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TWO LOWER ORDER NONCONFORMING RECTANGULAR
ELEMENTS FOR THE REISSNER-MINDLIN PLATE

JUN HU AND ZHONG-CI SHI

Abstract. In this paper, we propose two lower order nonconforming rectan-
gular elements for the Reissner-Mindlin plate. The first one uses the conform-
ing bilinear element to approximate both components of the rotation, and the
modified nonconforming rotated Q1 element to approximate the displacement,
whereas the second one uses the modified nonconforming rotated Q1 element
to approximate both the rotation and the displacement. Both elements employ
a projection operator to overcome the shear force locking. We prove that both
methods converge at optimal rates uniformly in the plate thickness t in both
the H1- and L2-norms, and consequently they are locking free.

1. Introduction

One benchmark problem in computational science is the Reissner-Mindlin plate
(R-M hereinafter) problem. For this problem, the straight-forward approach using
lower order conforming finite elements in the primal formulation faces with the
locking phenomenon. This occurs when the thickness t of the plate tends to zero
and the problem enforces a constraint (namely, the Kirchhoff constraint). For the
discrete problem, this constraint, especially for lower order elements, cannot be fully
satisfied. Various methods have been proposed to weaken or overcome the locking
effect since the nineties of the last century, and most of them can be regarded as
reduced integration methods. Recently, the discontinuous Galerkin method [1] has
also been used to design finite element methods for the R-M plate problem (see,
for instance, [2, 11, 16]). One common favorable feature of these discontinuous
Galerkin R-M plate elements is that all the variables share the same nodes and
consequently can also be extended to shell problems.

In this paper, we propose and analyze two lower order nonconforming rectangu-
lar elements for the R-M plate model. In the first element, the usual conforming
bilinear element space is chosen as the rotation space and the modified noncon-
forming rotated element Q1 space ( NRQ1 element hereinafter) [13, 22, 15] as the
displacement space, and the reduced integration method is used to overcome the
shear force locking. The second element differs from the first one only in the ap-
proximation of the rotation; which employs the modified NRQ1 element for both
components of the rotation, consequently all the variables in this method share
the same nodes. Furthermore, the second finite element method enjoys the same
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promising features as the lower order triangular elements proposed in [2, 11, 16]
and therefore is possible to be generalized to the shell problems.

We conclude this introduction with a list of some basic notations used in the
sequel. In Section 2, we recall the Reissner-Mindlin plate model and its mixed
formulation by Brezzi and Fortin [4], and Section 3 presents our elements for the
R-M plate. The equivalent formulation of the discrete problem will be given and
proven in Section 4. In Section 5, we show the well-posedness of the discrete
problems. This paper ends with Section 6, which is devoted to error analysis.

In the sequel, D(Ω) is the linear space of an infinitely differentiable function
with compact support on Ω. We use the standard notation and definition for the
Sobolev spaces (Hs(Ω))2 and (Hs(∂Ω))2 for s ≥ 0; the standard associated inner
products are denoted by (·, ·)s and (·, ·)s,∂Ω , and their respective norms by ‖ · ‖s

and ‖ · ‖s,∂Ω. For s = 0, (Hs(Ω))2 coincides with (L2(Ω))2. In this case, the inner
product is denoted by (·, ·). As usual, Hs

0(Ω) is a closure of D(Ω) with respect to
the norm ‖ · ‖s.

Define

Ĥ1(Ω) = {v ∈ H1(Ω) :
∫

Ω

vdxdy = 0}.

Finally, we use the standard differential operators:

∇r =
(

∂r/∂x
∂r/∂y

)
, curl p =

(
−∂p/∂y
∂p/∂x

)
,

div ψ =
∂ψ1

∂x
+

∂ψ2

∂y
, rotψ =

∂ψ2

∂x
− ∂ψ1

∂y
.

Throughout this paper, the generic constant C is assumed to be independent of
the plate thickness t and the mesh size h.

