤ 3pk(φ′) + c.

So, we have proved that for all k,

(4.2) pk

⎛
⎝ n2∑

i=1

(φ′(ζi) − φ′(θi))Bi + L(Snφ)B0 − φ′(0)B0

⎞
⎠ ≤ 3pk(φ′) + c.

Now, fix k < n. Bi ≡ 0 on [mk, 0] for i > kn. Thus,

pk

⎛
⎝ n2∑

i=1

φ′(ζi)Bi −
n2∑
i=1

φ′(xi)Bi

⎞
⎠ = sup

x∈[mk,0]

|
n2∑
i=1

φ′(ζi)Bi −
n2∑
i=1

φ′(xi)Bi|

= sup
x∈[mk,0]

|
kn∑
i=1

(φ′(ζi) − φ′(xi))Bi|

≤ ω
(
φ′, k, h∗

n,k

)
.

Thus, limn→∞ pk(
∑n2

i=1 φ′(ζi)Bi −
∑n2

k=1 φ′(xi)Bi) = 0. Now,

pk[(L(Snφ) − φ′(0))B0] ≤ |L(Snφ) − φ′(0)|.
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Hence limn→∞ pk((L(Snφ) − φ′(0))B0) = 0 Finally, we have

(4.3) lim
n→∞

pk(
n2∑
i=1

φ′(ζi)Bi −
n2∑

k=1

φ′(xi)Bi + (L(Sn(φ)) − φ′(0))B0) = 0.

From (4.2), (4.3) and Proposition 1.9, (4.1) follows.

5. Numerical examples

In this section we give examples where the initial functions φ is neither bounded
nor integrable

Example 1.

x′(t) = x(t) + x(t − 0.5) +
∞∑

k=2

1
k2

x(t − k), t > 0,

x(θ) =
√
−θ, −∞ < θ ≤ 0.(5.1)

In this example, τ1 = 0.5 and for k ≥ 2, τk = k. For k ≥ 1, bk = 1
k2 , mk = −k.

Thus, θi = − i
n , i = 0, 1, 2, . . . , n2. Let n be even. So, −0.5 = −τ1 = θn/2 and

for k ≥ 2, τk = k = −θkn . Since

L(φ) = aφ(0) + φ(−0.5) +
∞∑

k=2

φ(−k),

we obtain that

L(Env) = v0 + vn/2 +
n∑

k=2

1
k2

vkn +

( ∞∑
k=n+1

1
k2

)
vkn.

With reference to Theorem 4.2, (T (n)
t )v is the solution to the system

v′0(t) = v0(t) + vn/2(t) +
n∑

k=2

1
k2

vkn(t) +

( ∞∑
k=n+1

1
k2

)
vkn(t),

v′i(t) = n(vi−1(t) − vi(t)), i = 1, 2, . . . , n2

v(0) = v.(5.2)

Taking v = Pnφ in (5.2), (EnT
(n)
t Pnφ)(θi) is nothing but vi(t).

Now, let x be the unique solution to (5.1). Then (Ttφ)(θi) = x(t + θi).
As per Theorem 4.2, vi(t) is an approximation to x(t + θi).
x satisfies the equation

x′(t) = x(t) +
√

0.5 − t +
∞∑

k=2

1
k2

√
k − t,

x(0) = 0,

for t ∈ [0, 0.5]. It is clear that the above equation has no closed form solution.
Using the Matlab ODE45 function, we have calculated the values of the solution at
t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 to the equation

x′(t) = x(t) +
√

0.5 − t +
1,00,000∑

k=2

1
k2

√
k − t,

x(0) = 0.
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The above solution is denoted by x∗.
We solve the system (5.2) using the Matlab ODE45 function. In the table below,

we take i = 0 and compare the values of v0(t) and x∗(t) which is an approximation
of x(t) in the interval [0, 0.5]. We consider t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and n =
10, 20, 60, 70.

t n = 10 n = 20 n = 60 n = 70
v0(t) v0(t) v0(t) v0(t) x∗(t)

0 0 0 0 0 0
0.1 0.2090 0.2168 0.2256 0.2268 0.2386
0.2 0.4288 0.4457 0.4647 0.4671 0.4921
0.3 0.6593 0.6862 0.7170 0.7209 0.7608
0.4 0.9036 0.9386 0.9810 0.9866 1.0439
0.5 1.1685 1.2083 1.2573 1.2640 1.3364
0.6 1.4631 1.5062 1.5589 1.5664 -
0.7 1.7972 1.8449 1.9051 1.9141 -
0.8 2.1807 2.2359 2.3094 2.3206 -
0.9 2.6236 2.6896 2.7810 2.7948 -
1.0 3.1364 3.2161 3.3285 3.3454 -

Remark. To approximately evaluate x in [0.5, 2], we may use a linear interpolation
of x in [0, 0.5]. Then, to approximately evaluate x in [2, 3], we may use a linear
interpolation of x in [0.5, 2] and so on. But the advantage in our procedure is that
we use only the initial data φ to evaluate x(t) for any t.

