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A PRIORI ESTIMATES OF SMOOTHNESS OF SOLUTIONS
TO DIFFERENCE BELLMAN EQUATIONS

WITH LINEAR AND QUASI-LINEAR OPERATORS

N. V. KRYLOV

Abstract. A priori estimates for finite-difference approximations for the first
and second-order derivatives are obtained for solutions of parabolic equations
described in the title.

1. Introduction

The goal of this article is to prove a priori estimates for solutions of finite-
difference approximations of parabolic Bellman equations with linear and quasi-
linear operators. In the latter case the nonlinear operator defining the equation
is still supposed to be convex with respect to the second-order derivatives of the
unknown function. We present estimates for the finite-difference approximations of
the first and second-order spatial derivatives. In particular, our results cover finite-
difference approximations for degenerate quasi-linear parabolic equations. As far
as we are aware these are the first results for such equations. The main parts of
the linear and quasi-linear operators entering Bellman equations are assumed to be
linear ak∆k operators, that is, written as a linear combination of pure second-order
derivatives in certain directions that are common to all operators. This assumption
is always satisfied if the equation is uniformly nondegenerate and is generally nec-
essary if we want to restrict ourselves to monotone difference approximations and
meshes that are obtained from a fixed one by scaling (see more about it in Remark
2.4 below). Our results are valid for the usual Bellman equations and also for the
optimal stopping and impulse control problems associated with them.

The motivation to obtain a priori estimates is the following. There is an ap-
proach suggested in [10], [11], and [12] to establishing the rate of convergence of
uh to u as h ↓ 0, where u is the true solution, uh the solution of finite-difference
approximation of the same equation, and h typically is the mesh size. Two main
ideas of this approach are that the original equation and its finite-difference approx-
imation should play symmetric roles and that one can “shake the coefficients” of
the equation in order to be able to mollify under the sign of the nonlinear operator.

For elliptic Bellman equations with constant coefficients and Lipschitz free terms
the first idea led to the rate of convergence of order h1/3, for generic finite-difference

Received by the editor November 13, 2005 and, in revised form, May 14, 2006.
2000 Mathematics Subject Classification. Primary 65M15, 35J60, 93E20.
Key words and phrases. Finite-difference approximations, Bellman equations, fully nonlinear

equations.
The work was partially supported by NSF Grant DMS-0140405.

c©2007 American Mathematical Society

669



670 N. V. KRYLOV

approximations and h1/2 in the case of ak∆k operators (see Remark 1.4 and Theo-
rem 5.1 in [10], also see [2]). In contrast with the popular belief that assuming more
smoothness of the data does not lead to better rates of convergence, it is proved
in [5] that if the free terms are in C1,1, then the rate is at least h for the constant
coefficient ak∆k case and h2 for equations with better structure.

The second idea was introduced to treat equations with variable coefficients and
led to quite satisfactory error bounds for u − uh from an “easy” side (depending
on how the equation is written this can be either the upper or lower estimate
of u − uh). To get an estimate from the other side on the basis of the idea of
symmetry between the approximating and the original equations one needed to
solve the following problem:

(P) In the case of variable coefficients estimate how much the solution of the
finite-difference equation loses in the process of shaking the equation.

In the absence of a solution of the problem (P) the idea of symmetry was still
useful but only in obtaining some intermediate estimates (see, for instance, [2]
and [11]) and various approaches to getting the error bounds from the “hard” side
were developed. In addition to the above-cited papers the interested reader should
consult [3], [4], and the references therein. Note that for generic finite-difference
approximations, under the assumptions of Theorem 5.3 of [11] the result of [4] is
the same h1/3, but the result of Theorem 5.4 of [11] is improved from h1/21 to h1/7.
The issue of solving the problem (P) for generic finite-difference approximations
remains unsettled, and it is not clear how far off h1/7 is from the true rate.

The problem (P) was recently reduced to the problem of estimating the modulus
of continuity of approximate solutions and was solved in [13] for the ak∆k case
in which a sharp error bound of order h1/2 was obtained. The idea of symmetry
worked again as in the constant coefficients case. This activity was continued in
[7], where for the first time equations in domains were treated, and in [6], where
under various smoothness assumptions the rates h1/2, h, and h2 were obtained for
linear degenerate equations of ak∆k form. For the linear case the rate h1/2 was
earlier obtained in [8] by a method close to a method from [12] (Lemma 5.1 of [8]
is a version of Theorem 2.1 of [12]). However, this method does not allow one to
get rates h and h2.

The main technical result of [13] is the a priori estimate of the derivative of uh

with respect to x stated as Theorem 5.2 and proved by quite subtle estimates. It
turns out that there is a much easier method to prove Theorem 5.2 of [13] which
in addition carries over to much more general equations with quasi-linear operators
and to obtaining estimates for the second-order finite differences of uh. The method
is almost as simple as the one used in [6] for linear equations.

We present this new method here and concentrate only on a priori estimates to
keep the article within reasonable limits. Once the a priori estimates are obtained,
one can follow familiar patterns to get error bounds in the various cases of linear
or quasi-linear operators, degenerate or weakly nondegenerate or else uniformly
nondegenerate, with C1 or C1,1 coefficients. In particular, we hope to obtain first
estimates on the rate of convergence in the case of degenerate quasi-linear operators
with Lipschitz coefficients. Our preliminary computations also show that under the
assumptions of Theorem 2.12 the estimate |u − uh| ≤ Nh2/3 holds in the elliptic
case. These and some other possible applications indicated below of our results, we
intend to develop in the future.
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Hongjie Dong and the referees of the paper made valuable comments on the first
version of it for which the author is sincerely grateful.

2. Setting and main results

Our first few results concern equations of the type

(2.1) F (δT
τ u, ∆h,�k

u, δh,�k
u, u) = 0,

where
F (φ, qk, pk, ψ) = F (φ, q, p, ψ, t, x)

= sup
α∈A

[rα(t)φ +
d1∑

|k|=1

(aα
k (t, x)qk + bα

k (t, x)pk) − cα(t, x)ψ + fα(p, ψ, t, x)],
(2.2)

δT
τ u, ∆h,�k

u, δh,�k
u are finite-difference approximations of the time derivative, the

pure second-order derivative in the direction �k, and the first-order derivative in the
direction �k, respectively. Detailed descriptions of the above objects now follow.

Let A be a separable metric space, d, d1 ≥ 1 integers, and let

rα = rα(t), aα
k = aα

k (t, x), bα
k = bα

k (t, x), cα = cα(t, x)

be real-valued bounded functions of (α, t, x) defined on A×R×R
d for k = ±1, ...,±d1.

Also let some vectors �k ∈ R
d be defined for k = ±1, ...,±d1 and let

(2.3) T, h0 ∈ (0,∞), δ ∈ (0, 1], K0, K1, K2, K3 ∈ [0,∞), m ∈ R

be some constants fixed throughout the article. It is worth noting that �k, k =
±1, ...,±d1, are not supposed to form a basis in R

d or even generate R
d. This

becomes crucial when one proves the estimates of the first-order differences of so-
lutions with respect to parameters on which the coefficients may depend. Notice
also that the lengths of the �k’s can be different and some of them can be just zero
(and we will use this possibility later). The constant T gives us the time interval
[0, T ) on which the equation is investigated, h0 “calibrates” the mesh-sizes in the x
variable, and the constant δ will appear in various requirements of nondegeneracy.
The constant K0 is the most basic one; it is used in formulations of the very basic
assumptions. The constant K1 is used to control either the maximum magnitude
of the solution or its oscillation. The constant K2 will appear in our assumption on
the growth of f with respect to the “gradient” of the solution (see Assumption 2.5
(ii), which looks very much like the one commonly used in the theory of quasi-linear
PDEs. By the way, the author’s efforts to use Assumption 2.5 (iii), stated similarly,
failed.) The constant K3 is used to control various quantities having lesser impact
on our results than those controlled by K0, K1, K2. Finally, the constant m is used
to extract various results, which one gets in the theory of parabolic PDEs after
replacing u(t, x) with u(t, x)emt.

For any vector l ∈ R
d, η, τ > 0, and a function u, introduce

δη,lu(x) =
u(x + ηl) − u(x)

η
, τT (t) = τ ∧ (T − t)+,

δT
τ u(t, x) =

u(t + τT (t), x) − u(t, x)
τ

, δτu(t, x) =
u(t + τ, x) − u(t, x)

τ
,

∆η,lu(x) =
u(x + ηl) − 2u(x) + u(x − ηl)

η2
,
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where the notation a± = (1/2)(|a| ± a) is used. Observe that with the above
definition of δT

τ equation (2.1) makes perfect sense for t < T for functions u(t, x)
defined only for t ≤ T . We do not need to extend u beyond T in order to compute
the finite-difference approximation of its derivative in time for t < T .

Assumption 2.1. (i) The functions rα, aα
k , bα

k , and cα are continuous with respect
to α;

(ii) the functions bα
k satisfy the Lipschitz condition with constant K0 with respect

to x;
(iii) the function cα satisfies the Lipschitz condition with constant K3 with re-

spect to x;
(iv) we have

�−k = −�k, aα
−k = aα

k , |�k| ≤ K0, rα
k ≥ 0, aα

k ≥ 0

(for all values of the arguments and k).

An important feature of Assumption 2.1 is that no control on the sizes of rα,
aα

k , bα
k , and cα is imposed (however, remember that from the very beginning they

are assumed to be bounded).

Assumption 2.2. For any unit l ∈ R
d and η > 0, we have

|δη,la
α
k | ≤ K0(

√
aα

k + η).

Remark 2.1. It is easy to see that Assumption 2.2 is satisfied (with, perhaps, dif-
ferent K0) if and only if σα

k :=
√

aα
k satisfies the Lipschitz condition with constant

K0 with respect to x.
Indeed, the necessity follows after letting η ↓ 0 and the sufficiency is a direct

consequence of the formula

δη,la
α
k = 2σα

k δη,lσ
α
k + η(δη,lσ

α
k )2.

Below we are also using the well-known fact that a continuous function v(x) is
Lipschitz continuous with constant K if and only if its generalized gradient vx =
Dxv satisfies |vx| ≤ K (a.e.).

Definition 2.2. Let B be a finite subset of R
d and p(x, y) a real-valued function

on R
d × R

d. For an x0 ∈ R
d we say that the operator

(2.4) S : u → Su, Su(x) =
∑

y∈B∪{0}
p(x, x + y)u(y)

respects the maximum principle at x0 relative to B if, for any function φ(x) such
that φ(x0 + y) ≥ φ(x0) for all y ∈ B, we have Su(x0) ≥ 0.

Obviously, the operators δη,l and ∆η,l respect the maximum principle at any
point relative to appropriate sets.

For h > 0 set

(2.5) Lα
hu = aα

k ∆h,�k
u + bα

k δh,�k
u − cαu,

where and throughout the paper the summation convention is enforced. For each t
the operator Lα

h = Lα
h(t, x) can be considered as an operator on functions defined

on R
d.