2. Reissner-Mindlin plate model

In this section, we recall the widely used Reissner-Mindlin plate equations. Let Ω
be the region occupied by the plate, and ω and φ = (φ1, φ2) denote the transverse
dispacenent of mid-section and the rotation of the fibers normal to mid-section,
repectively. The Reissner-Mindlin plate model determines ω and φ as the solution
to the following variational problem,

Problem 2.1. Find (ω, φ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 such that

(1) a(φ, ψ) + λt−2(∇ω − φ,∇v − ψ) = (g, v), ∀(v, ψ) ∈ H1
0 (Ω) × (H1

0 (Ω))2,

where g is the scaled transverse loading function, t the plate thickness,

λ = Ek/2(1 + ν)

the shear modulus with E Young’s modulus, ν the Poisson ratio, and κ the shear
correction factor. The bilinear form a(·, ·) is defined as

a(φ, ψ) =
E

12(1 − ν2)

∫
Ω

[(1 − ν)E(φ) : E(ψ) + ν∇ · φ∇ · ψ]dxdy,

where E(φ) = 1/2[∇φ + ∇φT ] and −1 < ν < 1/2.
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In our analysis we shall make use of a mixed formulation of the Reissner-
Mindlin plate equations proposed by Brezzi and Fortin in [4] based on the following
Helmholtz decomposition of the shear force vector:

λt−2(∇ω − φ) = ∇r + curl p(2)

with (r, p) ∈ H1
0 (Ω)×Ĥ1(Ω). With this decomposition, Problem 2.1 can be written

as the following Brezzi-Fortin mixed formulation

Problem 2.2. Find (r, φ, p, ω) ∈ H1
0 (Ω) × (H1

0 (Ω))2 × Ĥ1(Ω) × H1
0 (Ω) such that

(∇r,∇µ) = (g, µ), ∀µ ∈ H1
0 (Ω),(3)

a(φ, ψ) − (curl p, ψ) = (∇r, ψ), ∀ψ ∈ (H1
0 (Ω))2,(4)

−(φ, curl q) − λ−1t2(curl p, curl q) = 0, ∀q ∈ Ĥ1(Ω),(5)

(∇ω,∇s) = (φ + λ−1t2∇r,∇s), ∀s ∈ H1
0 (Ω).(6)

The following result concerning the existence and uniqueness of solutions to
Problem 2.2 and the regularity can be found in [4, 3].

Lemma 2.3. Let Ω be a convex polygon or smoothly bounded domain in the plane.
For any t ∈ (0, 1] and any g ∈ H−1(Ω), there exists a unique quadruple (r, φ, p, ω) ∈
H1

0 (Ω) × (H1
0 (Ω))2 × Ĥ1(Ω) × H1

0 (Ω) solving Problem 2.2. Moreover, φ ∈ H2(Ω)
and there exists a constant C independent of t and g, such that

‖r‖1 + ‖φ‖2 + ‖p‖1 + t‖p‖2 + ‖ω‖1 ≤ C‖g‖−1.(7)

If g ∈ L2(Ω), then r, ω ∈ H2(Ω) and

‖r‖2 + ‖ω‖2 ≤ C‖g‖0.(8)

3. Finite element method for the R-M plate

For approximating Problem 2.1 by the finite element method, we introduce a
rectangular mesh Jh of the rectangular domain Ω. The regularity of the mesh Jh

is assumed in the sense of Ciarlet [12] such that
⋃

K∈Jh K = Ω̄, the two distinct
elements K and K ′ in Jh are either disjoint, or share the common edge e, or a
common vertex. Let F denote the set of all edges in Jh with F ′ the set of interior
edges. Given any edge e ∈ F we assign a unit normal ne. In relation to ne one can
define the element K+ ∈ Jh and the element K− ∈ Jh, with e = K+ ∩ K−. Let
∂K denote the boundary of K.

For each K ∈ Jh, we introduce the following affine invertible transformation:

FK : K̂ → K, x =
hx,K

2
ξ + x0,K , y =

hy,K

2
η + y0,K

with (x0,K , y0,K) the center and hx,K and hy,K the horizontal and vertical edge
length of K, respectively, and K̂ = [−1, 1]2 the reference element. Let Q1(K̂)
denote the usual bilinear function space on the reference elment K̂, and set

b(ξ, η) = (1 + ξ + η)(1 − ξ2)(1 − η2).