Let n = 70. For a fixed t, Tt(φ) ∈ Cσ(−∞, 0]. Now, EnTn
t Pn(φ)(θi) = vi(t).

For each t, an approximation to Tt(φ) is obtained by interpolating the 4901 values
vi(t) for i = 0, 1, . . . , 4901. In the following tables, we tabulate values of vi(t) for
some values of i. Whenever t + θi ≤ 0, we compare these values with Ttφ(θi) =
x(t + θi) =

√
|t + θi|:

t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = 0
Num. Act.

0 0
0.2268 -
0.4671 -
0.7209 -
0.9866 -
1.2640 -
1.5664 -
1.9141 -
2.3206 -
2.7948 -
3.3454 -

θ = −1/70
Num Act.
0.1195 0.1195
0.1938 -
0.4321 -
0.6839 -
0.9481 -
1.2236 -
1.5212 -
1.8616 -
2.2592 -
2.7234 -
3.2626 -

θ = −1/7
Num. Act
0.3780 0.3780
0.1945 0.2070
0.1543 -
0.3644 -
0.6118 -
0.8725 -
1.1448 -
1.4359 -
1.7638 -
2.1450 -
2.5901 -
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t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = −4/7
Num Act.
0.7559 0.7559
0.6860 0.6866
0.6078 0.6094
0.5168 0.5300
0.4016 0.4140
0.2619 0.2672
0.2073 -
0.3258 -
0.5465 -
0.8007 -
1.0704 -

θ = −1
Num. Act.
1.0000 1.0000
0.9485 0.9487
0.8939 0.8944
0.8357 0.8367
0.7730 0.7746
0.7045 0.7071
0.6278 0.6325
0.5388 0.5477
0.4297 0.4472
0.3118 0.3162
0.2517 0.0000

θ = −8/7
Num. Act.
1.0690 1.0690
1.0210 1.0212
0.9706 0.9710
0.9174 0.9181
0.8608 0.8619
0.8000 0.8018
0.7340 0.7368
0.6610 0.6655
0.5776 0.5855
0.4771 0.4928
0.3618 0.3780

t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = −20
Num. Act
4.4721 4.4721
4.4609 4.4609
4.4497 4.4497
4.4385 4.4385
4.4272 4.4272
4.4159 4.4159
4.4045 4.4045
4.3932 4.3932
4.3818 4.3818
4.3703 4.3703
4.3589 4.3589

θ = −70
Num Act.
8.3666 8.3666
8.3606 8.3606
8.3546 8.3546
8.3487 8.3487
8.3427 8.3427
8.3367 8.3367
8.3307 8.3307
8.3247 8.3247
8.3187 8.3126
8.3126 8.3216
8.3066 8.3066

Example 2. Consider

x′(t) = x(t) + x(t − 0.5) +
∞∑

k=2

1
k3

x(t − k), t > 0,

x(θ) = θ,−∞ < θ ≤ 0.(5.3)

It is elementary to show that the solution is

x(t) = −αt + (α − β)(et − 1), 0 ≤ t ≤ 0.5
= −pt + (p − q)(et−0.5 − 1) + r(t − (0.5))et + et−0.5, 0.5 < t ≤ 1

where α =
∑∞

i=1
1
i3 , β = −0.5 −

∑∞
i=2

1
i2 p = −1 q = −

∑∞
i=2

1
i2 + 0.5α and

r = (α + β)e−0.5.
In this example,

L(Enφ) = φ(0) + φ(−0.5) +
n∑

k=2

1
k3

φ(−k) +
∞∑

k=n+1

1
k3

φ(−n).
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We solve the system

v′0(t) = v0(t) + vn/2(t) +
n∑

k=2

1
k3

vkn(t) +

( ∞∑
k=n+1

1
k3

)
vkn,

v′i(t) = n(vi−1 − vi), i = 1, 2, . . . , n2,

v(0) = v,(5.4)

with v = Pnφ.
Unlike in Example 1, we know the exact solution for t ∈ [0, 1] and we compare

v0(t) and x(t) in the following table for various values of n:

t n = 10 n = 20 n = 50 n = 60
v0(t) v0(t) v0(t) v0(t) x(t)

