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ON THE SMALLEST VALUE OF THE MAXIMAL MODULUS
OF AN ALGEBRAIC INTEGER

GEORGES RHIN AND QIANG WU

Abstract. The house of an algebraic integer of degree d is the largest mod-
ulus of its conjugates. For d ≤ 28, we compute the smallest house > 1 of
degree d, say m(d). As a consequence we improve Matveev’s theorem on the
lower bound of m(d). We show that, in this range, the conjecture of Schinzel-
Zassenhaus is satisfied. The minimal polynomial of any algebraic integer α
whose house is equal to m(d) is a factor of a bi-, tri- or quadrinomial. The
computations use a family of explicit auxiliary functions. These functions de-
pend on generalizations of the integer transfinite diameter of some compact
sets in C. They give better bounds than the classical ones for the coefficients
of the minimal polynomial of an algebraic integer α whose house is small.

1. Introduction

Let α be a nonzero algebraic integer of degree d, whose conjugates are α1 = α,
α2, . . . , αd, and let

P = b0X
d + b1X

d−1 + · · · + bd−1X + bd,

with b0 = 1, be its minimal polynomial. We denote, as usual, by

α = max
1≤i≤d

|αi|

the house of α, and by ν the number of αi such that |αi| > 1. Then α ≥ 1 and
Kronecker’s theorem asserts that α = 1 if and only if α is a root of unity. We
define m(d) to be the minimum of the houses of the algebraic integers α of degree
d which are not a root of unity.

A classical problem, see P. Borwein [PB], is to study the behaviour of m(d)
when d varies. On the one hand, it is clear that m(d) ≤ 21/d since the polynomial
Xd − 2 is irreducible of degree d. On the other hand, there is a conjecture of A.
Schinzel and H. Zassenhaus [SZ] which asserts that m(d) ≥ 1 + c1/d, where c1 is
a positive constant. Moreover D. Boyd [DB] suggests that c1 should be equal to
3
2 log(θ0) where θ0 = 1. 3247 . . . is the smallest Pisot number which is the real root
of X3−X−1. This is based on the fact, pointed out by C.J. Smyth, that for d = 3k

the number α with minimal polynomial X3k + X2k − 1 has α = θ
1/(2k)
0 = θ

3/(2d)
0 ,
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and it is expected that this is equal to m(d) for this degree. We say that an α
which gives m(d) is extremal.

We define the Mahler measure of α (and of P ) by

M(α) = |b0|
d∏

i=1

max(1, |αi|).

We say that α is reciprocal if α−1 is a conjugate of α. Smyth [SM] proved that, if
α �= 0, 1 is nonreciprocal, then M(α) ≥ θ0. Since M(α) ≤ α d, in this case we have
α ≥ 1 + log(θ0)/d.

P. Voutier [V] proved that, if α is a nonzero algebraic integer of degree d ≥ 3
which is not a root of unity, then

M(α) ≥ 1 +
1
4

( log log d

log d

)3

.

This gives

(1.1) m(d) ≥
(
1 +

1
4

( log log d

log d

)3)1/d

.

A. Dubickas [D] showed that the constant 1/4 in (1.1) can be replaced by
64/π2 − ε if d > d0(ε).

E. M. Matveev [MAT] proved the following result:

Theorem 1. Let α be an algebraic integer, not a root of unity, and let d =
deg(α) ≥ 2. Then

(1.2) α ≥ exp(log(d + 0.5)/d 2).

Moreover, if α is reciprocal and d ≥ 6, then

(1.3) α ≥ exp(3 log(d/2)/d 2).

The lower bound for m(d) given in (1.1) is asymptotically better than the bound
given in (1.2), but improves it only for d ≥ 1435. Hence, for d not too large, the
inequality (1.2) is better than (1.1).

For d ≥ 29, we have exp(3 log(d/2)/d 2) ≤ θ0
1/d. So by Smyth’s theorem, any

nonzero algebraic integer α of degree d, not a root of unity, whose house is less
than θ0

1/d is reciprocal. Then we may apply the second part of Matveev’s theorem.
Hence we deduce that, for d ≥ 29,

m(d) ≥ exp(3 log(d/2)/d 2).