Assumption 2.3. We have aα
k ≥ h0(bα

k )− (recall (2.3)).
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Remark 2.3. It is easy to see that Assumption 2.3 implies that for h ∈ (0, h0], t ∈ R,
and α ∈ A the operator Lα

h(t, x) + cα(t, x) respects the maximum principle at any
point x0 relative to Λ0, where

(2.6) Λ0 := {h�k : k = ±1, ...,±d1}.

In turn, provided that all �k are different, the said property of Lα
h(t, x) + cα(t, x)

implies what is required in Assumption 2.3.

To satisfy Assumption 2.3 it is sufficient to require that bα
k ≥ 0, in which case

what we use is just an upwind discretization of the “transportation” term.

Remark 2.4. The operators Lα
h are natural approximations of the operator

(2.7) Lαu = aα
k �i

k�j
kuxixj + bα

k �i
kuxi − cu

in the sense that Lα
hu → Lαu as h ↓ 0 for all smooth u.

One may wonder how wide is the class of operators given in the usual form

(2.8) Lu = aijuxixj + biuxi

which admit such a special approximation. We discuss this issue in Section 9.

Next, we describe the free term in the equation, which is given by a real-valued
function

fα = fα(p, ψ, t, x)

defined on A × R
2d1 × R × R × R

d.

Assumption 2.4. The function fα is bounded, fα is continuous in α, continuous
in (p, ψ, x) and, for any α and t, its generalized gradients Dpf

α, Dψfα, and Dxfα

in p, ψ, and x, respectively, satisfy

|Dpkfα| ≤ K0

√
aα

k , k = ±1, ...,±d1, |Dψfα| ≤ K0, |Dxfα| ≤ K3

for almost all (p, ψ, x) ∈ R
2d1 × R × R

d.

For fixed h, τ > 0 we consider the equation

(2.9) sup
α∈A

[rαδT
τ u + Lα

hu + gα] = 0,

where
gα = gα(t, x) = fα(δh,�k

u(t, x), u(t, x), t, x).

Observe that equation (2.9) takes the form (2.1). The presence of rα in these
equations allows us to treat the normalized Bellman equations (see [9]), which
arise, for instance, in optimal stopping problems or problems with singular control.

Fix a vector l ∈ R
d with |l| ≤ K0 and a number η ∈ (0, h]. Set

hi = h for |i| = 1, ..., d1, hd+1 = h−(d+1) = η, �d+1 = −�−(d+1) = l,

(2.10) Λ = {h1�±1, ..., hd+1�±(d1+1)}.

We treat Λ0 as a list rather than a set with specified elements, even if �1 = �2 we
include in the list this vector twice.
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Observe that in (2.5) only �k ∈ Λ0 are involved. However, the method of “shak-
ing” the coefficients requires estimates of difference derivatives in all directions and
not only along the mesh. This is the reason why we introduce Λ. Set

Λn =
n∑

1

Λ = {x : x = l1 + ... + ln, l1, ..., ln ∈ Λ}, Λ∞ =
⋃

n

Λn,

M̄T = {(nτ ) ∧ T : n = 0, 1, ...} × Λ∞, MT = M̄T ∩ ([0, T ) × R
d).(2.11)

Fix a finite set Q ⊂ MT , assume that

(2.12) Q|0 := Q ∩ ({0} × R
d) 
= ∅

and define
Q̄ = Q ∪ {(t + τT (t), x) : (t, x) ∈ Q, t + τT (t) = T},

(2.13) Qo
1 = {(t, x) ∈ Q : t < T, (t + τT (t), x) ∈ Q̄, (t, x + Λ) ⊂ Q},

∂1Q = Q̄ \ Qo
1.

Obviously, it may happen that Q̄ = Q. The subscript 1 is used above because later
on we will need a “fatter” boundary ∂2Q.

Finally, define T ′ as the least nτ , n = 1, 2, ..., such that nτ ≥ T , recall that
m ∈ R (see (2.3)) is a given fixed constant and introduce

ξ(t) = emt, t < T, ξ(T ) = emT ′
, ξ(+) = ξ ∨ 1, ξ(−) = ξ ∧ 1,

(2.14) cm =
1 − e−mτ

τ
, λ = inf

α,t,x

[
cα(t, x) + rα(t)cm

]
.

Introducing a discontinuous function ξ(t) may look unnatural. However, what is
important for us is that

(2.15) ξδT
τ u = e−mτδT

τ (ξu) − cm(ξu)

on MT for any u = u(t, x).
Everywhere below in this section u is a given function on M̄T satisfying (2.9) in

Q. In our first result no control on the sizes of rα, aα
k , bα

k , and cα is imposed.

Theorem 2.5. Let h ∈ (0, h0]. Then, under Assumptions 2.1 through 2.4 there
are constants N = N(d1, K0), N∗ = N∗(d1, K0, K3) such that if λ ≥ N , then on
Q|0,

(2.16) |δη,lu| ≤ N∗em+(T+τ)
[
1 + max

Q̄
|ξ(−)u| + max

k,∂1Q
(|ξ(−)δh,�k

u| + |ξ(−)δη,lu|)
]
.

We prove this theorem in Section 4.

Remark 2.6. This theorem is similar to Theorem 5.2 of [13] and entails all the
consequences derived from the latter in [13] and [7]. In particular, by using Theorem
5.6 of [13] and comparing the equations for u and u(τ + ·, ·) an estimate of δτu can
be obtained if we require the data to have bounded derivatives in t.

Remark 2.7. Theorem 2.5 has an immediate application to elliptic equations. In
that case u is independent of t, one can take rα ≡ 0, and use as large a negative
m as one wishes without affecting λ. Then it is seen that in (2.16) the maximums
over Q̄ and ∂1Q reduce to the maximums over Q|0 and Q|0 ∩ ∂1Q, respectively.
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Our second result concerns Bellman equations with more general quasi-linear
operators. This time (2.9) is assumed to be uniformly nondegenerate in the space
generated by the �k’s. We will allow fα(p, ψ, t, x) to grow quadratically with respect
to p, and therefore no bα

k are needed. The term cαu also could be absorbed in fα.
However, we keep it, in order to state Theorem 2.11 in a simpler way.

Assumption 2.5. (i) The functions aα
k also depend on ψ:

aα
k = aα

k (ψ, t, x)

and equation (2.1) holds in Q, where F is defined by (2.2) with aα
k (ψ, t, x) in place

of aα
k (t, x). The functions aα

k (ψ, t, x) are Lipschitz continuous in x with constant
K3, Lipschitz continuous in ψ with a constant ω ∈ (0,∞),

aα
k ≥ δ, |k| ≤ d1, cα ≥ −K3.

(ii) The function fα is continuous in α, continuous in (p, ψ, x), and for all values
of the arguments, satisfying |ψ| ≤ K1 and |p| ≥ K2, it holds that

|fα| ≤ ω|p|2 + K3.

(iii) For each α and t the generalized gradients Dpf
α, Dψfα, and Dxfα of fα

with respect to p, ψ, and x, respectively, satisfy

|Dpf
α| ≤ ω|p| + K3, |Dψfα| ≤ ω|p|2 + K3,

(2.17) |Dxfα| ≤ ω|p|3 + K3

(a.e.) on the set {|ψ| ≤ K1}.

Remark 2.8. Clearly, Assumption 2.5 (ii) is satisfied with any ω > 0 and appropriate
K3(ω) if

sup
α,t,x,ψ

|fα(p, ψ, t, x)| = o(|p|2)

as |p| → ∞. This includes all functions affine in p provided that the coefficients are
bounded. A similar situation occurs with Assumption 2.5 (iii).

Assumption 2.6. For a constant C ≥ 4 depending only on d1, the exact value of
which can be determined by examining the proof of Theorem 2.9, we have

(2.18) CK1(1 + K1)ω ≤ δ.

Theorem 2.9. Let bα
k ≡ 0 and let Assumptions 2.1, 2.5, and 2.6 be satisfied.

Assume that |u| ≤ K1 in Q̄ and |δh,�k
u| ≤ K3 on ∂1Q if |k| ≤ d1. Then in Q̄,

|δh,�k
u| ≤ N = N(d1, δ, K1, K2, K3), |k| ≤ d1.

In particular, N is independent of T .

The proof of this theorem is given in Section 5.

Remark 2.10. If ω is large, we need K1 to be small in order to satisfy (2.18), that
is, we need u to be small. By replacing u with u − γ, where γ is any constant, we
see that, actually, we need the oscillation of u rather than u itself to be small if ω
is not. This restriction could be completely avoided if we proved an interior version
of Theorem 2.9 and a priori Hölder continuity of u. It seems to the author that
this is possible, but requires much more work.
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Theorem 2.11. Under the assumptions of Theorem 2.9 suppose that |δη,lu| ≤ K3

on ∂1Q and aα
k are independent of ψ. Then there is a constant N = N(d1, δ, K1, K2,

K3), such that if λ ≥ N , then on Q|0,

|δη,lu| ≤ Nem+(T+τ).

This is a simple corollary of Theorems 2.9 and 2.5 with h0 = h in the latter.
Indeed, once we know that the values of |δh,�k

u| and |u| are dominated by a con-
stant, the behavior of fα(p, ψ, t, x) for large |p| becomes irrelevant and we can even
multiply it by an appropriate cut-off function in such a way that the new fα would
satisfy Assumption 2.4 and u would still satisfy the new equation.

Our next result is about second-difference estimates.

Assumption 2.7. (i) The function fα is independent of p and ψ.
(ii) For any i, j = ±1, ...,±(d1 + 1) and ψ standing for any of the functions bα

k ,
cα, and fα we have

(2.19) |δhj ,�j
δhi,�i

ψ| ≤ K3, |δhi,�i
fα| ≤ K3, |δhj ,�j

δhi,�i
aα

k | ≤ K0 + K3

√
aα

k .

A typical case when the third inequality in (2.19) is satisfied occurs if aα
k = (σα

k )2,
where σα

k is bounded and twice continuously differentiable.
In contrast with the above results in which no control on the magnitudes of rα,

aα
k , bα

k , and cα is required, this time we need the following.

Assumption 2.8. We have

δ ≤ sup
α∈A

aα
k ≤ K0, rα, |bα

k |, |cα|, |fα| ≤ K3.

The following assumption is about a special structure of the set of our basic vec-
tors �k, k = ±1, ...,±d1. For d1 = 2 and the standard grid (generated by ±e1,±e2)
it means that this set contains all eight neighboring points of the origin on the grid.

Assumption 2.9. There exists an integer 1 ≤ d0 < d1 such that for the list

(2.20) L := {h�±1, ..., h�±d0}

and any �k with d1 < |k| ≤ d1 there exist l1, l2 ∈ L such that

l1 
= l2, l1 
= −l2, �k = l1 + l2.