Obviously, b(ξ, η) is a bubble function and can be condensed out on the element
level.
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Remark 3.1. The factor 1+ξ+η is added so that the space pair (V 1,h, Qh) satisfies
the discrete B-B condition; cf. Lemma 5.1 below. Using the bubble (1− ξ2)(1−η2)
instead, one can show by a similar argument of Lemma 5.1 that the space NM

defined in Lemma 5.1 is not one-dimensional. This in turn implies that the discrete
B-B condition is not valid.

Define

V c
h := {v ∈ H1

0 (Ω) : v|K ◦ FK ∈ Q1(K̂) ⊕ span(b), ∀K ∈ Jh} .

Denote by Q1(K̂) the modified nonconforming rotated Q1 element space defined
by

Q1(K̂) = span{1, ξ, η, ξ2 − η2, 1 − 3
4
(ξ2 + η2)}.(9)

Note that the nonconforming bubble function 1 − 3
4 (ξ2 + η2) in (9) can also be

condensed out on the element level with small effort.
For any v ∈ H1(K), define the following edge functional:

Fe(v) =
1
he

∫
e

v ds

with e ⊂ ∂K and he the length of the edge e. The modified nonconforming rotated
Q1 element space V nc

h is then defined as [13, 22, 15]

V nc
h :=

{
v ∈ L2(Ω) : v|K ◦ FK ∈ Q1(K̂) for each K ∈ Jh, v continuous

with respect to Fe for all e ∈ F ′ , and Fe(v) = 0 for all e on ∂Ω
}

.

Define
V 1,h = V c

h × V c
h and V 2,h = V nc

h × V nc
h

as the approximation space of the rotation.
Define the discrete norm and semi-norm on V nc

h by

‖v‖2
1,h =

∑
K∈Jh

‖v‖2
1,K , | v |21,h=

∑
K∈Jh

| v |21,K .

By Poincare’s inequality [22], we have | · |1,h as a norm on V nc
h . The same rule is

applicable to functions in V 2,h.
To deal with the discontinuity of V 2,h, we follow the idea in [11, 16, 18] and

define for any vector-valued function ψ ∈ ΠK∈JhH1(K) the jump across the edge
e ∈ F ′ as

[ψ] = (ψ+ ⊗ n+)S + (ψ− ⊗ n−)S,

where (ψ ⊗ n)S denotes the symmetric part of the tensor, and n+ (resp. n−) is
the outward unit normal to e ⊂ ∂K+ (resp. e ⊂ ∂K−). On the boundary edge, we
define the jump as [ψ] = (ψ ⊗ n)S with n the outward unit normal to ∂Ω.

Moreover, we introduce the following discrete bilinear form with a penalty term:

ah(φh, ψh) =
E

12(1 − ν2)

∑
K∈Jh

∫
K

[(1 − ν)E(φh) : E(ψh) + ν∇ · φh∇ · ψh] dxdy

+
∑
e∈F

γe

he

∫
e

[φh] : [ψh] ds

(10)
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with γe some constant. For the analysis, we need to define the following auxiliary
pressure finite element space and the discrete shear force space, respectively,

Qh = {q ∈ Ĥ1(Ω) : q |K ◦FK ∈ Q1(K̂), ∀K ∈ Jh},

Γh =
{

v ∈ (L2(Ω))2 : v |K=
(

b + dx
c + ey

)
, ∀K ∈ Jh

}
.

Remark 3.2. The following shear force space is used in [28]:

M =
{

v ∈ (L2(Ω))2 : v |K=
(

b + dx
c − dy

)
, ∀K ∈ Jh

}
.

However, a close observation finds that ∇hM1 /∈ M (in the notation of [28]) for
general rectangular meshes unless hx,K = hy,K , therefore the analysis therein is
only valid for square meshes.