In this paper our goal is, on the one hand, to verify the conjecture of Schinzel
and Zassenhaus with Boyd’s constant up to d = 28. On the other hand, we use
these results to prove an interesting consequence of Matveev’s theorem:

Theorem 2. Let α be a nonzero algebraic integer, not a root of unity, and
d = deg(α) ≥ 4.

Then for d ≤ 12,

(1.4) α ≥ exp(3 log(d/3)/d 2)

and for d ≥ 13,

(1.5) α ≥ exp(3 log(d/2)/d 2).
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This result gives a better lower bound than (1.1) for d ≤ 6380.
As a consequence of our computations we get the following results:

Proposition. 1. The conjecture of Schinzel and Zassenhaus is true, with c1 =
3
2 log(θ0), for 1 ≤ d ≤ 28.

2. For 1 ≤ d ≤ 28, m(d) is given by a polynomial which is a factor of a
polynomial with at most four monomials.

3. For 3 ≤ d ≤ 30, m(d) is stricly less than 21/d.

For degree 31 we have computed the houses of all irreducible polynomials of
height 1. They are all > 21/31. So we expect the following.

Conjecture. m(31) = 21/31.

A Perron number is a positive algebraic integer α of degree d such that α >
max2≤i≤d |αi|. For the degrees d = 17 and d = 23 the extremal α is a Perron
number. Hence they satisfy the conjecture of Lind–Boyd [DB]:

Conjecture (Lind-Boyd). The smallest Perron number of degree d ≥ 2 has min-
imal polynomial

Xd − X − 1 if d �≡ 3, 5 mod 6,

(Xd+2 − X4 − 1)/(X2 − X + 1) if d ≡ 3 mod 6,

(Xd+2 − X2 − 1)/(X2 − X + 1) if d ≡ 5 mod 6.

Boyd [DB] also made the following conjecture:

Conjecture (Boyd). 1. The extremal α is always nonreciprocal.
2. If d = 3k, then the extremal α has minimal polynomial X3k + X2k − 1(or

X3k − X2k + 1).
3. The extremal α of degree d has ν ∼ 2

3d as d → ∞.

We give in Table 1 the list of extremal α for d = 1 to d = 28. We see that the
claims 1 and 2 in Boyd’s conjecture are satisfied. Boyd noticed that, up to degree
12, ν(d) is monotone, but this is no longer true for d > 13. The minimal polynomial
of the extremal α for degree 23 is

P23 = X23 + X22 − X20 − X19 + X17 + X16 − X14 − X13

+X11 + X10 − X8 − X7 + X5 + X4 − X2 − X − 1.

Since this is a Perron number which satisfies the conjecture of Lind–Boyd, it can
be written as

P23 =
X25 − X2 − 1
X2 − X + 1

.

Likewise,

P19 = X19 + X18 + X15 + X14 + X11 + X10 − X8 + X6 − X4 + X2 − 1

can be written as

P19 =
X22 − X11 − X + 1
X3 − X2 + X − 1

.

Therefore, for any extremal α of degree d, we write its minimal polynomial Pd

as a simple polynomial divided by a product of cyclotomic polynomials.
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We make the following conjecture:

Conjecture. Any extremal α has minimal polynomial which is a factor of a poly-
nomial which has at most 4 monomials.

Proof of Theorem 2: We have only to verify that, for 4 ≤ d ≤ 28, m(d) is greater
than the right-hand side in (1.4) or (1.5).

Boyd [DB] has computed the smallest houses for d ≤ 12. The main tool in his
computations is to give bounds for sk, which is the sum of the k-th powers of the
roots of P , for 1 ≤ k ≤ 3d. If α ≤ B, then |sk| ≤ dBk. He uses these bounds
together with Newton’s formula:

sk + sk−1b1 + . . . + s1bk−1 + kbk = 0,

which gives by induction bounds for the coefficients bk, for 1 ≤ k ≤ d, in order
to get a large set Fd of polynomials. He computes sk with Newton’s formula for
d + 1 ≤ k ≤ 3d (with bk = 0) and, for every k, he eliminates the polynomial when
sk is not within its bounds. So he gets a smaller set F3d.

We use this principle, but the computing time grows exponentially with the
degree d. Therefore, to obtain better bounds for the numbers sk we construct a
large family of explicit auxiliary functions. These functions are related to suitable
generalizations of the integer transfinite diameter of some compact subsets of the
complex plane. This method has been used in [FRSE] to compute all algebraic
integers with small Mahler measure up to degree 40.