One may think that Assumption 2.9 excludes the equations with only one spatial
variable, where it is natural to take d1 = 1 and Λ0 = {�1,−�1}. However, we do
not require �k to be nonzero, and one can take Λ0 to be {�1,−�1, �2,−�2, �3,−�3}
with �2 = 0 and �3 = �1. In that case Assumption 2.9 is satisfied with L =
{�1,−�1, �2,−�2}. By the way the fact that now the origin is one of the �k in no
way contradicts Assumption 2.8, because in that case δh,�k

φ = 0 and one can assign
any value to aα

k without changing the equation.
Define

Qo
2 = {(t, x) ∈ Q : t < T, (t + τT (t), x) ∈ Q̄, (t, x + Λ0 + Λ0) ⊂ Q},

∂2Q = Q \ Qo
2.

Here, naturally, x + Λ0 + Λ0 = {x + y + z : y, z ∈ Λ0}.
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Theorem 2.12. Suppose that Assumptions 2.1, 2.2, 2.3, 2.7–2.9 are satisfied. Then
there exists a constant N = N(δ, d1, K0) such that if λ ≥ N , then in Q|0 for
i, j = ±1, ...,±d1 we have

(2.21) |δh,�j
δh,�i

u| ≤ N∗em+(T+τ)R,

where N∗ = N∗(h0, δ, d1, K0, K3),

R = 1 + max
Q̄

|ξ(−)u| + max
Q

(ξ(−)δ
T
τ u)−

+ max
|i|,|j|≤d1

max
∂2Q

|ξ(−)δh,�i
δh,�j

u| + max
|i|≤d1

max
Q̄

|ξ(−)δh,�i
u|.

This theorem is proved in Section 7 following a quite long Section 6 that contains
the proof of Theorem 2.12 under additional assumptions.

Remark 2.13. To get “closed” estimates of δh,�j
δh,�i

u we need to exclude δh,�i
u and

δT
τ u from R. This can be done by using Theorem 2.5 and the idea from Remark

2.6. Another situation when δT
τ u drops out presents when u is independent of t, so

that, actually, we are dealing with elliptic equations. We say more about this in
the comments after Theorem 2.14

In the case of aα
k independent of x, Assumption 2.9 is not needed.

Theorem 2.14. Suppose that Assumptions 2.1, 2.2, 2.3, 2.7, and 2.8 are satisfied.
Also assume that the aα

k are independent of x, |δhi,�i
bα
k | ≤ K3

√
aα

k , |i| ≤ d1 + 1,
|k| ≤ d1, and λ > 0. Then in Q|0 for k = ±1, ...,±d1 we have

(2.22) |∆h,�k
u| ≤ N∗em+(T+τ)R0, (∆η,lu)− ≤ N∗em+(T+τ)R,

where N∗ = N∗(λ, h0, δ, d1, K3),

R0 = 1 + max
Q̄

|ξ(−)u| + max
Q

(ξ(−)δ
T
τ u)−

+ max
|i|≤d1

max
∂1Q

|ξ(−)∆hi,�i
u| + max

|i|≤d1

max
Q̄

|ξ(−)δhi,�i
u|,

and R is obtained from R0 by taking d1 + 1 in place of d1.

This theorem, proved in Section 8, is a direct generalization of the corresponding
result from [5]: lower-order coefficients are allowed to depend on (t, x) and we
consider parabolic equations. In connection with the latter observe that if rα ≡ 0
(elliptic case), then one can let m → −∞ and see that in the definitions of R0 and
R one can replace ∂1Q with Q|0 ∩ ∂1Q.

3. Some technical tools

For any η ∈ R
d, ν ≥ 0 set

(3.1) Tν,ηψ(x) := ψ(x + νη).

Lemma 3.1. For any ν > 0, l1, l2 ∈ R
d, and functions a(x), ψ(x),

δν,l1(aψ) = (δν,l1a)ψ + (Tν,l1a)δν,l1ψ = aδν,l1ψ + ψδν,l1a + ν(δν,l1a)δν,l1ψ,

δν,l2δν,l1(aψ) = aδν,l2δν,l1ψ + (δν,l2a)δν,l1ψ + (δν,l1a)δν,l2ψ

+ h[δν,l1a + δν,l2a]δν,l2δν,l1ψ + (δν,l2δν,l1a)Th,l1+l2ψ,

∆ν,l1(aψ) = a∆ν,l1ψ + ψ∆ν,l1a + (δν,l1a)δν,l1ψ + (δν,−l1a)δν,−l1ψ.

(3.2)
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In particular,
∆ν,l1(ψ

2) = 2ψ∆ν,l1ψ + (δν,l1ψ)2 + (δν,−l1ψ)2.

This lemma is proved by straightforward computations (cf. [13]). In the following
lemma we use Definition 2.2.

Lemma 3.2. If an operator

Sψ(x) =
∑

y∈Λ∪{0}
p(x, x + y)ψ(x + y)

respects the maximum principle at a point x0 ∈ R
d relative to Λ and ψ is a function

such that ψ(x0) ≤ 0, then −Sψ ≤ S(ψ−) at x0. In particular, φ−Sφ− ≥ −φ−Sφ
at x0 for any function φ.

This follows from the definition and the fact that ψ + ψ− ≥ 0 on x0 + Λ and
ψ + ψ− = 0 at x0.

The following lemma from [13] is used in the proof of Theorem 2.12.

Lemma 3.3. Let ψ be a function on R
d, ν > 0. Then

(3.3) |∆ν,ηψ| ≤ |δν,−η((δν,ηψ)−)| + |δν,η((δν,−ηψ)−)|.

4. Proof of Theorem 2.5

We start with some preparations. From now on index k will run through
{±1, ...,±d1} and i, j through {±1, ...,±(d1 + 1)}. By N and N∗ in this section we
denote generic constants depending on the data as in the statement of the theorem.
We use the notation (2.11) through (2.14) and introduce a few new objects. We
need two constants ε and µ defined by

ε−1 − 2εd1 = 1, 4µ = (d1 + 1)−1 ∧ ε.

Introduce

Γ = {γ = (γi : i = ±1, ...,±(d1 + 1)) : γi ∈ [ε, ε−1]},
δi = δhi,�i

, Pγφ = γiδiφ, v = ξu, ∆k = ∆hk,�k
.

By using (2.15) we see that in Q,

F
(
e−mτδT

τ v − cmv, ξ∆ku, ξδku, ξu
)

= 0.

Also introduce

vγ = Pγv, vi = δiv,

Pγµφ = v−γ Pγφ − µviδiφ,

W =
∑

i

v2
i , Vγµ = [v−γ ]2 + µW.

Observe that
Pγµv = −Vγµ.

Finally, let (γ0, t0, x0) ∈ Γ × Q̄ be a point at which Vγµ attains its maximum
value over Γ × Q̄.

Theorem 4.1. The assertions of Theorem 2.5 hold true if, in addition to its as-
sumptions, (t0, x0) ∈ Qo

1 and

(4.1) v−γ0
(t0, x0) ≥ (1/2) max

Q̄,i
|vi|.
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To prove this theorem we need an auxiliary result.

Lemma 4.2. Assume (4.1). Then the operator Pγ0µ respects the maximum princi-
ple at (t0, x0), that is, for any function φ such that φ(x0) ≥ φ(x0 +η) for all η ∈ Λ,
we have Pγ0µφ(t0, x0) ≤ 0.

Proof. Since Pγµ1 = 0 we may assume that φ(x0) = 0. Then at (t0, x0),

Pγ0µφ = (v−γ0
γ0i − µvi)φ(x0 + hi�i),

which is negative since φ(x0+hi�i) ≤ 0 and v−γ0
γ0i−µvi ≥ v−γ0

(ε−2µ) ≥ 0 (µ ≤ ε/2).
The lemma is proved. �

We also need the following construction. Notice that, if (t0, x0) ∈ Q, there is a
sequence αn ∈ A such that at (t0, x0),

lim
n→∞

[rαnδT
τ u + aαn

k ∆ku + bαn

k δku − cαnu + gαn ]

= sup
α∈A

[rαδT
τ u + aα

k∆ku + bα
k δku − cαu + gα] = 0.

Since the number of possible values of t for points in Q is finite, and the func-
tions aα

k (t, x), bα
k (t, x), cα(t, x), fα(p, ψ, t, x) are uniformly continuous functions of

(p, ψ, x), there is a subsequence {n′} ⊂ {1, 2, ...} and functions r̄, āk(t, x), b̄k(t, x),
c̄(t, x), f̄(p, ψ, t, x) such that they satisfy our assumptions changed in an obvious
way and

(r̄, āk(t, x), b̄k(t, x), c̄(t, x), f̄(p, ψ, t, x))

= lim
n′→∞

(rαn′ (t), aαn′
k (t, x), bαn′

k (t, x), cαn′ (t, x), fαn′ (p, ψ, t, x))

on Q for all p, ψ.
Obviously, for

ḡ(t, x) := f̄(δku(t, x), u(t, x), t, x)

at (t0, x0) we have

r̄δT
τ u + āk∆ku + b̄kδku − c̄u + ḡ = 0,

(4.2) e−mτ r̄δT
τ v + āk∆kv + b̄kδkv − (c̄ + r̄cm)v + ξḡ = 0

and, if (t0, x0) ∈ Qo
1, then for any i (= ±1, ...,±(d1 + 1), the shift operator T is

introduced in (3.1))

(4.3) Thi,�i
[e−mτ r̄δT

τ v + āk∆kv + b̄kδkv − (c̄ + r̄cm)v + ξḡ] ≤ 0,

where here and below for simplicity of notation we drop (t0, x0) in the arguments
of functions we are dealing with.

Proof of Theorem 4.1. Set

L̄0
h = āk∆k + b̄kδk, L̄h = L̄0

h − (c̄ + r̄cm).

By Assumption 2.3, Lemma 3.1, and Lemma 3.2 (with vγ in place of φ)

0 ≥ L̄0
hVγ0µ = 2v−γ0

L̄0
hv−γ0

+ 2µviL̄
0
hvi + I1 + µI2

≥ −2v−γ0
L̄0

hvγ0 + 2µviL̄
0
hvi + I1 + µI2,
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where

I1 := 2āk(δkv−γ0
)2 + hb̄k(δkv−γ0

)2,

I2 := 2āk

∑

i

(δkvi)2 + hb̄k

∑

i

(δkvi)2.

Since 2āk + hb̄k ≥ āk we conclude

(4.4) v−γ0
L̄0

hvγ0 − µviL̄
0
hvi ≥ (1/2)µāk

∑

i

(δkvi)2.

On the other hand, by (4.2) and (4.3) and Lemma 4.2 at (t0, x0),

(4.5) Pγ0µ[e−mτ r̄δT
τ v + L̄hv + ξḡ] ≤ 0.

