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COMPUTATION OF THE p-PART
OF THE IDEAL CLASS GROUP

OF CERTAIN REAL ABELIAN FIELDS

HIROKI SUMIDA-TAKAHASHI

Abstract. Under Greenberg’s conjecture, we give an efficient method to com-
pute the p-part of the ideal class group of certain real abelian fields by using
cyclotomic units, Gauss sums and prime numbers. As numerical examples,
we compute the p-part of the ideal class group of the maximal real subfield of
Q(

√
−f, ζpn+1) in the range 1 < f < 200 and 5 ≤ p < 100000. In order to

explain our method, we show an example whose ideal class group is not cyclic.

1. Introduction

Let K be a number field and p a prime number. Let K∞ be the cyclotomic
Zp-extension of K and Kn the subfield of K∞ such that [Kn : K] = pn. Further
let An be the p-part of the ideal class group of Kn. Greenberg’s conjecture claims
that �An is bounded as n → ∞ if K is totally real. We have not been able to find
any counter-example to the conjecture. On the other hand, it has been verified
for certain real abelian fields and some prime numbers by computer calculation
(cf. [8, 16]).

In [11, 14], under Greenberg’s conjecture, Kraft-Schoof and Ozaki gave a nice
method to compute the p-part of the ideal class group of certain real abelian fields by
using cyclotomic units. In the computation, we need to know whether a cyclotomic
unit cn ∈ Kn is a pn+1th power or not in Kn. As the degree of the minimal
polynomial for cn over Q gets larger, the computation of the minimal polynomial
for pn+1√cn becomes more difficult. In [15, 16], by using Gauss sums and prime
numbers, we avoided the difficulty and gave an efficient method to compute the p-
part of the ideal class number of certain real abelian fields. In this paper, combining
them, we give an efficient method to compute the p-part of the ideal class group.

Following [15, 16], we give numerical examples of the p-part of the ideal class
group of the maximal real subfield Kf,p of Q(

√
−f, ζp) in the range 1 < f < 200

and 5 ≤ p < 100000. The first purpose of this computation is to verify Green-
berg’s conjecture for each case. In fact we verify the conjecture in the above range.
Therefore we can make use of the method of [11, 14] to compute the structure
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of the p-part of the ideal class group. Let χ be the nontrivial Dirichlet charac-
ter associated to Q(

√
−f) and ω = ωp the Teichmüller character. Here we call

(p, χωk) an exceptional pair if and only if χωk is even, χωk(p) �= 1, χω1−k(p) �= 1,
and one of the following conditions is satisfied: νp(χωk) > 0, vp(Lp(1, χωk)) >

1, vp(Lp(0, χωk)) > 1, or λ̃p(χωk) > 1, where νp(χωk) is the χωk-part of the Iwa-
sawa νp-invariant, vp is the p-adic valuation such that vp(p) = 1 and λ̃p(χωk) is the
degree of the Iwasawa polynomial for χωk. The second purpose of the computation
is to find exceptional pairs, as many as possible for large prime numbers in order
to argue about their expected numbers (cf. [17, pp.158–159]). From our data, the
actual numbers of exceptional pairs seem to be close to the expected numbers.

Following [1], we compute An for f = 4 · 14606 and p = 5 (i.e., K = K4·14606,5):{
A0 � Z/pZ⊕ Z/pZ,
An � Z/p2Z⊕ Z/pZ for n ≥ 1.

Since p splits in Q(
√
−f), we need to modify some conditions in order to apply the

criterion of [15]. We explain about the modification and difficulty in the following
section.

2. A method of computation of An

Let F be an abelian field and p an odd prime number. For simplicity, we assume
the following condition:

(C1) The exponent of Gal(F/Q) divides p − 1.

Let K = F (ζp) and An = An(K) be the p-part of the ideal class group of Kn =
F (ζpn+1). Let Dn be the subgroup of An consisting of classes which contain an
ideal all of whose prime factors lie above p. Set A′

n = An/Dn. Let Mn be the
maximal abelian extension of Kn unramified outside p, Ln the maximal unramified
abelian extension of Kn, and L′

n the maximal unramified abelian extension of Kn

in which every prime divisor above p splits completely. Set Xn = Gal(Ln/Kn) and
X ′