Here we prove that we may restrict our search to algebraic integers which are
units. This property is used to reduce the numbers of polynomials to examine. A
priori we cannot assume that this is true for the smallest Perron numbers; therefore
the study of smallest Perron numbers will be devoted to a forthcoming paper [WU2].

This paper is organized as follows. In Section 2 we prove that, up to degree 30,
for any degree d there exists an algebraic integer such that 1 < α < 21/d. This
proves that |bd| = 1. In Section 3 we show how to use explicit auxiliary functions
to give bounds for sk. We also explain how to construct such auxiliary functions.
In Section 4 we give some refinements of the previous method. We give relations
between sk and s2k. Moreover, for d = 26 and d = 28 we show that the triples
(bd−2, bd−1, bd) belong to a rather “ small ” set. Section 5 is devoted to the final
computations. The search for the degree 28 took 6800 hours on a 2.8Ghz PC.

The first author is gratefully indebted to the South West University of China in
Chongqing where a great part of this work was done.

2. The norm of α with smallest house for d ≤ 30

To prove the previous assertion for 3 ≤ d ≤ 30, it suffices to prove it for d = 4
and when d is an odd prime ≤ 29 because, if deg(α) = d and α < 21/d, then
α1/k < 21/dk. For 4 ≤ d ≤ 23 the results can be found in Table 1. When Pd is
a primitive polynomial, it is written, for d > 3, as a quotient with numerator a
tri- or a quadrinomial. The denominator is a product of at most two cyclotomic
polynomials: Φ1 = X − 1, Φ4 = X2 + 1 and Φ6 = X2 − X + 1. When Pd is not
primitive, it is written as Pe(Xk) with d = ek. For d = 29 the minimal polynomial
of the number α which gives the smallest house (= 1. 02338300 . . .) that we have
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Table 1. List of extremal α of degree d and minimal polynomial
Pd(X). In the last column ν is the number of roots of Pd outside
the unit disc.

d polynomial Pd(X) m(d) ν

1 X − 2 2 1

2 X2 − 2 21/2 = 1. 41421356 . . . 2

3 X3 + X2 − 1 θ
1/2
0 = 1. 15096392 . . . 2

4 (X5 − X3 + X − 1)/Φ1 1. 18375181 . . . 2

5 (X7 − X4 + X + 1)/Φ4 1. 12164517 . . . 4

6 P3(X2) θ
1/4
0 = 1. 07282986 . . . 4

7 (X10 − X5 − X3 + 1)/(Φ1Φ4) 1. 09284559 . . . 4

8 (X11 − X6 + X − 1)/(Φ1Φ4) 1. 07562047 . . . 6

9 P3(X3) θ
1/6
0 = 1. 04798219 . . . 6

10 P5(X2) 1. 05907751 . . . 8

11 (X14 − X7 − X + 1)/(Φ1Φ4) 1. 05712485 . . . 8

12 P3(X4) θ
1/8
0 = 1. 03577500 . . . 8

13 (X15 − X8 + X + 1)/Φ4 1. 05372001 . . . 10

14 P7(X2) 1. 04539255 . . . 8

15 P3(X5) θ
1/10
0 = 1. 02851905 . . . 10

16 P8(X2) 1. 03712124 . . . 12

17 (X19 − X2 − 1)/Φ6 1. 03930211 . . . 11

18 P3(X6) θ
1/12
0 = 1. 02371001 . . . 12

19 (X22 − X11 − X + 1)/(Φ1Φ4) 1. 03641032 . . . 14

20 P5(X4) 1. 02911491 . . . 16

21 P3(X7) θ
1/14
0 = 1. 02028875 . . . 14

22 P11(X2) 1. 02816577 . . . 16

23 (X25 − X2 − 1)/Φ6 1. 02932014 . . . 15

24 P3(X8) θ
1/16
0 = 1. 01773032 . . . 16

25 P5(X5) 1. 02322489 . . . 20

26 P13(X2) 1. 02650865 . . . 20

27 P3(X9) θ
1/18
0 = 1. 01574486 . . . 18

28 P7(X4) 1. 02244440 . . . 16



1030 GEORGES RHIN AND QIANG WU

found for this degree is

P = X29 + X28 − X26 − X25 + X23 + X22 − X20 − X19 + X17

+X16 − X14 − X13 + X11 + X10 − X8 − X7 + X5 + X4 − X2 − X − 1,

which may be written as

P =
X31 − X2 − 1
X2 − X + 1

.