Owing to (4.4) we obtain

Pγ0µL̄hv = v−γ0
L̄0

hvγ0 − µviL̄
0
hvi + (c̄ + r̄cm)Vγ0µ + I3 + I4 + I5

≥ λVγ0µ + (1/2)µāk

∑

i

(δkvi)2 + I3 + I4 + I5,

where

I3 := v−γ0
(Pγ0 āk)∆kv + hiv

−
γ0

γ0i(δiāk)∆kvi

−µvi(δiāk)∆kv − µhivi(δiāk)∆kvi,

I4 := [v−γ0
γ0i − µvi](δib̄k)Thi,�i

vk,

I5 := [v−γ0
γ0i − µvi](δic̄)Thi,�i

v.

Upon observing that

∆k = −δkδ−k, h∆k = δk + δ−k, hi ≤ h

and, by assumption (4.1),

h|δkv−k| ≤ 2 max
Q̄,i

|vi| ≤ 4v−γ0
, |h2∆kvi| ≤ 4 max

Q̄
|vi| ≤ 8v−γ0

,

we find

|I3| ≤ Nv−γ0
(
√

āk + h)|δkv−k| + Nv−γ0

∑

i

(
√

āk + h)|h∆kvi|

≤ Nv−γ0

∑

i

√
āk|δkvi| + N(v−γ0

)2 ≤ N(v−γ0
)2 + (1/4)µāk

∑

i

(δkvi)2.

This yields

Pγ0µL̄hv ≥ λVγ0µ − N(v−γ0
)2 + (1/4)µāk

∑

i

(δkvi)2 + I4 + I5.

Next, obviously,

|I4| ≤ N(v−γ0
)2, |I5| ≤ N∗v−γ0

max
Q̄

|v|.

Therefore, and since (v−γ0
)2 ≤ Vγ0µ,

(4.6) Pγ0µL̄hv ≥ (λ − N)Vγ0µ − N∗ max
Q

|v|2 + (1/4)µāk

∑

i

(δkvi)2.

Now we deal with other terms in (4.5). Note that, since (t0 + τT (t0), x0) ∈ Q̄,

0 ≥ δT
τ Vγ0µ = 2v−γ0

δT
τ v−γ0

+ 2µviδ
T
τ vi + τ (δT

τ v−γ0
)2 + µτ

∑

i

(δT
τ vi)2,
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so that (cf. Lemma 3.2)

0 ≥ −v−γ0
δT
τ vγ0 + µviδ

T
τ vi = −Pγ0µδT

τ v.

By recalling that rα ≥ 0, we find from (4.6) and (4.5) that

(4.7) N∗ max
Q̄

|v|2 ≥ (λ − N)Vγ0µ + ξPγ0µḡ + (1/4)µāk

∑

i

(δkvi)2.

By Assumption 2.4,

|ξPγ0µḡ| ≤ NV 1/2
γ0µ (

∑

i

√
āk|δkvi| + V 1/2

γ0µ + N∗ξ).

It follows that the sum of the last two terms in (4.7) is greater than

−NVγ0µ − N∗ξV 1/2
γ0µ ≥ −NVγ0µ − N∗ξ2.

Hence
N∗(max

Q̄
|v|2 + ξ2) ≥ (λ − N1)Vγ0µ,

which for λ − N1 ≥ 1 shows that on Q|0,
|δη,lu|2 = |δη,lv|2 ≤ µ−1Vγ0µ

≤ N∗(max
Q̄

|v|2 + ξ2) ≤ N∗ξ2
(+)(T )(max

Q̄
|ξ(−)u|2 + 1).

This implies (2.16) and the theorem is proved. �

In light of this theorem to prove Theorem 2.5 we only need to show that in
the case that the assumptions of Theorem 4.1 are not satisfied one can obtain the
assertion of Theorem 2.5 differently. To do that we need two lemmas.

Lemma 4.3. Take a function φ on R
d and assume that

max
i

|δiφ(x)| ≤ max
i

|δiφ(0)|

for x ∈ Λ. Then

(4.8) max
i

|δiφ(0)| ≤ max
(
(Pγφ(x))− : γ ∈ Γ, x ∈ {0} ∪ Λ

)
.

Proof. Take a j such that

max
i

|δiφ(0)| = |δjφ(0)|

and first assume that

(4.9) |δjφ(0)| = −δjφ(0).

Then take γj = ε−1 and γi = ε for i 
= j. Since −δjφ(0) ≥ δiφ(0) and −δjφ(0) ≥ 0,
we have

Pγφ(0) = ε−1δjφ(0) + ε
∑

i �=j

δiφ(0)

≤ (ε−1 − 2εd1)δjφ(0) = −(ε−1 − 2εd1) max
i

|δiφ(0)|

and (4.8) follows since ε−1 − 2εd1 = 1.
If (4.9) is not satisfied, then

max
i

|δiφ(hj�j)| ≤ |δjφ(0)| = δjφ(0) = −δ−jφ(hj�j),
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which combined with an obvious inequality between the extreme terms yields

max
i

|δiφ(hj�j)| = −δ−jφ(hj�j) = |δ−jφ(hj�j)|

= |δjφ(0)| = max
i

|δiφ(0)|.

By the above argument applied to the point hj�j in place of 0,

min
Γ

Pγφ(hj�j) ≤ (ε−1 − 2εd1)δ−jφ(hj�j)

= −(ε−1 − 2εd1) max
i

|δiφ(0)| = −max
i

|δiφ(0)|.

The lemma is proved. �

Lemma 4.4. Condition (4.1) is satisfied if (t0, x0) ∈ Qo
1 and

(4.10) max
Q̄,i

v2
i = max

Qo
1,i

v2
i .

Indeed if (4.1) does not hold, then

max
Γ×Q̄

[v−γ ]2 ≤ Vγ0µ(t0, x0)

< (2(d1 + 1)µ + 1/4) max
Q̄,i

v2
i = (2(d1 + 1)µ + 1/4) max

Qo
1,i

v2
i ,

which contradicts Lemma 4.3 since µ ≤ 1/(4(d1 + 1)).

Proof of Theorem 2.5. If (t0, x0) ∈ ∂1Q, then in Q|0,

|δη,lu| = |δη,lv| ≤ µ−1/2V 1/2
γ0µ ≤ µ−1/2V 1/2

γ0µ (t0, x0),

where the last term is obviously less than the right-hand side of (2.16). Further-
more, if (t0, x0) ∈ Qo

1 but (4.1) is violated, then by Lemma 4.4,

max
Q̄,i

v2
i = max

∂1Q,i
v2

i

and one can use the above argument. Finally, in the remaining case, Theorem 4.1
is applicable. The theorem is proved. �

Remark 4.5. As in [5] one can relax conditions on λ by adding in its expression
any large constant times mink aα

k provided that Λ = Λ0. This can be shown by
considering maximum points of Vγµ + νv2, where ν is a large constant. This would
also allow us to relax the condition on Dψf to |Dψf | ≤ K0 + K3 mink aα

k .

5. Proof of Theorem 2.9

Our goal is to show how to choose an appropriate C = C(d1) in (2.18). Below in
this section, by N we denote generic constants depending only on d1, δ, K1, K2, K3

but not ω.
First of all, observe that l does not enter either equation (2.9) or the statement

of the theorem. It is involved, however, in the definition of ∂1Q, making it “fatter”.
Because of that if we additionally assume that l = 0, the result will be stronger.
Therefore, we assume that l = 0.

Set m = 0 and introduce ε, Γ, vγ , vi, Vγµ, W , Pγ , Pγµ as in the beginning of
Section 4. However, since v = u, we also write uγ , ui, and Uγµ instead of vγ , vi,
and Vγµ, respectively. Since l = 0, u±(d1+1) = v±(d1+1) = 0 and now there is no
need to allow i to take the values ±(d1 + 1). Therefore, we restrict i to the range
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±1, ...,±d1. As everywhere in the article, index k runs through ±1, ...,±d1. This
time we take

8µ = d−1
1 ∧ ε.

Introduce κ ≥ 0 as a solution of

(5.1) max
Γ×Q̄

[Uγµ + κu2] = 4κK2
1 .

Observe that if κ = 0 is a solution of (5.1), then uk ≡ 0 and the assertion of the
theorem is trivial. Therefore, without losing generality we may assume that for κ =
0 the left-hand side of (5.1) is strictly greater than its right-hand side. Furthermore,
as a function of κ the left-hand side is convex, increasing with Lipschitz constant
not greater than K2

1 . It follows that (5.1) has a unique solution κ > 0. After that
we define (γ0, t0, x0) as a point in Γ× Q̄ at which the maximum in (5.1) is attained.
For simplicity of notation we drop the arguments (t0, x0) in what follows. We also
use the abbreviated notation δi, ∆k introduced in Section 4.

First we show that [u−
γ0

]2 is the main term in Uγ0µ + κu2.

Lemma 5.1. Assume that (4.10) holds. Then

(5.2) [u−
γ0

]2 ≥ 2κK2
1 ,

(5.3) 2d1ε
−1 max

i
|ui| ≥ u−

γ0
≥ (1/2) max

Q̄,i
|ui|.

In particular uγ0 < 0 and the operator Pγ0µ respects the maximum principle at
(t0, x0).

Proof. First, notice that, owing to (4.10), Lemma 4.3, and the definitions of κ and
(t0, x0) we have

4κK2
1 = [u−

γ0
]2 + µ

∑

i

u2
i + κu2 ≤ [u−

γ0
]2 + 2d1µ max

Q̄,i
u2

i + κK2
1

≤ [u−
γ0

]2 + 2d1µ max
Γ×Q̄

[u−
γ ]2 + κK2

1 ≤ [u−
γ0

]2 + 2d1µ4κK2
1 + κK2

1 .

This implies (5.2) since 8d1µ ≤ 1.
The first inequality in (5.3) is obvious. If the second one is wrong, then

max
Γ×Q̄

[u−
γ ]2 ≤ Uγ0µ + κu2 < [2d1µ + 1/4] max

Q̄,i
u2

i + κK2
1

≤ [2d1µ + 1/4] max
Γ×Q̄

[u−
γ ]2 + κK2

1 ≤ (1/2) max
Γ×Q̄

[u−
γ ]2 + κK2

1

contrary to (5.2). The last assertion of the lemma follows from Lemma 4.2. The
lemma is proved. �

Next, if (t0, x0) ∈ ∂1Q, then

4κK2
1 = Uγ0µ + κu2 ≤ N ′ + κK2

1 , 3κK2
1 ≤ N ′,

and u2
k(t, x) ≤ (4/3)µ−1N ′ in Q̄ according to (5.1). In this case the assertion of

the theorem is true. Similarly, as in the proof of Theorem 2.5 we get the result if
(4.10) is violated. This justifies the first two assumptions in the following set which
we impose:

(t0, x0) ∈ Qo
1, max

Q̄,k
u2

k = max
Qo

1,k
u2

k,
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(5.4) 4d1ε
−1W 1/2 ≥ max

Qo
1,k

|uk|, W ≥ K2
2 + 8K1K3δ

−1 + 1.