n = Gal(L′
n/Kn). By the class field theory, we have An � Xn and A′

n � X ′
n. Set

L∞ =
⋃

Ln, L′
∞ =

⋃
L′

n, X∞ = Gal(L∞/K∞) and X ′
∞ = Gal(L′

∞/K∞).
Set ∆ = Gal(K∞/Q∞) � Gal(K0/Q). Let ψ be a Dirichlet character of ∆

and eψ = 1
�∆

∑
δ∈∆ ψ(δ)δ−1 ∈ Zp[∆]. For a Zp[∆]-module A, we denote eψA by

Aψ. Let λp(ψ), µp(ψ) and νp(ψ) (resp. λ′
p(ψ), µ′

p(ψ) and ν′
p(ψ)) be the Iwasawa

invariants associated to Aψ
n (resp. A′ψ

n), i.e.,

�Aψ
n = pλp(ψ)n+µp(ψ)pn+νp(ψ) (resp. �A′ψ

n = pλ′
p(ψ)n+µ′

p(ψ)pn+ν′
p(ψ))

for all sufficiently large integers n. By Ferrero-Washington’s theorem in [4], we have
µp(ψ) = µ′

p(ψ) = 0 for all p and ψ.
Assume that ψ is even. The Iwasawa polynomial gψ(T ) ∈ Zp[T ] for the p-adic

L-function is defined as follows. Let Lp(s, ψ) be the p-adic L-function constructed
in [12]. Let f0 be the least common multiple of p and fψ the conductor of ψ. By [9,
§6], there uniquely exists Gψ(T ) ∈ Zp[[T ]] satisfying Gψ((1+f0)1−s−1) = Lp(s, ψ)
for all s ∈ Zp if ψ �= ψ0. By [4], it was proved that p does not divide Gψ(T ).
Therefore, by the p-adic Weierstrass preparation theorem, we can uniquely write
Gψ(T ) = gψ(T )uψ(T ), where gψ(T ) is a distinguished polynomial of Zp[T ] and
uψ(T ) is an invertible element of Zp[[T ]]. Similarly we can define g∗ψ(T ) ∈ Zp[T ]
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from G∗
ψ(T ) ∈ Zp[[T ]] satisfying G∗

ψ((1 + f0)s − 1) = Lp(s, ψ). Put λ̃p(ψ) =
deg gψ(T ) = deg g∗ψ(T ).

Let γ ∈ Γ = Gal(
⋃

Q(ζfn
)/Q(ζf0)) � Gal(K∞/K0) be a generator of Γ such that

ζγ
fn

= ζ1+f0
fn

for all n ≥ 0 and fn = f0p
n. As usual, we can identify the complete

group ring Zp[[Γ]] with the formal power series ring Λ = Zp[[T ]] by γ = 1 + T .
By this identification, we can consider a Zp[[Γ]]-module as a Λ-module. Set ωn =
(1 + T )pn − 1 and νm,n = ωm/ωn for m ≥ n ≥ 0. For a finitely generated torsion
Λ-module A, we define the Iwasawa polynomial charΛ(A) to be the characteristic
polynomial of the action T on A ⊗Qp (cf. [17, §13]). By Mazur-Wiles’ theorem in
[13], charΛ(Xψ−1ω) = g∗ψ(T ).

Let p be a prime ideal of K over p and pn the unique prime ideal of Kn over
p. Denote by Kpn

the completion of Kn at pn, and by Upn
the group of principal

units of Kpn
. Put Vpn

=
⋂

m≥n Nm,nUpn
, Nm,n denoting the norm map from Kpm

to Kpn
. We set

Un =
∏
p|p

Upn
and Vn =

∏
p|p

Vpn
,

where p runs over all prime ideals of K over p.
Let E′

n be the group of units ε of Kn satisfying ε ≡ 1 mod pn for all pn|p. Denote
by Cn the subgroup of K×

n generated by all the units

NQ(ζfn )/Kn
(1 − ζfn

)u, u ∈ Z[Gal(Kn/Q)]0,

where X0 is the augmentation ideal of the group ring X. Denote, respectively, En

and Cn as the closures of the images of E′
n and C ′

n = Cn ∩ E′
n under the diagonal

embedding dn : E′
n → Un.

From now on, we also assume the following condition:

(C2) ψ(p) �= 1.

Set ψ∗ = ψ−1ω and ω∗
0 = T − f0 . Then we have the following facts (see [5,

Theorem 1, 2]):

Fact 1.
Uψ

n = Vψ
n .

If ψ∗(p) �= 1,
Uψ

n � Λ/(ωn)
∪ ∪
Cψ

n � (gψ(T ), ωn)/(ωn).
If ψ∗(p) = 1,

Uψ
n /Tn � Λ/(ωn)
∪ ∪

Cψ
n Tn/Tn � (g̃ψ(T ), ωn)/(ωn),

where Tn = TorZp
Uψ

n � Λ/(ω∗
0 , ωn) and g̃ψ(T ) = gψ(T )/ω∗

0 .