In order to prove this assertion and to get good bounds B for our further com-
putations, we seek all houses of irreducible polynomials of height 1 whose house
is less than 21/d from degree 13 to degree 31. Then, in the sequel, the bound B
will be taken, for any d, equal to the smallest house we have found during this
computation. We use this bound to compute the auxiliary functions of Sections 3
and 4.

3. The bounds for sk

a. We consider an explicit auxiliary function f of the following type:

(3.1) f(z) = −Re(z) −
∑

1≤j≤J

ej log |Qj(z)| ,

where z is a complex number, the ej are positive real numbers and the integer
polynomials Qj belong to a fixed set S that will be defined later. The numbers ej

are always chosen to get the best auxiliary function. We denote by m the minimum
of f(z) for |z| ≤ B. Since the function f is harmonic in this disc outside the union
of small discs around the roots of the polynomials Qj , this minimum is taken over
|z| = B.

We now assume that the polynomial P does not divide any polynomial Qj(±Xk)
for 1 ≤ k ≤ 3d. Then ∑

1≤i≤d

f(αi) ≥ md

and

−s1 ≥ dm +
∑

1≤j≤J

ej log

∣∣∣∣∣∣
∏

1≤i≤d

Qj(αi)

∣∣∣∣∣∣
.

∏
1≤i≤d Qj(αi) is equal to the resultant of P and Qj . Since P does not divide Qj ,

this is a nonzero integer. Therefore

(3.2) s1 ≤ −dm.

By symmetry, the same inequality is valid for −s1. If we replace B by Bk and the
numbers αi by the numbers ±αi

k, we get upper bounds for ±sk.

Remark. In his proof of Theorem 1, Matveev used an auxiliary function of this type
with the four polynomials: X, X − 1, X − 2 and X2 − X − 1.

b. Relations between explicit auxiliary functions and the integer transfinite
diameter.

If, inside the auxiliary function (3.1), we replace the real numbers ej by rational
numbers we may write

f(z) = −Re(z) − t

h
log |H(z)|,
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where H is in Z[X] of degree h and t is a positive real number. We want to get a
function f whose minimum m in |z| ≤ B is as large as possible. That is to say, we
seek a polynomial H ∈ Z[X] such that

sup
|z|≤B

|H(z)|t/heRe(z) ≤ e−m.

Now, if we suppose that t is fixed, say t = 1, it is clear that we need an effective
upper bound for the quantity

(3.3) tZ,ϕ(|z| ≤ B) = lim inf
h≥1

h→∞

inf
H∈Z[X]
deg H=h

sup
|z|≤B

|H(z)|t/hϕ(z),

where we use the weight ϕ(z) = eRe(z). To get an upper bound for tZ,ϕ(|z| ≤ B),
it suffices to get an explicit polynomial H ∈ Z[X] and then to use the sequence of
the successive powers of H.

This is a generalization of the integer transfinite diameter. For any h ≥ 1 we
say that a polynomial H (not always unique) is an Integer Chebyshev Polynomial
if the quantity sup|z|≤B |H(z)|t/hϕ(z) is a minimum. With Wu’s algorithm [WU1],
we compute polynomials H of degree less than 30 or 40 and take their irreducible
factors as polynomials Qj . We start with the polynomial X − 1, get the best e1

and take t = e1. After computing J polynomials, we optimize the numbers ej as
explained in the next subsection. This gives us a new number t, and we continue
by induction to get J + 1 polynomials. The list of polynomials Qj of the set S is
given in Table 2.

c. Optimization of the numbers ej .
We give a brief scheme of the semi-infinite linear programming method intro-

duced into number theory by C. J. Smyth. More details can be found in [FRSE].
To optimize the numbers ej , we first put the coefficient of Re(z) equal to e0 = 1.