The third relation in (5.4) follows from Lemma 5.1, and the last assumption in (5.4)
restricts us to the only nontrivial case in light of (5.3).

Next again owing to the fact that the number of points in Q is finite we can find
some functions r̄(t), āk(t, x), c̄(t, x), and f̄(p, ψ, r, t, x) satisfying Assumptions 2.1
and 2.5 and such that for

ḡ(t, x) := f̄(uk(t, x), u(t, x), t, x)− c̄(t, x)u(t, x), L̄h := āk∆k

we have (recall that the arguments (t0, x0) are dropped)

(5.5) r̄δT
τ u + L̄hu + ḡ = 0, Th,�i

[r̄δT
τ u + L̄hu + ḡ] ≤ 0

for any i (= ±1, ...,±d1).
Now, as before,

0 ≥ L̄h[Uγ0µ + κu2] ≥ −2u−
γ0

L̄huγ0 + 2µuiL̄hui + 2κuL̄hu

+ 2āk[(δku−
γ0

)2 + µ
∑

i

(δkui)2 + κ(δku)2].(5.6)

Furthermore,

0 ≥ δT
τ [Uγ0µ + κu2] = 2u−

γ0
δT
τ u−

γ0
+ 2µuiδ

T
τ ui + 2κuδT

τ u

+2τ [(δT
τ u−

γ0
)2 + µ

∑

i

(δT
τ ui)2 + κ(δT

τ u)2](5.7)

≥ −2u−
γ0

δT
τ uγ0 + 2µuiδ

T
τ ui + 2κuδT

τ u.

We multiply (5.7) by r̄, add the result to (5.6), and use that r̄ ≥ 0, c̄ ≥ −K3,
āk ≥ δ, |u| ≤ K1, and

u(r̄δT
τ u + L̄hu) = −uḡ = c̄u2 − u(ḡ + c̄u) ≥ −K3K1 − u(ḡ + c̄u),

where |ḡ + c̄u| ≤ ωW + K3 (recall (5.4)). Then we obtain

u(r̄δT
τ u + L̄hu) ≥ −ωK1W − 2K1K3,

u−
γ0

[r̄δT
τ + L̄h]uγ0 − µui[r̄δT

τ + L̄h]ui ≥ δµM + κW (δ − K1ω) − 2κK1K3,

where
M :=

∑

i,k

(δkui)2.

Since C ≥ 4 in Assumption 2.6, we have K1ω ≤ δ/4 which, along with (5.4),
leads to

W (δ − K1ω) − 2K1K3 ≥ (3/4)δW − 2K1K3 ≥ (δ/2)W,

(5.8) u−
γ0

[r̄δT
τ + L̄h]uγ0 − µui[r̄δT

τ + L̄h]ui ≥ δµM + (δ/2)κW.

On the other hand, owing to (5.4), (5.5), and Lemma 5.1,

(5.9) Pγ0µ[r̄δT
τ u + L̄hu + ḡ] ≤ 0.

Here due to (5.8),

Pγ0µ[r̄δT
τ u + L̄hu] = u−

γ0
[r̄δT

τ + L̄h]uγ0 − µui[r̄δT
τ + L̄h]ui + I

≥ δµM + (1/2)δκW + I,



A PRIORI ESTIMATES 685

where
I := [u−

γ0
γ0i − µui](δiāk)[∆ku + h∆kui].

Below by C we denote generic constants depending only on d1. It follows from
the estimates

|δiāk| ≤ K3 + ω|ui|, |h∆kui| = |δkui + δ−kui| ≤ 2M1/2,

|∆ku| ≤ M1/2, |u−
γ0

γ0i − µui| ≤ CW 1/2,

that

|I| ≤ CW 1/2M1/2(K3 + ωW 1/2) ≤ NW + (1/2)δµM + Cδ−1ω2W 2.

Hence,

(5.10) Pγ0µ[r̄δT
τ u + L̄hu] ≥ (1/2)δµM + (1/2)δκW − NW − Cδ−1ω2W 2.

To estimate Pγ0µḡ recall that c̄ ≥ −N , Uγ0µ ≥ 0 and observe that

−Pγ0µ(c̄u) = −c̄Pγ0µu − [u−
γ0

γ0k − µuk](Th,�k
u)δkc̄

= c̄Uγ0µ − [u−
γ0

γ0k − µuk](Th,�k
u)δkc̄ ≥ −NW − NW 1/2 ≥ −NW,

where the last inequality follows from (5.4). Furthermore,

hδi(ḡ + c̄u) = f̄(Th,�i
uk, Th,�i

u, t0, x0 + h�i) − f̄(uk, u, t0, x0).

Owing to Assumption 2.5, (5.4), and the mean value theorem (this is the place,
where one cannot assume that (2.17) holds only for large p)

|δi(ḡ + c̄u)| ≤ CM1/2(ωW 1/2 + K3)

+C
[
W 1/2(ωW + K3) + ωW 3/2 + K3

]
.

Note that the coefficients of δi(ḡ + c̄u) in Pγ0µ(ḡ + c̄u) are dominated by W 1/2

and for any ρ > 0,

ωM1/2W ≤ ρM + ρ−1ω2W 2, K3M
1/2W 1/2 ≤ ρM + ρ−1NW.

Therefore,

|Pγ0µ(ḡ + c̄u)| ≤ (1/2)δµM + C[δ−1ω2 + ω]W 2 + NW,

Pγ0µḡ ≥ −(1/2)δµM − C[δ−1ω2 + ω]W 2 − NW

and (5.9) and (5.10) yield

(1/2)δκW ≤ C[δ−1ω2 + ω]W 2 + NW,

(5.11) 2δκ ≤ C1[δ−1ω2 + ω]W + N1.

Since W ≤ µ−14K2
1κ (see (5.1)), we see that if C in Assumption 2.6 is such that

C ≥ 4µ−1C1,

then (recall that C ≥ 4 and ωK1 ≤ δ)

C1[δ−1ω2 + ω]W ≤ CK2
1 [δ−1ω2 + ω]κ ≤ C[K1ω + K2

1ω]κ ≤ δκ.

In this case (5.11) allows us to conclude that κ ≤ δ−1N1 and we get the assertion
of the theorem from (5.1). The theorem is proved.
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6. Conditional estimates of the second-order differences

In this section we suppose that all the assumptions of Theorem 2.12 are satisfied
apart from Assumptions 2.8 and 2.9. The notation in this section is somewhat
different from Sections 4 and 5. Of course, we use our basic notation from Section
2; for instance, ξ and λ are defined in (2.14).

For ε ∈ (0, 1] set (observe that now γk = γ−k)

Γ(ε) = {γ = (γk : k = ±1, ...,±d1) : γk = γ−k, ε ≤ γk ≤ ε−1, ∀k}.
Fix a constant µ = µ(d1, ε) > 0 such that

16d2
1µ ≤ ε2.

In this section the indices i, j, k, p, q run through {±1, ...,±d1}. The main result of
this section is the following.

Theorem 6.1. Assume that

(6.1) 3µ max
Q

∑

i,j

[
(ξδh,�j

δh,�i
u)−

]2 ≤ max
Γ(ε)×Q

[
(ξ

∑

i

γi∆h,�i
u)−

]2
.

Then there exists a constant N = N(ε, µ, d1, K0) such that if λ ≥ N , then in
Q|0 for i, j = ±1, ...,±d1 we have

|δh,�j
δh,�i

u| ≤ N∗em+(T+τ)(1 + max
∂2Q,p,q

|ξ(−)δh,�p
δh,�q

u|

+ max
Q̄

|ξ(−)u| + max
Q̄,p

|ξ(−)δh,�p
u|),

(6.2)

where N∗ = N∗(h0, ε, µ, d1, K0, K3).

Below in this section, by N and N∗ we denote generic constants of the same
type as in the theorem. As before, we use the abbreviated notation

∆i = ∆h,�i
, δi = δh,�i

.

Introduce v = ξu as in Section 4 and fix a constant ν ≥ 1. Set

Pγ = γi∆i, vγ = Pγv, vi = δiv, vij = δjδiv,

Pγµνφ = v−γ Pγφ + µv−ijδjδiφ − νviδiφ,

W1 =
∑

i

v2
i , W2 =

∑

i,j

[v−ij ]
2, Vγµν = [v−γ ]2 + µW2 + νW1.

Observe that this time again Pγµνv = −Vγµν and also note that (6.1) is equiva-
lent to the following:

(6.3) 3µ max
Q

W2 ≤ max
Γ(ε)×Q

(v−γ )2.

We introduce (γ0, t0, x0) as a point in Γ(ε)× Q̄ maximizing Vγµν and first prove
a few auxiliary results. Below, as usual, we drop the arguments (t0, x0).

Lemma 6.2. (i) For (t, x) ∈ Qo
1 and any i, j,

(6.4) |vij(t, x)| ≤ max
Q

W
1/2
2 .

(ii) If (6.3) holds and (t0, x0) ∈ Q and

(6.5) ν max
Q

W1 ≤ µ max
Q

W2,
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then at (t0, x0),

(6.6) µ max
Q

W2 ≤ [v−γ0
]2, ν max

Q
W1 ≤ [v−γ0

]2.

Furthermore, if additionally,
h
√

ν ≤ ε,

then the operator Pγ0µν respects the maximum principle at (t0, x0) relative to Λ0 +
Λ0, that is, for any function φ such that φ(x0) ≥ φ(x0 + η) for all η ∈ Λ0 + Λ0, we
have Pγ0µνφ(t0, x0) ≤ 0.

Proof. (i) Obviously v−−i,j ≤ W
1/2
2 on Q. Since (no summation in i) Th,�i

v−−i,j = v+
ij ,

we get v+
ij(t, x) ≤ W

1/2
2 (t, x + h�i). This proves (i).

(ii) The second estimate in (6.6) follows from the first one and (6.5). Assuming
that the first estimate in (6.6) does not hold, we obtain at (t0, x0),

Vγ0µν < 2µ max
Q

W2 + ν max
Q

W1 ≤ 3µ max
Q

W2,

max
Γ(ε)×Q

[v−γ ]2 ≤ Vγ0µν < 3µ max
Q

W2,

contrary to (6.3). This proves (6.6).
To prove the last assertion of the lemma we take a function with described

properties and without loss of generality assume that φ(x0) = 0. We also note that

h2δiδjφ(x0) = φ(x0 + h�i + h�j) − φ(x0 + h�i) − φ(x0 + h�j)

+φ(x0) ≤ −φ(x0 + h�i) − φ(x0 + h�j)

and ∆iφ(x0) ≤ 0. Therefore, as usual dropping the arguments (t0, x0) in v..., we
infer from (6.6) that

h2Pγ0µνφ(t0, x0) ≤ v−γ0
ε
∑

i

(φ(x0 + h�i) + φ(x0 − h�i))

−µv−ij(φ(x0 + h�i) + φ(x0 + h�j)) − hνviφ(x0 + h�i)

≤ v−γ0

[
ε
∑

i

(φ(x0 + h�i) + φ(x0 − h�i))

−√
µ

∑

i,j

(φ(x0 + h�i) + φ(x0 + h�j)) − h
√

ν
∑

i

φ(x0 + h�i)
]

= v−γ0

∑

i

φ(x0 + h�i)[2ε − 2d1
√

µ − h
√

ν].