We also have the following fact on E′
n and En, which follows from the Leopoldt

conjecture for (Kn, p) (cf. [17, §5.5]):

Fact 2. The inclusion dn : E′
n → En induces an isomorphism

(E′
n/E′

n
pa

)ψ � (En/En
pa

)ψ

for any a ≥ 0. Therefore Eψ
n has no nontrivial torsion element.
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Our computation is based on the following theorem:

Theorem 1 (Kraft-Schoof, Ozaki). Assume (C1) and (C2). Greenberg’s conjecture
holds for Aψ

n if and only if there exists an integer n0 such that (En/Cn)ψ is stabilized
for n ≥ n0. Then

Aψ
n � (En/Cn)ψ

for all n ≥ n0.

We give an outline of a proof for convenience of the readers.

Proof. By (C1) and (C2), we obtain the following exact sequence for m ≥ n (cf. [15,
§2]):

0 → H1(Γn, Em)ψ → Aψ
n → (AΓn

m )ψ → H2(Γn, Em)ψ → 0,

where En is the group of units of Kn and Γn = Γpn

. If Greenberg’s conjecture holds
for Aψ

n , we can take m and n (m ≥ n) such that Nm,n : Aψ
m � Aψ

n and that in,m :
Aψ

n → (AΓn
m )ψ is a zero map, where in,m is the induced map by the natural inclusion

kn ↪→ km (see [6, Proposition 1]). Since we have H2(Γn, Em)ψ � (En/Nm,nEm)ψ,

0 → Aψ
m → (En/Nm,nEm)ψ → 0.

Further, we have Cn = Nm,nCm ⊆ Nm,nEm and �Aψ
m = �((Em/Cm)(p))ψ =

�((En/Cn)(p))ψ for n ≥ n0 by Mazur-Wiles’ theorem, where A(p) is the p-part
of the finite abelian group A. Therefore we have Aψ

n � Aψ
m � ((En/Cn)(p))ψ �

((Em/Cm)(p))ψ � (Em/Cm)ψ. �

Let Ln(ψ∗) be the fixed subfield of Ln by
⊕

χ �=ψ∗ Xχ
n . In a similar way, we

define Mn(ψ∗), L∞(ψ∗), etc. For an ideal L of Kn, set σψ∗

L
=

(
Ln(ψ∗)/Kn

L

)
∈

(Xn/
⊕

χ �=ψ∗ Xχ
n ) � Xψ∗

n , where ( ∗∗ ) is the Artin symbol. In order to calculate
(En/Cn)ψ, we use the following lemma:

Lemma 1. For k ≤ n + 1, if cn ∈ C ′
n satisfies

(A) dn(cn) ∈ (Upk

n )ψCpk

n ,

then pk√cn ∈ Ln(ψ∗). Further assume that

(B) Xψ∗

n is generated by σψ∗

Li
for Li � p and 1 ≤ i ≤ r.

Then

cn ∈ E′
n

pk

if and only if (cn mod Li)1≤i≤r ∈
r∏

i=1

(OKn
/Li)pk

.

Proof. Since pk√cn ∈ Mn(ψ∗), (A) implies the former assertion. By (B), Kn( pk√cn)
= Kn if and only if the splitting field of Li in Ln(ψ∗)/Kn includes Kn( pk√cn) for
every i, i.e., cn is a pkth power at Li. Therefore we obtain the latter assertion. �

In [15], when ψ∗(p) �= 1, we gave explicit conditions for (A) and (B) by using
cyclotomic units, Gauss sums and prime numbers. When ψ∗(p) = 1, ω0 divides
g∗ψ(T ). For n = 0, we can obtain full information from Gauss sums of a subfield of
K0 (cf. [1]). However, for n ≥ 1, we cannot directly obtain full information on Aψ∗

n

from Gauss sums (see [7, §4] and the last example of section 3). So we will replace
the conditions (A) and (B) with (Ã) and (B̃) in Lemma 4.
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Let us write the Kummer pairing:

Xψ∗

∞ × Wψ
∞ → µp∞ =

⋃
〈ζpn〉,

where W∞ is the subgroup of K×
∞⊗Qp/Zp which corresponds to X∞ via Kummer

theory. Let Ker
Xψ∗

∞
ω0 be the subgroup of Xψ∗

∞ consisting of all elements annihilated
by ω0. Set X̃ψ∗

∞ = Xψ∗

∞ /Ker
Xψ∗

∞
ω0. By Ferrero-Greenberg’s theorem in [3], ω0 does

not divide g̃∗χ(T ) = g∗ψ(T )/ω0. Hence we have

ϕ : Xψ∗

∞ ↪→
s⊕

i=1

Λ/(g∗i (T )) ⊕ Λ/(ω0),

where
∏s

i=1 g∗i (T ) = g̃∗ψ(T ). Let π be the projection from
⊕s

i=1 Λ/(g∗i (T ))⊕Λ/(ω0)
to

⊕s
i=1 Λ/(g∗i (T )). Then X̃ψ∗

∞ �(ϕ(Xψ∗

∞ )(Λ/(ω0)))/(Λ/(ω0)) � π(ϕ(Xψ∗

∞ )). Hence
X̃ψ∗

∞ has no nontrivial finite submodule (cf. [10, Theorem 18]) and charΛ(X̃ψ∗

∞ ) =
g̃∗ψ(T ). Set W̃ψ

∞ = ω∗
0Wψ

∞. Then we have the following Kummer pairing:

X̃ψ∗

∞ × W̃ψ
∞ → µp∞ .

When ψ∗(p) = 1, we consider the above paring. In order to obtain elements in W̃ψ
∞

satisfying (Ã) in Lemma 4, we use the following lemma:

Lemma 2. For integers n and k, we set

Cn,k = 〈[cn] ∈ (C ′
nE′

n
pk

/E′
n

pk

)ψ|dn(cn) ∈ (Upk

n Tn)ψCpk

n 〉.

Let a be the minimum integer such that pa ∈ (ω∗
0 , g̃ψ(T )). Then

paCn,k ⊆ ω∗
0Cn,k ⊆ Cn,k.

Assume that Greenberg’s conjecture holds for Aψ
n . Then

⋃
n,k

Cn,k = W̃ψ
∞.

Proof. By Ferrero-Greenberg’s theorem, ω∗
0 does not divide g̃ψ(T ). Therefore the

minimum integer a exists. Write pa = ω∗
0a(T ) + g̃ψ(T )b(T ) for a(T ), b(T ) ∈ Λ.

Then we have dn(cn)pa

= dn(cn)ω∗
0a(T )dn(cn)g̃ψ(T )b(T ) ∈ Cω∗

0
n Cpk

n Tn. Since Cn∩Tn =
{1}, we have pa[cn] ∈ ω∗

0Cn,k. Since Tn = Tpk

n+k, dn+k(cn) is a pkth power in Un+k

for [cn] ∈ Cn,k. Therefore we have Cn,k ⊆ Wψ
∞ and paCn,k ⊆ W̃ψ

∞. Let

C ′
n,k = 〈[cn]′ ∈ (C ′

n/C ′
n

pk

)ψ|dn(cn) ∈ (Upk

n Tn)ψCpk

n 〉.

By Fact 1, for sufficiently large integers n, C ′
n,k � (Z/pkZ)λ̃(ψ). If Greenberg’s con-

jecture holds, �(En/Cn)ψ is bounded. Hence Cn,k has a subgroup which is isomorphic
to (Z/pk−k′

Z)λ̃(ψ), where k′ ≤ k is a constant integer. Further the natural map
in,m : Cn,k → Cm,k+m−n ([cn] �→ [cn

pm−n

]) is injective. Therefore in,m(Cn,k) ⊆
paCm,k+m−n for sufficiently large integers m. Since

⋃
Cn,k � (Qp/Zp)λ̃(ψ) � W̃ψ

∞,
we have the equality. �
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Let L̃∞(ψ∗) be the fixed subfield of L∞(ψ∗) by Ker
Xψ∗

∞
ω0. Set L̃n(ψ∗) =

Ln(ψ∗) ∩ L̃∞(ψ∗) and X̃ψ∗

n = Gal(L̃n(ψ∗)/Kn) � Ãψ∗

n . Then we can write

X̃ψ∗

n � X̃ψ∗

∞ /νn,0Ỹ
ψ∗

∞

for a submodule Ỹ ψ∗

∞ of X̃ψ∗

∞ (see [17, Lemma 13.15]).
Let m = (p, T ) be the maximal ideal of Λ. In order to find ideals Li satisfying

(B̃) in Lemma 4, we use the following lemma.

Lemma 3. Let X be a finitely generated torsion Λ-module which has no nontrivial
finite Λ-submodule. Assume that ω0 does not divide charΛ(X). Then for any Λ-
submodules X ′ and Z of X such that Z ⊆ mω0X, (ω0X + Z)/Z = (ω0X

′ + Z)/Z
holds if and only if X = X ′.