We take a set X1 of “ well distributed ” points of modulus equal to B. By linear
programming, we get the maximum µ of the minimum of a finite set of linear forms
whose coefficients are −Re(zi) and − log |Qj(zi)| for 1 ≤ j ≤ J for any zi in X1.
This gives an auxiliary function f which has a minimum m > µ. We add to X1 a
selection of the points of |z| = B where f has a local minimum. With this new set
X2 we get another value for m and µ. We stop the process when the integer parts
of m and µ coincide.

d. A refinement for the bounds of sk.
When Bk becomes too large (say for k ∼ 2d) the bounds given by the auxiliary

functions are not as good as for small k. We give now better bounds. For this we
need the lemma:

Lemma 1. Let d ≥ 2 be an integer, b ≥ 1 a real number and α1, . . . , αd d positive
real numbers satisfying the following properties:

αi ≤ b for 1 ≤ i ≤ d and
∏

1≤i≤d αi = 1.
Then we have

(3.4)
∑

1≤i≤d

αi ≤ (d − 1)b +
1

bd−1
.

Proof. We may assume that

1
bd−1

≤ α1 ≤ . . . ≤ αd ≤ b,
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Table 2. List of polynomials Qj of the set S which are used in the
auxiliary functions of Section 3, dj = deg Qj , and the coefficients
of Qj are written from degree dj to 0.

Qj dj Coefficients of Qj

Q1 1 1 −1
Q2 1 1 −2
Q3 1 1 −3
Q4 1 1 −4
Q5 1 1 −5
Q6 1 1 −6
Q7 1 1 −7
Q8 2 1 0 1
Q9 2 1 −1 1
Q10 2 1 −2 2
Q11 2 1 −3 3
Q12 2 1 −4 5
Q13 2 1 −5 7
Q14 2 2 −4 3
Q15 3 1 −1 0 1
Q16 4 1 0 −1 0 1
Q17 4 1 −1 1 −1 1
Q18 4 1 −2 3 −3 2
Q19 4 1 −3 5 −5 3
Q20 4 1 −4 8 −9 5
Q21 6 1 0 0 1 0 0 1

whence

1 ≤ αd ≤ b.

If α1 = 1, then α1 = . . . = αd = 1 and

(3.5)
∑

1≤i≤d

αi = d ≤ (d − 1)b +
1

bd−1

since the right-hand side in (3.5) is an increasing function of b on [1,∞). If α1 =
1

bd−1 , then

α2 = . . . = αd = b

and we get (3.4). If 1
bd−1 < α1 < 1, then there exists an integer k ≥ 1 such that

1
bd−1

< α1 ≤ . . . ≤ αk < αk+1 = . . . = αd = b.

Let γ be a real number such that α1γαk = 1. Then we have γα2
k ≥ 1. Since

α1 + αk =
1

γαk
+ αk

is an increasing function of αk, we get (3.4) if we increase successively αk, . . . , α2

until they reach b.
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Table 3.

k 1 2 3 4 8 16 28 48 60 76 84

sk 0 0 0 −4 4 −12 24 36 −44 72 24

max 5 6 7 8 13 23 41 74 102 145 174

MAX 28 29 29 30 33 39 52 81 106 151 180

Since bd = ±1, we may apply Lemma 1 to the set |αi|, 1 ≤ i ≤ d, of the moduli
of the roots of P . Thus we get

|sk| ≤ (d − 1)Bk +
1

Bk(d−1)
.

This is better than the previous bounds that we have computed with the explicit
auxiliary functions.

e. A numerical example for degree 28.
We give, in Table 3, the bounds that we obtain for |sk| (max) for some values of

k and the corresponding classical bounds (MAX). We give also the values of sk for
the polynomial P28.

4. Improvements of the method

a. Relations between the bounds for sk and the bounds for s2k.
The classical inequality relating sk and s2k is the following [DB]:

s2k ≥ 2s2
k

d
− dB2k.

Here we exploit the relations between sk and s2k that will be given by explicit
auxiliary functions of the following type:

(4.1) f(z) = Re(z2) − e0Re(z) −
∑

1≤j≤J

ej log |Qj(z)| ,

where the numbers ej and the polynomials Qj are as in Section 3. We add to the
previous set S of 21 polynomials given in Table 2, the 10 polynomials of Table 4.
If m is the minimum of f(z) for |z| ≤ B, by the same argument as in Section 3 we
get

s2 − e0s1 ≥ md.