Let Rh : (L2(Ω))2 → Γh denote the usual L2 projection operator; then our finite
element methods for the R-M plate problem can be stated as

Problem 3.3. Find (ωh, φh) ∈ V nc
h × V i,h, such that

(11) ah(φh, ψ) + λt−2(∇hωh −Rhφh,∇hv −ψ) = (g, v), ∀(v, ψ) ∈ V nc
h ×V i,h,

with i = 1, 2.

Remark 3.4. Notice that the penalty term in (10) vanishes for the space V 1,h; we
keep it there only for the convenience of the presentation and the simplicity of the
notation.

4. Discrete Helmholtz Decomposition

and equivalent formulations of discrete problems

In this section we prove the discrete Helmholtz Decomposition and present the
equivalent formulation of the discrete problem.

Denote

Ch = {v | v = curl q, q ∈ Qh} and Gh = {v | v = ∇hw, w ∈ V nc
h }.

Note that

Ch ⊂ Γh and Gh ⊂ Γh.(12)

Furthermore, a counting argument gives

dimGh + dimCh = dimΓh.(13)

Lemma 4.1. There holds
Ch⊥Gh.

Proof. Let w ∈ V nc
h and q ∈ Qh, and

(∇hw, curl q) =
∑

K∈Jh

∫
K

∇w · curl qdxdy = −
∑

K∈Jh

∫
∂K

w
∂q

∂t
ds,

where t is the counterclockwise unit tangential vector to ∂K. Since ∂q
∂t is continuous

constant on each edge of the element K, we have

(∇hw, curl q) = −
∑
e∈F ′

∫
e

[w]
∂q

∂t
ds −

∑
e∈F\F ′

∫
e

w
∂q

∂t
ds = 0

with [w] the jump across e. �
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Thanks to Lemma 4.1 and (13), we have the following discrete Helmholtz De-
composition:

Γh = Ch ⊕ Gh.(14)

We now introduce the following auxiliary discrete problem

Problem 4.2. Find (rh, φh, ph, ωh) ∈ V nc
h × V i,h × Qh × V nc

h such that

(∇hrh,∇hµ) = (g, µ), ∀µ ∈ V nc
h ,(15)

ah(φh, ψ) − (curl ph, ψ) = (∇hrh, ψ), ∀ψ ∈ V i,h,(16)

−(φh, curl q) − λ−1t2(curl ph, curl q) = 0, ∀q ∈ Qh,(17)

(∇hωh,∇hs) = (φh + λ−1t2∇hrh,∇hs), ∀s ∈ V nc
h ,(18)

with i = 1, 2.

Theorem 4.3. For any g ∈ L2(Ω) and t ∈ (0, 1] there exists a unique solution
(rh, φh, ph, ωh) to Problem 4.2. Moreover, the pair (ωh, φh) is the unique solution
of Problem 3.3 and

λt−2(∇hωh − Rhφh) = ∇hrh + curl ph.(19)

Proof. The existence and uniqueness of the solution to Problem 4.2 follows imme-
diately from the discrete inf-sup condition (see Lemma 5.3 and Lemma 5.4 below)
and the Korn inequality (see Lemma 5.5 below ) and Lemma 5.7 (see the next
section for details).

Now we prove that (ωh, φh) is the unique solution to Problem 3.3 and that (19)
holds. We use the orthogonality and definition of Rh, (17) and (18) to get

(∇hωh − Rhφh, curl q) = λ−1t2(∇hrh + curl ph, curl q) = 0, ∀q ∈ Qh,(20)

(∇hωh − Rhφh,∇hs) = λ−1t2(∇hrh + curl ph,∇hs), ∀s ∈ V nc
h ,(21)

which imply that

∇hωh − Rhφh = λ−1t2(∇hrh + curl ph).(22)

Thanks to (22), (16) and (18) can be written as, respectively

ah(φh, ψ) − λt−2(∇hωh − Rhφh, ψ) = 0, ∀ψ ∈ V i,h, i = 1, 2,(23)

λt−2(Rhφh −∇hωh,∇hs) = −(∇hrh,∇hs), ∀s ∈ V nc
h .(24)

We obtain from (23) and (24) that

ah(φh, ψ) + λt−2(∇hωh − Rhφh,∇hs − ψ) = (∇hrh,∇hs).(25)