0 0 0 0 0 0
0.1 -0.1089 -0.1116 -0.1131 -0.1133 -0.1142
0.2 -0.2168 -0.2223 -0.2256 -0.2259 -0.2278
0.3 -0.3247 -0.3323 -0.3371 -0.3377 -0.3406
0.4 -0.4355 -0.4433 -0.4483 -0.4490 -0.4527
0.5 -0.5533 -0.5597 -0.5625 -0.5628 -0.5639
0.6 -0.6831 -0.6876 -0.6876 -0.6874 -0.6853
0.7 -0.8295 -0.8329 -0.8317 -0.8313 -0.8293
0.8 -0.9970 -1.0005 -0.9996 -0.9994 -0.9982
0.9 -1.1899 -1.1946 -1.1947 -1.1947 -1.1946
1 -1.4126 -1.4189 -1.4203 -1.4205 -1.4212

In the tables below, for n = 60, we compare vi(t) with x(t + θi) for some values
of i.

t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = 0
Num. Act.

0 0
-0.1133 -0.1142
-0.2259 -0.2278
-0.3377 -0.3406
-0.4490 -0.4527
-0.5628 -0.5639
-0.6874 -0.6853
-0.8313 -0.8293
-0.9994 -0.9982
-1.1947 -1.1946
-1.4205 -1.4212

θ = −1/60
Num Act.

-0.0167 -0.0167
-0.0946 -0.0952
-0.2072 -0.2089
-0.3191 -0.3219
-0.4304 -0.4341
-0.5434 -0.5455
-0.6657 -0.6636
-0.8061 -0.8036
-0.9700 -0.9682
-1.1606 -1.1598
-1.3811 -1.3812

θ = −20/60
Num. Act

-0.3000 -0.3000
-0.2000 -0.2000
-0.1029 -0.1000
-0.0599 -0.0000
-0.1209 -0.1142
-0.2262 -0.2278
-0.3376 -0.3406
-0.4495 -0. 4527
-0.5652 -0.5639
-0.6920 -0.6853
-0.8372 -0.8293
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t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = −40/60
Num Act.

-0.6667 -0.6667
-0.5667 -0.5667
-0.4667 -0.4667
-0.3667 -0.3667
-0.2667 -0.2667
-0.1701 -0.1667
-0.1000 -0.0667
-0.0975 -0.0381
-0.1642 -0.1521
-0.2650 -0.2655
-0.3753 -0.3781

θ = −1
Num. Act.
-1.000 -1.0000
-0.9000 -0.9000
-0.8000 -0.8000
-0.7000 -0.7000
-0.6000 -0.6000
-0.5000 -0.5000
-0.3999 -0.4000
-0.3004 -0.3000
-0.2050 -0.2000
-0.1317 -0.1000
-0.1096 -0.0000

θ = −80/60
Num. Act.

-1.3333 -1.3333
-1.2333 -1.2333
-1.1333 -1.1333
-1.0333 -1.0333
-0.9333 -0.9333
-0.8333 -0.8333
-0.7333 -0.7333
-0.6333 -0.6333
-0.5331 -0.5333
-0.4334 -0.4333
-1.3340 -0.3333

t= 0
t= 0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=0.6
t=0.7
t=0.8
t=0.9
t=1

θ = −20
Num. Act

-20.0000 -20.0000
-19.9000 -19.9000
-19.8617 -19.8000
-19.7167 -19.7000
-19.6167 -19.6000
-19.5167 -19.5000
-19.4167 -19.4000
-19.3167 -19.3000
-19.2167 -19.2000
-19.1167 -19.1000
-19.0167 -19.0000

θ = −60
Num Act.

-60.000 -60.0000
-59.9000 -59.9000
-59.8000 -59.8000
-59.7000 -59.7000
-59.6000 -59.6000
-59.5000 -59.5000
-59.4000 -59.4000
-59.3000 -59.3000
-59.2000 -59.2000
-59.1000 -59.1000
-59.0000 -59.0000
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