The last expression is less than zero in light of the fact that 4d1
√

µ ≤ ε and h
√

ν ≤ ε.
The lemma is proved. �
Remark 6.3. This lemma can be generalized to the case when the �k’s come with dif-
ferent hk’s, but the hk’s should be comparable. This is the reason why in Theorem
2.12 we do not include hd1+1 and �d1+1.

Set

Zk := v−γ0
∆kvγ0 + µv−ij∆kvij − νvi∆kvi,

zk := v−γ0
δkvγ0 + µv−ijδkvij − νvivki,

Rγ
k :=

[
δkv−γ0

]2
, Rµ

k :=
∑

i,j

[
δkv−ij

]2
, Rν

k :=
∑

i

v2
ki.
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These objects evaluated at (t0, x0) will be extensively used below in this section.

Lemma 6.4. If (t0, x0) ∈ Qo
1, then at (t0, x0) we have for any k,

2Zk ≥ −2v−γ0
∆kv−γ0

− 2µv−ij∆kv−ij − 2νvi∆kvi

≥ Rγ
k + Rγ

−k + µRµ
k + µRµ

−k + νRν
k + νRν

−k ≥ 0.
(6.7)

Furthermore, for any α ∈ A and h ≤ h0/2,

(6.8) 4(aα
kZk + bα

k zk) ≥ 2aα
k Zk + aα

k (Rγ
k + µRµ

k + νRν
k).

Proof. The first inequality in (6.7) follows from Lemma 3.2. To prove the second
one it suffices to observe that

0 ≥ ∆kVγ0µν = 2v−γ0
∆kv−γ0

+ 2µv−ij∆kv−ij + 2νvi∆kvi

+Rγ
k + Rγ

−k + µRµ
k + µRµ

−k + νRν
k + νRν

−k.

Next, using that h ≤ h0/2, by (6.7) and Assumption 2.3 we get

0 ≥ (aα
k∆k + 2bα

k δk)Vγ0µν = 2v−γ0
[aα

k ∆k + 2bα
k δk]v−γ0

+2µv−ij [a
α
k ∆k + 2bα

k δk]v−ij + 2νvi[aα
k∆k + 2bα

k δk]vi

+2aα
k [Rγ

k + µRµ
k + νRν

k] + 2hbα
k [Rγ

k + µRµ
k + νRν

k]

≥ −2v−γ0
[aα

k∆k + 2bα
k δk]vγ0

−2µv−ij [a
α
k∆k + 2bα

k δk]vij + 2νvi[aα
k ∆k + 2bα

k δk]vi

+2aα
k [Rγ

k + µRµ
k + νRν

k] + 2hbα
k [Rγ

k + µRµ
k + νRν

k]

≥ −2aα
kZk − 4bα

k zk + aα
k [Rγ

k + µRµ
k + νRν

k]

and (6.8) follows. The lemma is proved. �
In the following lemma we do the most important step in the proof of Theorem

6.1. Set
W̄1 := max

Q
W1.

Lemma 6.5. Under the assumptions of Theorem 6.1 there are constants N , N∗,

ν = ν∗(h0, ε, µ, d1, K0, K3) ≥ 1, h∗ = h∗(h0, ε, µ, d1, K0, K3) > 0

such that h∗ ≤ h0/2 and, if condition (6.5) is satisfied and h ∈ (0, h∗] and (t0, x0) ∈
Qo

2, then at (t0, x0) for any α ∈ A we have

(6.9) J := Pγ0µν(aα
k∆kv + bα

k δkv) ≥ −N [v−γ0
]2 − N∗W̄1.

Proof. We fix an α ∈ A and drop the superscript α for convenience. By (3.2) (no
summation in k, i, j)

δjδi(bkvk) = bkδkvij + (δjbk)vki + (δibk)vkj

+h[(δi + δj)bk]δkvij + (δjδibk)Th,�i+�j
vk.

Also by using (3.2) and the formulas ak = a−k and h∆k = δk + δ−k and summing
with respect to k (but not in i, j) we get

δjδi(ak∆kv) = ak∆kvij + (δjak)∆kvi + (δiak)∆kvj

+2
[
(δj + δi)ak

]
δkvij + (δjδiak)Th,�j+�i

∆kv.

While applying this formula to ∆i it is also useful to observe that
[
(δ−i + δi)ak

]
δkvi,−i = −h(∆iak)∆iδkv = −(∆iak)(vki + vk,−i).
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Hence (recall that γ0i = γ0,−i and �i = −�−i),

Pγ0(ak∆kv + bkδkv) = −γ0iδ−iδi(ak∆kv + bkδkv)

= (ak∆k + bkδk)vγ0 − 2γ0i(δ−iak)∆kvi + 4γ0i(∆iak)vki

+γ0i(∆iak)∆kv + 2γ0i(δibk)vki + γ0i(∆ibk)vk.

Also, everywhere,

v−ijδjδi(ak∆k + bkδk)v = v−ij(ak∆k + bkδk)vij + 2v−ij(δjak)∆kvi

+hv−ij
[
(δj + δi)ak

]
∆kvij + v−ij(δjδiak)Th,�j+�i

∆kv

+2v−ij(δjbk)vki + 2hv−ij(δibk)δkvij + v−ij(δjδibk)Th,�i+�j
vk.

Therefore at (t0, x0) we have

J = akZk + bkzk + I1 + ... + I4,

where

I1 = −2γ0iv
−
γ0

(δ−iak)∆kvi + 2µv−ij(δjak)∆kvi,

I2 = µhv−ij
[
(δj + δi)ak

]
∆kvij ,

I3 = v−γ0
[4γ0i(∆iak)vki + γ0i(∆iak)∆kv]

+µv−ij(δjδiak)Th,�j+�i
∆kv,

I4 = 2v−γ0
γ0i(δibk)vki + v−γ0

γ0i(∆ibk)vk

+2µv−ij(δjbk)vki + 2µhv−ij(δibk)δkvij + µv−ij(δjδibk)Th,�i+�j
vk

−νvi(δiak)(∆kv + 2vki) − νvi(δibk)Th,�i
vk.

For h ≤ h0/2 it follows by Lemma 6.4 that

(6.10) 4J ≥ 2akZk + ak(Rγ
k + µRµ

k + νRν
k) + 4I1 + ... + 4I4.

Estimating I1. Note that owing to (6.6),

|4I1| ≤ Nv−γ0
(
√

ak + h)
∑

i

|∆kvi|

and by (3.3),

Nv−γ0

√
ak

∑

i

|∆kvi| ≤ Nv−γ0

√
ak

∑

i

[
|δ−kv−ki| + |δkv−−k,i|

]

≤ N(v−γ0
)2 + (1/3)µakRµ

k .

Furthermore, by the formula h∆k = δk + δh,�−k
and Lemma 6.2 we obtain

v−γ0
h

∑

k,i

|∆kvi| ≤ 2v−γ0

∑

k,i

|vki| ≤ Nv−γ0
max

Q
W

1/2
2 ≤ N(v−γ0

)2.

Thus,

(6.11) |4I1| ≤ N(v−γ0
)2 + (1/3)µakRµ

k .

Estimating I2. Observe that

|4I2| ≤ Nhv−ij(
√

ak + h)|∆kvij | ≤ I21 + I22,

where (see Lemma 6.2 and recall that (t0, x0) ∈ Q0
2)

I21 = N
∑

k

h2v−ij |∆kvij | = N
∑

k

v−ij |(Th,�k
− 2 + Th,�−k

)vij | ≤ N (v−γ0
)2,
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and by the formula |θ| = θ + 2θ−,

I22 = Nhv−ij
√

ak|∆kvij | = Nhv−ij
√

ak∆kvij

+2Nhv−ij
√

ak(∆kvij)− = Nh
√

akZk + Nhv−ij
√

ak(∆kvij)− + I23,

where
I23 = −Nh

√
ak(v−γ0

∆kvγ0 − νvi∆kvi).
Furthermore, by Lemma 3.2,

Nhv−ij
√

ak(∆kvij)− ≤ Nh
√

akv−ij |∆kv−ij | = N
√

akv−ij |(δk + δ−k)v−ij |,
which is majorized by the right-hand side of (6.11).

To estimate I23 we use Lemma 3.2 to get

−Nh
√

akv−γ0
∆kvγ0 = −N

√
akv−γ0

δkvγ0 ≤ N
√

akv−γ0
δkv−γ0

≤ N(v−γ0
)2 + (1/3)akRγ

k .
(6.12)

Furthermore, by assumption (6.5),

Nhνvi
√

ak∆kvi = Nνvi
√

akvki ≤ N(v−γ0
)2 + (1/3)νakRν

k.

It follows that

I23 ≤ N(v−γ0
)2 + (1/3)ak

[
δkv−γ0

]2 + (1/3)νakRν
k.

Hence

(6.13) |4I2| ≤ N(v−γ0
)2 + Nh

√
akZk + (1/3)ak(Rγ

k + µRµ
k + νRν

k).

Estimating I3. We use the following result of simple computations:

Th,�j+�i
∆kv = −vk,−k + vkj + v−k,j + vki + v−k,i + h2∆kvij .

This shows new terms entering I3. All of them, apart from the last one, are similar
to the ones which are written explicitly in the definition of I3, and we show how to
estimate only one of them. By Assumption 2.7 and Lemma 6.2 we have

|µv−ij(δjδiak)vk,−k| ≤ N(v−γ0
)2 + N∗|v−γ0

|
∑

k,i

√
ak|vki| ≤ N(v−γ0

)2 + N∗akRν
k.

To estimate the remaining term in I3 we proceed as in estimating I2. We have

µh2v−ij(δjδiak)∆kvij

≤ Nh2v−ij(N + N∗√ak)|∆kvij | = I31 + I32.

Here by Lemma 6.2 and because (t0, x0) ∈ Qo
2,

I31 = Nh2v−ij |∆kvij | = Nv−ij |(Th,�k
− 2 + Th,�−k

)vij | ≤ N(v−γ0
)2.