By virtue of (15) and (25), we come to

ah(φh, ψ) + λt−2(∇hωh − Rhφh,∇hs − ψ) = (g, s),(26)

which ends the proof. �
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5. The well-posedness of the discrete problems

In this section we shall show the well-posedness of the discrete Problem 4.2.
Because (15) and (18) are elliptic problems which are decoupled from the system,
and their well-posedness follows immediately from Lemma 5.7, we only need to show
the well-posedness for Stokes-like problem (16)-(17), which hangs on the discrete
inf-sup condition, namely the B-B condition and the continuity and coercivity of
ah. We first prove the discrete inf-sup condition for the pairs (V i,h, Qh), i = 1, 2.
To this end, we shall use the macroelement trick from [26, 9].

For any interior node Pi, we define the associated macroelement by

M(Pi) = {K | K ∩ Pi �= ∅, K ∈ Jh}.

Lemma 5.1. There exists a positive constant β independent of h, such that

sup
ψ∈V 1,h

(div ψ, q)
‖ψ‖1

≥ β‖q‖0, ∀q ∈ Qh.(27)

Proof. Let M be a macroelement with nodes Pi(xi, yi), i = 1, · · · , 9, and elements
Ki, i = 1, · · · , 4 (see Figure 1). Define

S2,M := {ψ : ψ ∈ (H1
0 (M))2 ∩ V 1,h},

S3,M = {q : q ∈ H1(M) ∩ Qh},
NM = {q ∈ S3,M : (div ψ, q) = 0, ∀ψ ∈ S2,M}.

By a theory from [26], we only need to show that NM is one-dimensional.

P1

P7

P5P4

P2 P3

P9

P6

P8

K1 K2

K3K4

Figure 1. Macroelement

Denote the bilinear basis on nodes P1, · · · , P9 by φ1, · · · , φ9, and the bubble
basis function of V c

h on the element K1, · · · , K4 by ϕ1, · · · , ϕ4 respectively. We
have for any ψ ∈ S2,M and q ∈ S3,M the following expressions:

(28) ψ =
i=4∑
i=1

(
v1,i

v2,i

)
ϕi +

(
v1,5

v2,5

)
φ5 and q =

9∑
i=1

aiφi.

Integrating by parts, we have

(div ψ, q) = −(ψ,∇q) = −
4∑

i=1

(ψ,∇q)Ki
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for any ψ ∈ S2,M and q ∈ S3,M . Take v2,i = 0, i = 1, · · · , 4, v1,5 = v2,5 = 0,
v1,i = 0, i = 2, 3, 4, and v1,1 = 1 and set

0 = (div ψ, q) = −(ψ,∇q).

This yields

0 =
∫

K1

ϕ1
∂(a1φ1 + a2φ2 + a4φ4 + a5φ5)

∂x
dxdy

=
hy,K1

2

∫
K̂

(1 + ξ + η)(1 − ξ2)(1 − η2)(−a1 + a2 − a4 + a5)dξdη

+
hy,K1

2

∫
K̂

(1 + ξ + η)(1 − ξ2)(1 − η2)(a1 − a2 − a4 + a5)ηdξdη.

Then a direct calculation gives

2a1 − 2a2 + 3a4 − 3a5 = 0.

Similarly, let v2,i = 0 with i = 2, · · · , 4, v1,5 = v2,5 = 0, v1,i = 0, i = 1, 2, 3, 4, and
v2,1 = 1. We have

−2a1 − 3a2 + 2a4 + 3a5 = 0.

Now let one of degrees vj,i, i = 2, 3, 4, j = 1, 2, be 1 and the others be zero
successively. We can get a system of equations with respect to (a1, · · · , a9), which
reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1 − 2a2 + 3a4 − 3a5 = 0,
−2a1 − 3a2 + 2a4 + 3a5 = 0,
2a2 − 2a3 + 3a5 − 3a6 = 0,
−2a2 − 3a3 + 2a5 + 3a6 = 0,
2a4 − 2a5 + 3a7 − 3a8 = 0,
−2a4 − 3a5 + 2a7 + 3a8 = 0,
2a5 − 2a6 + 3a8 − 3a9 = 0,
−2a5 − 3a6 + 2a8 + 3a9 = 0.