Proof. Since m(ω0X) ⊇ Z, we have ω0X = ω0X
′ by Nakayama’s lemma. For any

element x ∈ X, there exists x′ ∈ X ′ such that ω0x = ω0x
′. Since ω0 : X → X (x �→

ω0x) is injective, we have x = x′ and X = X ′. �

In order to calculate (En/Cn)ψ for ψ∗(p) = 1, we use the following lemma, which
can be proved in a similar way to Lemma 1:

Lemma 4. Assume that Greenberg’s conjecture holds for Aψ
n . For k ≤ n + 1, if

cn ∈ C ′
n satisfies

(Ã) dn(cn) ∈ (Upk

n Tn)ψCpk

n ,

then pk√cn ∈ L̃n′(ψ∗) for some n′. Further assume that

(B̃) X̃ψ∗

n′ is generated by σ̃ψ∗

Li
for Li � p and 1 ≤ i ≤ r.

Then

cn ∈ E′
n

pk

if and only if (cn mod Li)1≤i≤r ∈
r∏

i=1

(OKn′ /Li)pk

.

By Mazur-Wiles’ theorem, we can obtain �Aψ∗

n = �Xψ∗

n = �(Xψ∗

∞ /νn,0Y
ψ∗

∞ ) from
generalized Bernoulli numbers. However it is difficult to compute �X̃ψ∗

n because it
is difficult to determine Ỹ ψ∗

∞ in X̃ψ∗

∞ . Therefore, in general, we have a difficulty in
checking (B̃) by our method.

3. Numerical examples of ideal class groups

Let χ be an odd primitive quadratic Dirichlet character, fχ the conductor of χ,
and p an odd prime number. Set F = Fχ = Q(

√
−fχ) and K = Q(

√
−fχ, ζp). Let

k be an odd integer with 3 ≤ k ≤ p− 2. Then χωk is an even character. For a pair
(p, χωk), we set the following condition:

(C) χωk(p) �= 1 and χω1−k(p) �= 1.

If χωk(p) �= 1, we have λp(χωk) = λ′
p(χωk) and νp(χωk) = ν′

p(χωk). In the
range 1 < fχ < 200, 5 ≤ p < 100000 and odd integers k with 3 ≤ k ≤ p − 2,
there are 14085400622 pairs of (p, χωk) satisfying (C). Among them, 296975 pairs
satisfy λ̃p(χωk) = 1, 43 pairs λ̃p(χωk) = 2, and two pairs λ̃p(χωk) = 3. By the
method of [8], we verified Greenberg’s conjecture, i.e., λp(χωk) = 0 for each of
them. Moreover, we checked νp(χωk) ≤ 2 by the method of [16]. In the above
range, 44 pairs do not satisfy (C). For these cases, we also checked that λp(χωk) =
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νp(χωk) = 0 by the method of [8]. Further, using the following lemma, we verified
that λp(χω) = νp(χω) = 0 for all fχ and p in the above range.

Proposition 1. If Aχ
0 is trivial, then Aχω

n is trivial for every n ≥ 0.

Proof. Assume that Aχω
n is not trivial for some n. Then we have deg g∗χω(T ) =

deg gχω(T ) ≥ 1. Hence, if χ(p) �= 1, we have vp(�A
χ
0 ) = vp(g∗χω(0)) ≥ 1. If

χ(p) = 1, then χω(p) �= 1. In this case, by the class field theory (see [8, Lemma
3]), Aχω

n �= {0} implies Aχω
0 �= {0}. Let a ∈ c ∈ Aχω

0 such that ap = (α) for α ∈ K.
Further there exists ε ∈ E′

0 \ E′
0
p such that [ε] ∈ (E′

0/E′
0
p)χω. Then we have p

√
α,

p
√

ε ∈ M0(χ) and Gal(K( p
√

α, p
√

ε)/K) � Z/pZ ⊕ Z/pZ. Since (U0/Up
0 )χ � Z/pZ,

there exists a nontrivial unramified abelian p-extension of K contained in M0(χ).
Therefore, by the class field theory, Aχ

0 is not trivial. �
We obtain the following computational result:

Proposition 2. Let Kfχ,p be the maximal real subfield of Q(
√
−fχ, ζp). λp(Kfχ,p)

= 0 for all 1 < fχ < 200 and 5 ≤ p < 100000. Exactly,

An(Kfχ,p) = {0} for n ≥ 0 and (fχ, p) which does not appear in Table 1,
An(Kfχ,p) � Z/pZ for n ≥ 0 and (fχ, p) �= (136, 11) in Table 1,

An(Kfχ,p) �
{

Z/pZ for n = 0,
Z/p2Z for n ≥ 1,

and (fχ, p) = (136, 11).