If we assume that s1 has the value σ, then s2 ≥ dm+e0σ. We optimize the numbers
e0, . . . , eJ to get a maximal value for dm + e0σ. Therefore we get a lower bound
for s2 depending on the value of σ. If we take σ close to its upper bound, then we
get a bound for s2 better than the one given in Section 3. If in (4.1) we replace
−e0Re(z) by e0Re(z), we get the same lower bound for s2 when s1 has the value
−σ. We may also replace Re(z2) by −Re(z2) and get upper bounds for s2. Then,
replacing B by Bk, we get bounds for s2k when sk has values close to its bounds.
We give a numerical example for d = 18. For k = 6 we have −7 ≤ s6 ≤ 7 and
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Table 4. List of new polynomials which are used in the auxiliary
functions of Section 4a. Two different subsets of the polynomials
Q1, . . . , Q31 are used to get the upper bounds for s2k, respectively
the lower bounds for s2k.

Qj dj Coefficients of Qj

Q22 1 1 1
Q23 2 1 1 1
Q24 2 1 0 −2
Q25 3 1 −1 −3 4
Q26 3 1 −1 −4 5
Q27 3 1 −2 −1 3
Q28 3 1 −3 1 3
Q29 4 1 0 0 0 1
Q30 4 1 1 1 1 1
Q31 6 1 1 1 1 1 1 1

−12 ≤ s12 ≤ 12. Then we decrease the upper bounds of s12 as follows:

if |s6| = 7, then s12 ≤ 3,

if |s6| = 6, then s12 ≤ 5,

and if |s6| = 5, then s12 ≤ 10.

For the lower bounds of s12 we get

if |s6| ≥ 6, then s12 ≥ −9,

if |s6| = 5, then s12 ≥ −10,

and if |s6| = 4, then s12 ≥ −11.

Remark. The polynomial P18 = X18 +X12−1, which is the minimal polynomial of
the extremal α, does not satisfy these conditions since, for P18, we have s6 = −6 and
s12 = 6. This is because we have used the polynomial X3 −X2 + 1 in the auxiliary
function and −α6 is a root of this polynomial. If we do not use the polynomial
X3 − X2 + 1 in the auxiliary function, then for |s6| = 6 we have s12 ≤ 8. So, for
every d, we add to the set of polynomials obtained by our computations all the
irreducible factors of degree d of the polynomials Qj(±Xk).

When d is large the results are more spectacular. For d = 28 we have |s42| ≤ 64
and |s84| ≤ 174. If |s42| = 64, then 105 ≤ s84 ≤ 118.

b. A study of the triples (bd−2, bd−1, bd).
Here we want to get good bounds for |bd−2| and |bd−1|. Since |bd| = 1, we have

|bd−2| = |
∑

1≤i≤d 1/α2
i | and |bd−1| = |

∑
1≤i≤d 1/αi|. But we have |1/αi| ≤ Bd−1,

so this implies, when d = 28 and B = 1. 02245, |bd−1| ≤ dBd−1 < 50.992 and
|bd−2| ≤ dB2(d−1) < 92.87. These bounds are unsatisfactory. Therefore, in order to
obtain reasonable bounds for bd−2 and bd−1, we study σk =

∑
1≤i≤d αk

i +1/αk
i for

k = 1, 2. The advantage is that the numbers αk
i + 1/αk

i lie inside an ellipse which
is “not too far” from the real axis. Moreover we will see that, in the worst case,
all these numbers but one are inside an ellipse which is very close to the interval
[−2, 2]. Since the auxiliary functions f(z) of the type (3.1) are more efficient when
z has a very small imaginary part, we will get good bounds for σ1 and σ2. For
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d = 28 we get |σ1| ≤ 8 and |σ2| ≤ 13. This gives, for a fixed pair (s1, s2), 566
triples.

We first need a lemma:

Lemma 2. Let m be a positive real number, let d ≥ 2 be an integer, and h(x) a
real continuous decreasing function defined on the interval [0, (d − 1)m]. Let h1(x)
and h2(x) be two linear functions such that:

For 0 ≤ x ≤ m, h(x) = h1(x) and for m ≤ x ≤ (d − 1)m, h(x) = h2(x).
Let b1 ≤ . . . ≤ bd ≤ m be d real numbers such that

∑
1≤i≤d

bi = 0.

Define
ω =

∑
1≤i≤d

h(|bi|).

Then

(4.1) ω ≥ h((d − 1)m) + (d − 1)h(m).