Next,
I32 = N∗h2v−ij

√
ak|∆kvij | = I321 + I322,

with

I321 = N∗
1 h2µv−ij

√
ak∆kvij ,

I322 = N∗h2v−ij
√

ak(∆kvij)− ≤ N∗h2v−ij
√

ak|∆kv−ij |
= N∗hv−ij

√
ak|δkv−ij + δ−kv−ij | ≤ N∗W̄1 + (1/3)µakRµ

k ,

where the last inequality is true since hv−ij ≤ 2W̄
1/2
1 . Also observe that

I321 = N∗
1 h2√akZk − N∗

1 h2v−γ0

√
ak∆kvγ0 + N∗

1 h2νvi
√

ak∆kvi,
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where
N∗

1 νh2vi
√

ak∆kvi = 2N∗
1 νhvi

√
akvki ≤ N∗ν2h2W̄1 + akRν

k

and, according to (6.12) and the inequality h|vγ0 | ≤ NW̄
1/2
1 ,

−N∗
1 h2√akv−γ0

∆kvγ0 ≤ N∗W̄1 + (1/3)akRγ
k .

Therefore,

I321 ≤ N∗
1 h2√akZk + N∗(1 + ν2h2)W̄1 + (1/3)akRγ

k + akRν
k.

We can now specify h∗: we take

N∗
1 h∗ ≤ 1 and h∗ ≤ h0/2.

Then, for h ≤ h∗,

I32 ≤ h
√

akZk + N∗ν2W̄1 + (1/3)µakRµ
k + (1/3)akRγ

k + akRν
k,

|4I3| ≤ h
√

akZk + N∗ν2W̄1 + N(v−γ0
)2

+(1/3)akRγ
k + (1/3)µakRµ

k + N∗akRν
k.(6.14)

Estimating I4. By using Lemma 6.2 we easily see that

|4I4| ≤ N(v−γ0
)2 + N∗W̄1 + νW̄

1/2
1 (N

√
ak + N∗h)

∑

i

|vki|,

where

NνW̄
1/2
1

√
ak

∑

i

|vki| ≤ NνW̄1 + (1/3)νakRν
k,

N∗νW̄
1/2
1 h

∑

k,i

|vki| ≤ N∗νW̄1.

It follows that
|4I4| ≤ N(v−γ0

)2 + N∗νW̄1 + (1/3)νakRν
k.

By combining this with (6.11), (6.13), and (6.14), recalling that Zk ≥ 0, and
coming back to (6.10) we conclude that

(6.15) 4J ≥ (2ak − N1h
√

ak)Zk − N(v−γ0
)2 − N∗ν2W̄1 + (ν/3 − N∗

2 )akRν
k.

Now we specify ν = ν∗ by setting

ν∗ = 1 + 3N∗
2

and finish the argument as in [13]. Namely, if 2ak − N1h
√

ak ≥ 0 for a k, then we
can drop the term on the right in (6.15) corresponding to this k because Zk ≥ 0.
However, if 2ak−N1h

√
ak ≤ 0, then

√
ak ≤ Nh and |ak−N1h

√
ak| ≤ Nh2, whereas

h2Zk = h2(v−γ0
∆kvγ0 + µv−ij∆kvij − νvi∆kvki)

≤ N max
Q

W2 + NνW̄
1/2
1 max

Q
W

1/2
2

≤ N max
Q

W2 + Nν2W̄1 ≤ N(v−γ0
)2 + N∗W̄1.

This and (6.15) yield (6.9) and the lemma is proved. �
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Proof of Theorem 6.1. Fix a constant ν according to Lemma 6.5 and first assume
that (t0, x0) ∈ ∂2Q. Then

√
µmax

Q̄
W

1/2
2 ≤ V 1/2

γ0µν(t0, x0) ≤ N∗( max
∂2Q,i,j

|vij | + max
∂2Q,i

|vi|),

which by (6.4) yields a similar estimate for

max
Qo

1,i,j
|vij |.

After that (6.2) is immediate (cf. the end of the proof of Theorem 4.1).
Therefore, in the rest of the proof we assume that

(t0, x0) ∈ Qo
2.

Similarly, if (6.5) is violated, there is nothing to prove. Hence, we may assume that
(6.5) holds. Finally, we may assume that h ≤ h∗, where h∗ is taken from Lemma
6.5 and further reduced if needed so as to satisfy h∗√ν ≤ ε. Indeed, if h ≥ h∗, then
in Qo

1,
|vij | ≤ 2(h∗)−1 max

Q
|vi|.

After justifying these additional assumptions, which allow us to use the assertions
of Lemmas 6.2 and 6.5 as long as h ≤ h∗, we construct functions r̄(t), āk(t, x),
b̄k(t, x), c̄(t, x), f̄(p, ψ, t, x) = f̄(t, x) as in Section 4 to get (4.2) and (4.3) satisfied.
Then, since (t0, x0) ∈ Qo

2 and (6.3) and (6.5) are valid and h
√

ν ≤ ε, by Lemma 6.2
at (t0, x0) we obtain

Pγ0µν

(
e−mτ r̄δT

τ v + āk∆kv + b̄kδkv − (c̄ + r̄cm)v + ξf̄
)
≤ 0.

The fact that r̄, āk, and b̄k are limits of some rα, aα
k , and bα

k , allows us to assert
that Lemma 6.5 holds with r̄, āk, and b̄k in place of rα, aα

k , and bα
k , respectively.

Therefore,

(6.16) −N(v−γ0
)2 + Pγ0µν

(
e−mτ r̄δT

τ v − (c̄ + r̄cm)v + ξf̄
)
≤ N∗W̄1.

Here Pγ0µνδT
τ v ≥ 0 as right after (4.6). Furthermore,

Pγ0µν((c̄ + r̄cm)v) = −(c̄ + r̄cm)Vγ0µν + I1,

where I1 is a linear combination of products of two types:
(i) v−γ0

or v−ij times a difference operator applied to c̄ times either v or a first-
order difference operator applied to v; the second and third factors may be taken
at a point different from (t0, x0), but their coefficients in the linear combination are
dominated by a constant N ;

(ii) vi times a difference operator applied to c̄ times either v or a first-order
difference operator applied to v; these terms may be taken at a point different from
(t0, x0), but the coefficients of these terms are dominated by a constant N∗ (recall
that ν is entering Pγµν).

Owing to Lemma 6.2, the absolute value of the linear combination of the products
of type (i) is less than

Nv−γ0
K3(max

Q
|v| + W̄

1/2
1 ) ≤ (v−γ0

)2 + N∗(max
Q

|v|2 + W̄1).

The absolute value of the linear combination of the products of type (ii) is clearly
less than

N∗W̄
1/2
1 (max

Q
|v| + W̄

1/2
1 ) ≤ N∗(max

Q
|v|2 + W̄1).



A PRIORI ESTIMATES 693

Now from the above estimates, (6.16), and the fact that Vγ0µν ≥ (v−γ0
)2 and

c̄ + r̄cm ≥ λ we conclude that

(6.17) (λ − N)(v−γ0
)2 + Pγ0µν

(
ξf̄

)
≤ N∗(max

Q
|v|2 + W̄1).

Finally, obviously

Pγ0µν(ξf̄) ≥ −N∗ξ(max
i,j

|vij | + ν max
i

|vi|) ≥ −N∗ξ2 − (v−γ0
)2 − W̄1,

and we infer from (6.17) that

(λ − N1)(v−γ0
)2 ≤ N∗(max

Q
|v|2 + W̄1) + N∗ξ2.

We set the constant N in the statement of the theorem to be N1+1 and use Lemma
6.2 to conclude that in Qo

1 ∩ Q|0 for any i, j,

|δjδiu| = |vij | ≤ Nv−γ0
(t0, x0) ≤ N∗(max

Q
|v| + W̄

1/2
1 ) + N∗ξ(t0).

This implies (6.2) in Qo
1 ∩ Q|0. On the remaining part of Q|0 estimate (6.2) is

obvious and the theorem is proved. �

7. Proof of Theorem 2.12

We start with three auxiliary results. Everywhere in this section the assumptions
of Theorem 2.12 are supposed to be satisfied. Recall that the set L is introduced
in (2.20).

Lemma 7.1. For any function φ and l1, l2 ∈ Λ0 we have

(7.1)
|δh,l1δh,l2φ(0)| ≤ 4 max(|∆h,�k

φ(x)| : |k| ≤ d0, x ∈ (Λ0 + L) ∪ {0})
+4 max(|∆h,�k

φ(x)| : d0 < |k| ≤ d1, x ∈ Λ0 ∪ {0}).

Proof. Obviously we may assume that h = 1. Next, observe that

δ1,l1δ1,l2φ(0) = (1/2)[∆1,l2φ(l1) + ∆1,l1φ(l2)] − (1/2)∆1,l1−l2φ(0),

δ1,l1δ1,l1φ(0) = ∆h,l1φ(l1), δ1,l1δ1,−l1φ(0) = −∆h,l1φ(0).

It follows that if l1, l2 ∈ L, then

|δh,l1δh,l2φ(0)| ≤ max(|∆h,�k
φ(x)| : |k| ≤ d0, x ∈ L ∪ {0})

+ max(|∆h,�k
φ(0)| : d0 < |k| ≤ d1).

We substitute here φ(y + ·) in place of φ and use that Λ0 +L ⊃ L since d1 ≥ 2 and
L = −L. Then we see that, if y ∈ Λ0 ∪ {0} and l1, l2 ∈ L, then

(7.2)
|δ1,l1δ1,l2φ(y)| ≤ max(|∆h,�k

φ(x)| : |k| ≤ d0, x ∈ (Λ0 + L) ∪ {0})
+ max(|∆h,�k

φ(x)| : d0 < |k| ≤ d1, x ∈ Λ0 ∪ {0}).
In case l1 = ζ1 + ζ2, l2 = η1 + η2 with ζ1, ζ2, η1, η2 ∈ L and ζ1 
= ζ2, ζ1 
= −ζ2,

η1 
= η2, η1 
= −η2 either ζ1 
= η1 and ζ1 
= −η1 or ζ1 
= η2 and ζ1 
= −η2. The
second possibility reduces to the first one by interchanging η1 and η2. If the first
possibility is realized, then we use the formula δ1,η+ζ = T1,ηδ1,ζ + δ1,η to obtain

δ1,l1δ1,l2φ(0) = (T1,ζ1δ1,ζ2 + δ1,ζ1)(T1,η1δ1,η2 + δ1,η1)φ(0)

= δ1,ζ2δ1,η2φ(ζ1 + η1) + δ1,ζ2δ1,η1φ(ζ1) + δ1,ζ1δ1,η2φ(η1) + δ1,ζ1δ1,η1φ(0).

Here ζ1 +η1 ∈ Λ0, ζ1, η1 ∈ Λ0, and 0 ∈ Λ0∪{0}. Therefore, we get (7.1) from (7.2).
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The remaining case that l1 ∈ L and l2 = η1 + η2 with ηi as above is taken care
of by setting ζ1 = 0 in the above calculations. The lemma is proved. �

Before stating the next lemma we remind the reader that the index k takes values
in {±1, ...,±d1}.