Table 1. νp(χωk) = 1 (2 for the ∗-marked case)

fχ p k fχ p k fχ p k fχ p k

4 379 317 11 79 55 11 173 161 15 4909 2173
19 37 17 19 41 11 19 2251 1953 20 20261 19403
23 193 175 31 131 115 31 821 275 40 97 83
51 557 457 51 6553 3593 55 41189 2099 67 433 409
71 17 3 79 45943 18175 79 17 9 84 10133 9805
88 33049 9069 91 37 21 91 7069 3293 103 17 3
103 67 15 104 17837 285 116 4363 3845 120 4177 2253
127 67 53 131 853 127 136 54547 6417 136 11 3 *
139 4451 2233 148 23 13 152 863 617 152 3019 2319
155 12377 9137 163 79 55 167 797 245 187 79 63

Table 2. vp(a0(χωk)) = 2 (3 for the ∗-marked case)

fχ p k fχ p k fχ p k fχ p k

4 1381 609 11 17 7 15 31 5 19 2699 1579
23 2521 2473 39 11 3 40 19 15 43 71 57
47 373 53 52 83 79 52 241 51 79 7 5 *
79 41 5 79 4651 3373 84 31 25 88 70141 56107
103 7 3 104 3637 1487 115 1381 357 116 11 3
116 827 745 119 31 3 120 127 65 127 19 7
131 37 19 131 251 61 131 16267 11043 131 39569 13871
136 32869 6721 139 109 91 159 167 133 167 41 13
168 11 3 168 1087 475 179 19 15 179 2161 1605
187 17 15 199 19 9
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Table 3. vp(b0(χωk)) = 2

fχ p k fχ p k fχ p k fχ p k

3 257 101 7 173 97 19 52067 13617 19 71353 1597
19 2711 41 20 193 27 39 1187 349 39 9007 7117
43 757 123 51 107 27 71 46829 27893 71 1933 1275
79 43 25 79 269 107 79 2417 1389 84 59 41
88 19 11 91 277 99 91 1511 279 116 503 123
119 23 19 120 107 31 120 421 9 123 19 11
123 149 83 127 59183 29151 127 11 7 127 563 311
127 1409 517 131 349 53 131 2833 2047 139 349 53
143 19 5 159 359 245 167 71 19 183 1277 753
184 3119 2533 187 71 37 191 151 33 199 53 19

Table 4. λ̃p(χωk) = 2 (3 for the ∗-marked cases)

fχ p k fχ p k fχ p k fχ p k

7 3613 1147 8 23 11 11 173 43 15 11 7
15 17681 5641 24 41 13 39 1289 211 39 26633 14233
43 127 105 47 5393 3265 51 4261 2867 52 19 17
52 2081 993 56 11 3 59 52313 44231 67 79337 30221
67 263 217 71 89 43 79 307 299 83 677 169
84 11593 4589 103 17 3 115 20357 16409 116 283 89
120 73 33 123 5 3 * 131 127 97 136 7 3
136 4919 2571 139 47 35 * 139 439 183 139 653 217
151 13 9 151 251 129 151 727 419 163 937 919
163 2441 1059 167 43 19 167 1031 445 168 7 3
168 733 117 168 1361 205 184 5 3 187 103 87
199 227 173

Table 5. The χ-irregularity index density

r nr n′
r the density the density’

0 360567 360726.71 0.60642302 0.60669164
1 180605 180279.99 0.30375222 0.30320562
2 44967 45035.78 0.07562817 0.07574385
3 7387 7499.17 0.01242389 0.01261256
4 959 936.41 0.00161290 0.00157491
5 86 93.53 0.00014463 0.00015730
6 9 7.78 0.00001513 0.00001309
7 0 0.55 0.00000000 0.00000093

From these tables, we can obtain concrete information on the higher K-groups
of the ring of integers of Q(

√
−fχ) (see [16, §4]).