Proof. If all the numbers bi vanish, then (4.1) is clearly true; otherwise there exist
two integers 0 ≤ l ≤ k < d such that

−(d − 1)m ≤ b1 ≤ . . . ≤ bl ≤ −m,

−m < bl+1 ≤ . . . ≤ 0,

and
0 < bk+1 ≤ . . . ≤ bd ≤ m.

Now, if we put ai = |bi| for all i, we have a1 + . . . + ak = ak+1 + . . . + ad and
a1 + . . . + al ≥ lm.

If l = 0, then, since h2 is linear, we have

ω ≥
∑

1≤i≤d

h1(m) =
∑

1≤i≤d

h2(m) = h2((d − 1)m) + (d − 1)h2(m).

If l ≥ 1 we have

(4.2) ω ≥
∑

1≤i≤l

h2(ai) +
∑

l+1≤i≤d

h1(m).

Since h2 is linear and
lm ≤

∑
1≤i≤l

ai ≤ (d − k)m,

the right-hand side of (4.2) is equal to

h2

⎛
⎝ ∑

1≤i≤l

ai − (l − 1)m

⎞
⎠ + (l − 1)h2(m) + (d − l)h1(m).

Then, since d − k − l + 1 ≤ d − 1, we have

ω ≥ h2((d − k − l + 1)m) + (d − 1)h2(m) ≥ h2((d − 1)m) + (d − 1)h2(m).

Let P be a monic integer noncyclotomic polynomial of degree d ≥ 2 such that
|P (0)| = 1. Let α1, . . . , αd be its roots in C and put bi = log |αi|

log B with b1 ≤ . . . ≤
bd ≤ 1. Then there exists an integer k ≤ d − 1 such that 0 < bk+1 ≤ . . . ≤ bd ≤ 1.
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Put ai = |bi| for 1 ≤ i ≤ d. Then αi + 1
αi

is inside the ellipse Eai
whose axes are

Bai + B−ai and Bai − B−ai .
Now let f be an explicit auxiliary function of type (3.1). For a ≥ 0 we define

the function

(4.3) g(a) = min
z∈Ea

f(z).

Since αi + 1
αi

∈ Eai
, we have

(4.4) σ1 ≥
∑

1≤i≤d

g(ai).

Now we assume that we have a decreasing function h which is continuous on the
interval [0, d − 1], linear on both intervals [0, 1] and [1, d − 1] and such that, for all
a ∈ [0, d − 1], h(a) ≤ g(a). Then, By Lemma 2, we get from (4.4) that

σ1 ≥ (d − 1)h(1) + h(d − 1).

For a fixed ε (say ε = 1/10), we want the function h to satisfy h ≤ g and to be
such that

(d − 1)h(1) + h(d − 1) ≥ (d − 1)g(1) + g(d − 1) − ε.

For d = 28 and B = 1. 02245, we explain how to choose the function h. The
polynomials Qj are the 11 polynomials Rj given in Table 5, and the coefficients ej

are equal to

0. 16464679, 0. 49414790, 0. 61080711, 0. 04928365, 0. 03946975, 0. 21423746,

0. 02691357, 0. 14143025, 0. 04972685, 0. 02489806, 0. 03963391.

We have m1 = g(0) = −0. 22094287 . . ., m2 = g(1) = −0. 22447363 . . ., m3 =
g(d − 1) = −2. 83442434 . . . and (d − 1)g(1) + g(d − 1) = −8. 89521261 . . .. We put
ε1 = ε2 = ε

2(d−1) and ε3 = ε
2 .

The function h1 is the line defined by h1(0) = m1−ε1 and h1(1) = m2−ε2. The
function h2 is defined by h2(1) = m2−ε2 and h2(d−1) = m3−ε3. We find a staircase
function s such that h ≤ s ≤ g. The sequence of points 0 < at < . . . < a1 = d − 1
where s is not continuous is defined by induction as follows. We start at a1 = d− 1
where s(a1) = g(a1). Then a2 < a1 is defined by h2(a2) = g(a1). Since g and h2 are
decreasing we have, for any a ∈ (a2, a1), h2(a) < s(a) = g(a1) < g(a). We continue
until we obtain a point ar−1 such that m2 − ε2 < g(ar−1) < m2. We take the next
point (ar, g(ar−1)) on the line h1, and we continue the same process as before with
h1 instead of h2, until g(at) ≥ m1 − ε1. The last stair is (0, at) where s has the
value g(at). In this case t = 31 and (d − 1)h(1) + h(d − 1) ≥ −8. 99521261 . . . so
σ1 ≥ −8.