Lemma 7.2. For any values of the arguments and s > 0 we have
∑

k

q+
k ≤ 2d1

δ

[
s−1F (sφ, sqk, spk, sψ) + K0

∑

k

q−k

+K3

( ∑

k

|pk| + |ψ| + φ− + s−1
)]

.

Indeed, the expression in the brackets obviously is larger than

sup
α∈A

aα
k (t, x)q+

k ,

which in turn is larger than δq+
n for each particular n = ±1, ...,±d1.

Below we use the notation Γ(ε) and Pγ from Section 6.

Lemma 7.3. Let θ ∈ (0, ε−1) and ε ∈ (0, 1] be such that

(7.3) 2d1K0κ/δ ≤ 1/2, κ := ε(θ + ε)/(1 − θε).

Let w, ψ, pk be functions on Q and assume that

(7.4) max
Γ(ε)×Q

(ξPγw)− ≤ θ max
Q

∑

k

|ξ∆h,�k
w|.

Then in Q we have
∑

k

|ξ∆h,�k
w| ≤ 4d1

δ
(1 + κ)I,

where

I = max
Q

[ξF (φ, ∆h,�k
w, pk, ψ) + K3ξ

( ∑

|k|≤d1

|pk| + |ψ| + φ− + 1
)]

.

Proof. Set Φ± =
∑

k(ξ∆h,�k
w)± and observe that due to (7.4),

εΦ+ − ε−1Φ− ≥ −θ max
Q

Φ+ − θ max
Q

Φ−

in Q. Hence (θ + ε) maxQ Φ+ ≥ (ε−1 − θ) maxQ Φ−, that is,

(7.5) max
Q

Φ− ≤ κ max
Q

Φ+.

By (7.5) and Lemma 7.2 with s−1φ, s−1∆h,�k
w, s−1pk, and s−1ψ in place of φ, qk, pk,

and ψ, respectively, and s−1 = ξ we find that in Q,

Φ+ ≤ 2d1

δ

[
I + K0κ max

Q
Φ+

]
.

Upon taking the maximums over Q of both parts and taking into account (7.3)
we get that Φ+ ≤ (4d1/δ)I in Q, which along with (7.5) yields the result. The
lemma is proved. �
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Proof of Theorem 2.12. Here k, i, j run through ±1, ...,±d1. It is easy to see that
one can find ε = ε(δ, d1, K0) ∈ (0, 1] and µ = µ(δ, d1, K0) > 0 in such a way that
the conditions:

16d2
1µ ≤ ε2, 16d2

1(3µ)1/2 =: θ < ε−1

and (7.3) are satisfied. We choose and fix appropriate ε and µ.
If

(7.6) max
Γ(ε)×Q

(ξPγu)− ≤ θ max
Q

∑

k

|ξ∆h,�k
u|,

then, by taking into account that u satisfies (2.1) in Q, from Lemma 7.3 we obtain
that |ξ∆h,�k

u| are bounded in Q by the right-hand side of (2.21). By combining
this with Lemma 7.1 we conclude that (2.21) is true in Q|0 ∩ Qo

2 (notice that
(Λ0 + L) ∪ {0} ⊂ Λ0 + Λ0). Of course, (2.21) is obvious on Q|0 ∩ ∂2Q.

If (6.1) holds, then we get (2.21) from Theorem 6.1. In the remaining case both
(7.6) and (6.1) are violated and

θH := θ max
Q

∑

k

|ξ∆h,�k
u|

≤ max
Γ(ε)×Q

(ξPγu)− ≤ (3µ)1/2 max
Q

( ∑

i,j

|ξδh,�j
δh,�i

u|2
)1/2

≤ (3µ)1/2 max
∂2Q

∑

i,j

|ξδh,�j
δh,�i

u| + (3µ)1/2 max
Qo

2

∑

i,j

|ξδh,�j
δh,�i

u|.

In light of Lemma 7.1 the last maximum over Qo
2 is less than 8d2

1H. Hence

θH ≤ N max
∂2Q,i,j

|ξδh,�j
δh,�i

u| + (1/2)θH, H ≤ N max
∂2Q,i,j

|ξδh,�j
δh,�i

u|,

and we can finish the proof of (2.21) in the same way as we did a few times before.
The theorem is proved. �

8. Proof of Theorem 2.14

In the following lemma the assumption that supα aα
k ≥ δ is not used. All other

assumptions of Theorem 2.14 are supposed to hold. We use notation (2.10) and
the notation from Section 6 with d1 + 1 in place of d1 and δi = δhi,�i

, ∆i = ∆hi,�i
.

Here we take
µ = 0

and show how to choose ν = ν(λ, ε, d1, K3) in Lemma 8.1.

Lemma 8.1. In Q|0 for γ ∈ Γ(ε) we have

(8.1)
(
∑

i

γi∆hi,�i
u)− ≤ N∗em+(T+τ)(1 + max

Q̄,j
|ξ(−)δhj ,�j

u|

+ max
Q̄

|ξ(−)u| + max
∂1Q,j

(ξ(−)∆hj ,�j
u)−),

where N∗ = N∗(λ, h0, ε, d1, K3).

Proof. As many times before, if (t0, x0) ∈ ∂1Q, there is nothing to prove. Therefore,
we assume that (t0, x0) ∈ Q0

1. We may also assume that at (t0, x0),
∑

i

(ξδhi,�i
u)2 ≤

[
(ξ

∑

i

γ0i∆hi,�i
u)−

]2
.
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Then the operator Pγ00ν respects the maximum principle for hν ≤ 2ε (see the
proof of Lemma 6.2 and recall that η ≤ h).

Then as in the proof of Lemma 6.5 we obtain

(8.2) 4J = 4Pγ00ν(ak∆kv + bkδkv) ≥ akνRν
k + 4I4

if h ≤ h0/2, where this time

I4 = 2v−γ0
γ0i(δibk)vki + v−γ0

γ0i(∆ibk)vk − νvi(δibk)Thi,�i
vk.

Since

v−γ0
γ0i|(δibk)vki| ≤ N∗v−γ0

√
ak

∑

i

|vki| ≤ (λ/8)(v−γ0
)2 + N∗ak

∑

i

v2
ki

we get from (8.2) that, for ν = ν∗(λ, ε, d1, K3), hν∗ ≤ 2ε, and h ≤ h0/2,

(8.3) J ≥ −(λ/2)(v−γ0
)2 − N∗W̄1.

The rest is just a repetition of a part of the proof of Theorem 6.1 with obvious
and great simplifications. The lemma is proved. �

There is almost nothing else to do to finish the proof of Theorem 2.14. Indeed,
(8.1) with d1 in place of d1 + 1 yields the first estimate in (2.22) as in the proof of
Theorem 2.12. After getting estimates for |∆h,�k

u| the estimate of (∆η,lu)− follows
immediately from (8.1). The theorem is proved. �

9. Comments on the operators having form (2.7)

We know (see, for instance, [5]) that if an operator L having form (2.7) admits
an approximation with operators Sh of the form (2.4) respecting the maximum
principle with hB in place of B and Span B = R

d, then necessarily

Lu = ak�i
k�j

kuxixj + bk�i
kuxi

with some ak, bk ≥ 0 and �k ∈ B ∪ (−B). A way to find such representations for
d = 2 and given aij is suggested in [1].

The next natural issue is related to the smoothness of ak, bk if we are given
that the aij are smooth. Recall that in Assumption 2.2 we need aα

k to be at least
Lipschitz continuous. Of course, this problem disappears if the aij are constant.

It is an easy and probably well-known fact that if (aij) = (aij(t, x)) is uniformly
bounded and uniformly elliptic, then one can find d1 and Λ0 for which ak can be
chosen strictly positive and as smooth as aij are. The proof of this can be obtained
from the fact that if we are given a closed convex polyhedron, then every point in
the relative interior can be written as a convex combination of the extreme points
with the coefficients > 0 which are infinitely differentiable functions of the point.
By replacing L with L + ε2∆ one can approximate a possibly degenerate operator
L with uniformly nondegenerate ones, so that there always exist a sequence of
operators of the form (2.7) approximating L. Notice, however, that generally the
set Λ0 changes with ε. Nevertheless, one knows how to estimate the difference of
solutions corresponding to L + ε2∆ and L (see, for instance, [9]) and between the
solutions of the corresponding finite-difference approximations (see, for instance,
Theorem 5.6 of [13] or Remark 2.6).

Another generic example is given by the so-called diagonally dominant matrices.
For instance, take d = 2 and assume that b ≡ 0, the aij are twice continuously
differentiable with respect to x, a12 = a21, and |a12| ≤ s, where s = a11 ∧ a22.
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Set κ = 1/3 and take an infinitely differentiable, even, and convex function ψ(t)
on R such that ψ(y) = |y| for |y| ≥ κ. Introduce

g = a12s−1, h = sψ(g), 2â1,±2 = h ± a12, 2âii = aii − h,

where i = 1, 2 and 0 · 0−1 := 0. For other values of i, j = ±1,±2 define âij so that

âij = âji, â−i,−j = âij , âi,−i = 0

and set
�j = e|j|sign j, �ij = �i + �j ,

where e1, e2 are the basis vectors. Then simple manipulations yield

4Lu = âij�k
ij�

r
ijuxkxr .

We now show that not only does L admit a representation as the sum of second-
order directional derivatives with the directions independent of t, x but also the√

âij are Lipschitz continuous in x. By the way, observe that obviously âij ≥ 0.
We are going to use that nonnegative and twice continuously differentiable func-

tions are the squares of Lipschitz continuous functions. In particular, the aii

and, consequently, a11 ∧ a22 are the squares of Lipschitz continuous functions,
|aii

x | ≤ N
√

aii and |sx| ≤ N
√

s. Furthermore, a11 ± a12 is nonnegative and twice
continuously differentiable. Hence, it is the square of a Lipschitz continuous func-
tion. In particular,

|a11
x ± a12

x | ≤ N
√

a11 ± a12, |a12
x | ≤ N

√
a11, |a12

x | ≤ N
√

s,

and recalling that |a12| ≤ s we find

|gx| ≤ |a12
x |s−1 + |a12| · |sx|s−2 ≤ Ns−1/2, |hx| ≤ N

√
s.

Next, the function φ(y) := ψ(y) + y is smooth and nonnegative. Therefore

2|â12
x | = |φ′gxs + φsx| ≤ N

√
φ
√

s + Nφ
√

s ≤ N
√

φ
√

s = N
√

â12.

A similar estimate holds for |â1,−2
x | and |âij

x | if i 
= j.
On the set where |a12| > κs, we have 2â11 = a11 − |a12|, so that by the above,

|â11
x | = |a11

x − a12
x sign a12| ≤ N

√
a11 − a12sign a12 = N

√
â11.

Finally, on the set where |a12| < 2κs, it holds that h ≤ 2κs, a11 − h ≥ κa11, and
|â11

x | ≤ N
√

a11 ≤ N
√

â11. Similarly we get what we need for â22 and the remaining
âii.
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