Let us call a pair of integers (p, k) a χ-irregular pair if p is a prime, k is an odd
integer satisfying 3 ≤ k ≤ p − 2, p divides a0(χωk) = Lp(1, χωk) (or b0(χωk) =
Lp(0, χωk)), and (p, χωk) satisfies (C). Further we define the χ-irregularity index
rp(χ) by

rp(χ) = �{(p, k)|(p, k) is a χ-irregular pair}.
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Figure 1. Exception pairs (odd quadratic, 1 < f < 200, 200 <
p < 100000)

We call a prime number p χ-irregular if rp(χ) > 0. Let mp(χ) be the number of
even integers k with 3 ≤ k ≤ p − 2 such that (p, χωk) satisfies (C). We define

nr =
∑

(χ,p) s.t. rp(χ)=r

1

and

n′
r =

∑
χ,p

mp(χ)Cr

(
1
p

)r (
p − 1

p

)mp(χ)−r

,

where χ runs over all odd quadratic characters with 1 < fχ < 200, and p runs
all prime numbers with 5 ≤ p < 100000. The distribution of the indices of χ-
irregularity is given in Table 5. The actual numbers nr seem to be close to the
expected numbers n′

r (cf. [2] and [17, p. 63]).
In Figure 1, we compare the actual numbers of exceptional pairs with the ex-

pected numbers in the range 200 < p < 100000. Set

ν(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 1, νp(χωk) ≥ 1},
a0(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 1, a0(χωk) ≥ 2},
b0(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 1, b0(χωk) ≥ 2},
lmd(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 1, λ̃p(χωk) ≥ 2},

E(x) =

⎡
⎣�{χ}

∑
200<p<x, p:prime

p − 3
2

1
p2

⎤
⎦ ,

where [∗] is the Gauss symbol and χ runs over all odd quadratic characters with
1 < fχ < 200.
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Figure 2. Exceptional pairs (quadratic, 1 < f < 200, 200 < p < 100000)

In order to increase the number of samples, we combine the above data with
that in [16], and obtain Figure 2. Set

ν(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 0, 1, νp(χωk) ≥ 1},
a0(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 0, 1, a0(χωk) ≥ 2},
b0(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 0, 1, b0(χωk) ≥ 2},
lmd(x) = �{(p, χωk)|200 < p < x, χωk: even, k �= 0, 1, λ̃p(χωk) ≥ 2},

E(x) =

⎡
⎣�{χ}

∑
200<p<x, p:prime

p − 3
2

1
p2

⎤
⎦ ,

where χ runs over all quadratic characters with 1 < fχ < 200.
From our data, the actual numbers seem to be close to the expected numbers.

Even for large p, it might be possible that the actual numbers are near to the
expected numbers.

Finally we give an example such that An is not cyclic. In [1], Aoki-Fukuda
showed that

Aχω
0 � Z/pZ⊕ Z/pZ, Aχω3

0 � {0}
for (fχ, p) = (4 · 14606, 5) by using cyclotomic units of Q(ζf0li) (l1 = 11251 and
l2 = 22501). By our method (using cyclotomic units and Gauss sums of Q(ζfn

) for
n ≤ 2), we show the above and

Aχω
n � Z/p2Z ⊕ Z/pZ, Aχω3

n � {0}
for n ≥ 1. First we have{

gχω(T ) ≡ ω∗
0(T 2 + 2380T + 2025) mod p5,

g∗χω(T ) ≡ ω0(T 2 + 1305T + 2150) mod p5,

{
gχω3(T ) = 1,
g∗χω3(T ) = 1.
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Hence we immediately obtain the triviality of Aχω3

n . For ψ = χω, we have ψ(p) �= 1
and ψ∗(p) = 1.

Cyclotomic units.
n = 0

Cψ
0 � (ω0, p

2)/(ω0),

Eψ
0 � (Eψ

0 )′ ⊆ Λ/(ω0).

Hence (E0/C0)ψ is a subgroup of Λ/(ω0, p
2) � Z/p2Z.

n = 1
Cψ
1 � (g̃ψ(T ), pT, p3)/(ω1).

Let l1 = 1 + 12f1p = 87636001 and l2 = 1 + 22f1p = 160666001. By studying the
image of Cψ

1 in
∏

Li|l1l2
(OK1/Li), we have

Eψ
1 � (Eψ

1 )′ ⊆ (g̃ψ(T ), T, p)/(ω1).

Hence (E1/C1)ψ is a subgroup of (g̃ψ(T ), T, p)/(g̃ψ(T ), pT, p3) � Z/p2Z ⊕ Z/pZ.
n = 2

Cψ
2 � (g̃ψ(T ), p2T, p4)/(ω2).

Let l′1 = 1 + 8f2p = 292120001 and l′2 = 1 + 14f2p = 511210001. By studying the
image of Cψ

2 in
∏

L′
i|l′1l′2

(OK2/L′
i), we have

Eψ
2 � (Eψ

2 )′ ⊆ (g̃ψ(T ), pT, p2)/(ω2).