5. The final computation

The set Fd is very large when the degree d increases. For d = 28 it contains
1.6× 1012 polynomials. In this special case (and also for degree 26), for each of the
34 possible values of (s1, s2) (restricted to s1 ≤ 0), we first compute all possible
triples (bd−2, bd−1, bd) and then compute the sets Fd and F3d relative to this pair
(s1, s2). If the set F3d is not empty, then we use the Schur–Cohn algorithm [MAR]
to compute the number of roots of P inside a disc of radius equal to Matveev’s
bound (1.2). Since we always use a bound B that will be subsequently proved
to equal m(d) + ε, we get few polynomials. For instance, in the case d = 26 we
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Table 5. Polynomials Rj which are used in the auxiliary functions
of Section 4b. d = deg Rj and the coefficients of Rj are written
from degree d to 0.

Rj d Coefficients of Rj

R1 1 1 0
R2 1 1 1
R3 1 1 2
R4 2 1 0 −2
R5 2 1 0 −3
R6 2 1 1 −1
R7 3 1 0 −3 1
R8 3 1 1 −2 −1
R9 4 1 1 −4 −4 1
R10 5 1 −4 −3 −3 3 1
R11 5 1 1 −5 −5 4 3

get 11 polynomials. In the case d = 28 we get 8 polynomials. For the very last
computation we use Pari [PARI] to keep only the irreducible polynomials (which
turn out to be always at most 1) and compute the roots of the polynomials P to
get ν and m(d).

In the case d = 3k we get no polynomial at all, because the polynomial X3 +
X2 − 1 is used inside one of the auxiliary functions, as was explained in Section 4a.
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[FRSE] V. Flammang, G. Rhin and J.M. Sac-Épée, Integer transfinite diameter and polynomials
of small Mahler measure, Math. Comp. 75 (2006), 1527–1540. MR2219043

[MAR] M. Marden, Geometry of polynomials, Amer. Math. Soc. Providence, Rhode Island (1966).
MR0225972 (37:1562)

[MAT] E.M. Matveev, On the cardinality of algebraic integers, Math. Notes 49 (1991), 437–438.
MR1119233 (92g:11070)

[PARI] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP-Pari version 2.0.12,
1998.

[SZ] A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan
Math. J. 12 (1965), 81–85. MR0175882 (31:158)

[SM] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic
integer, Bull. London Math. Soc. 3 (1971), 169–175. MR0289451 (44:6641)

[V] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74
(1996), 81–95. MR1367580 (96j:11098)

[WU1] Q. Wu, On the linear independence measure of logarithms of rational numbers, Math.
Comp. 72 (2002), 901–911. MR1954974 (2003m:11111)

[WU2] Q. Wu, The smallest Perron numbers (in preparation).

http://www.ams.org/mathscinet-getitem?mr=790657
http://www.ams.org/mathscinet-getitem?mr=790657
http://www.ams.org/mathscinet-getitem?mr=1912495
http://www.ams.org/mathscinet-getitem?mr=1912495
http://www.ams.org/mathscinet-getitem?mr=1201616
http://www.ams.org/mathscinet-getitem?mr=1201616
http://www.ams.org/mathscinet-getitem?mr=2219043
http://www.ams.org/mathscinet-getitem?mr=0225972
http://www.ams.org/mathscinet-getitem?mr=0225972
http://www.ams.org/mathscinet-getitem?mr=1119233
http://www.ams.org/mathscinet-getitem?mr=1119233
http://www.ams.org/mathscinet-getitem?mr=0175882
http://www.ams.org/mathscinet-getitem?mr=0175882
http://www.ams.org/mathscinet-getitem?mr=0289451
http://www.ams.org/mathscinet-getitem?mr=0289451
http://www.ams.org/mathscinet-getitem?mr=1367580
http://www.ams.org/mathscinet-getitem?mr=1367580
http://www.ams.org/mathscinet-getitem?mr=1954974
http://www.ams.org/mathscinet-getitem?mr=1954974


1038 GEORGES RHIN AND QIANG WU
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