Hence (E2/C2)ψ is a subgroup of (g̃ψ(T ), pT, p2)/(g̃ψ(T ), p2T, p4) � Z/p2Z⊕Z/pZ.
This implies Greenberg’s conjecture for Aψ

n .
By computation of Gauss sums, we will show that Eψ

1 � (g̃ψ(T ), T, p)/(ω1).
Hence we have �(Eψ

1 /Cψ
1 ) = p3, �(Eψ

2 /Cψ
2 ) ≥ p3, and Eψ

2 � (g̃ψ(T ), pT, p2)/(ω2). By
this isomorphism, Ker(A0 → A2)ψ � H1(Γ0, E2)ψ � Z/pZ ⊕ Z/pZ (see the proof
of Theorem 1). Therefore we have Aψ

0 � Z/pZ ⊕ Z/pZ and Aψ
n � Z/p2Z ⊕ Z/pZ

for n ≥ 1 (cf. [15, Theorem1]).

Gauss sums. Since pω0 ∈ (g̃∗ψ(T ), ω1), the exponent of ω0X
ψ∗

∞ /ω1X
ψ∗

∞ � ω0X̃
ψ∗

∞ /

ω1X̃
ψ∗

∞ is p. Therefore, the exponent of ω0Ã
ψ∗

1 is at most p. We will show that
ω0Ã

ψ∗

1 � Z/pZ⊕ Z/pZ by using Gauss sums and prime numbers.
Set h(T ) = 21T 4 + 17T 3 + 9T 2 + 5T + 15. Then we have

h(T )g∗ψ(T ) ≡ pω0 mod (ω1, p
2).

Let eψ∗,m ∈ Z[∆] such that eψ∗,m ≡ eψ∗ mod pm. For Li|l1l2, let g1(Li) be the
Gauss sum of K1 which satisfies

(g1(Li)eψ∗,m) = L
fχθ1eψ∗,m

i ,

where θ1 ∈ Q[Gal(K1/Q)] is the Stickelberger element (see [7, pp. 42-45] for de-
tails). Hence for any integer m ≥ 1, there exists g′m ∈ K1 such that

(g1(Li)eψ∗,1) = L
fχθ1eψ∗,m

i (g′m
p).

Since G∗
ψ(T ) ≡ eψ∗,mθ1 mod (pm, ω1), we have

(g1(Li)eψ∗,1h(T )) = L
ω0pu(T )eψ∗,m

i L
pmveψ∗,m

i (g′m
ph(T ))
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for u(T ) ∈ Λ× and v ∈ Zp[Gal(K1/Q)]. Let l1 = 1 + 11f1 = 16066601, l2 =
1 + 14f1 = 20448401, l∗1 = 1 + 4(2f1l1l2) = 3838880957714195684801 and l∗2 = 1 +
7(2f1l1l2) = 6718041675999842448401. By studying the images of g1(Li)eψ∗,1h(T )

in
∏

L∗
j |l∗1 l∗2

(OQ(ζl1l2f1 )/L∗
j ), we conclude that the classes of L

ω0eψ∗,m

i for Li|l1l2
generate a subgroup of Ãψ∗

1 whose quotient is isomorphic to Z/pZ ⊕ Z/pZ. Since
�(ω0X̃

ψ∗

∞ /ω1X̃
ψ∗

∞ ) = p2, this happens only when ν1,0Ỹ
ψ∗

∞ = ω1X̃
ψ∗

∞ , i.e. Ỹ ψ∗

∞ =
ω0X̃

ψ∗

∞ . By Lemma 3 (X = X̃ψ∗

∞ and Z = ω1X̃
ψ∗

∞ ) and the class field theory, we
have 〈σ̃eψ∗,m

Li
〉Li|l1l2 = X̃ψ∗

1 . By Lemma 4 (n = n′ = 1) and the image of Cψ
1 in∏

Li|l1l2
(OK1/Li), we obtain Eψ

1 � (g̃ψ(T ), T, p)/(ω1).

We used thirty personal computers for three months to make the tables in this
section. The programs were written in UBASIC and C, in which the GNU MP
library was included. For the last example, it took a few minutes to calculate
cyclotomic units modulo prime ideals, and thirty minutes to calculate Gauss sums
modulo prime ideals on one PC (CPU: Pentium IV, 3.6GHz, RAM 2GB). In [1], it
took 6 hours and 42 minutes to compute A0 by using Alpha 21264, 667MHz, RAM
4GB.
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