We solve this system to get⎧⎨
⎩

a1 = 13a−9b
4 a2 = 9b−7a

2 a3 = a,
a4 = 9b−7a

2 a5 = a a6 = 3b − 2a,
a7 = a a8 = 3b − 2a a9 = b,

such that a and b are two free parameters. Finally we take v2,5 = 1, and v1,i = 0,
i = 1, · · · , 4, v2,i = 0, i = 1, · · · , 4, v1,5 = 0, to obtain a = b; therefore

a1 = · · · = a9.

This is to say NM is one dimensional. �

Remark 5.2. Note from the above calculation that we can only obtain the following
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 + a2 − a4 + a5 = 0,
−a1 − a2 + a4 + a5 = 0,
−a2 + a3 − a5 + a6 = 0,
−a2 − a3 + a5 + a6 = 0,
−a4 + a5 − a7 + a8 = 0,
−a4 − a5 + a7 + a8 = 0,
−a5 + a6 − a8 + a9 = 0,
−a5 − a6 + a8 + a9 = 0,
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if we employ (1 − ξ2)(1 − η2) instead. This leads to

a1 = a3 = a5 = a7 = a9, a2 = a4 = a6 = a7 = a8.

With these identities, we cannot prove a1 = a2 by taking v1,5 = 1 or v2,5 = 1, and
letting the remaining degrees of freedom be zero. Therefore NM is two-dimensional
in this case.

Lemma 5.3. There holds that

sup
ψ∈V 1,h

(rotφ, q)
‖φ‖1

= sup
ψ∈V 1,h

(φ, curl q)
‖φ‖1

≥ β‖q‖0, ∀q ∈ Qh.(29)

Proof. Let ψ2 = −φ1 and ψ1 = φ2 in Lemma 5.1. We obtain with φ = (φ1, φ2) and
ψ = (ψ1, ψ2),

sup
φ∈V1,h

(rotφ, q)
‖φ‖1

= sup
φ∈V1,h

(φ, curl q)
‖φ‖1

= sup
ψ∈V1,h

(div ψ, q)
‖ψ‖1

≥ β‖q‖0 ∀q ∈ Qh.

This ends the proof. �

By the same argument of Lemma 5.1, we have

Lemma 5.4. There exists a positive constant β such that

sup
ψ∈V 2,h

(ψ, curl q)
‖ψ‖1,h

≥ β‖q‖0, ∀q ∈ Qh.(30)

To prove the well-posedness of the discrete problem, we remain to show the
continuity and coercivity of ah, i.e.,

Lemma 5.5. There exist two positive constants C1 and C2 independent of h and
t such that

C1‖ψ‖2
1,h ≤ ah(ψ, ψ), ∀ψ ∈ V i,h, i = 1, 2,(31)

|ah(φ, ψ)| ≤ C2‖φ‖1,h‖ψ‖1,h, ∀φ, ψ ∈ V i,h, i = 1, 2.(32)

Proof. Lemma 5.5 holds obviously for the space V 1,h, and it is also easy to show
(32) for V 2,h. The proof of (31) for V 2,h follows immediately from Lemma 5.6 and
Lemma 5.7 below. �

Lemma 5.6. There exists a positive constant C independent of h such that

C|ψ|1,h ≤ ‖Eh(ψ)‖0 + (
∑
e∈F

1
he

∫
e

[ψ]2 ds)1/2, ∀ψ ∈ V 2,h.(33)

Proof. The proof can be found, for instance, in [8]. �

Lemma 5.7. There exists a positive constant C independent of h such that

C‖v‖0 ≤ |v|1,h, ∀v ∈ V nc
h .(34)

Proof. The proof can be found, for instance, in [7, 22, 15]. �



1780 J. HU AND Z-C. SHI

6. Error estimate

We show error estimates in this section. We first derive some approximation
results. For the modified nonconforming rotated Q1 element, we define the inter-
polation operator πh : H1

0 (n) → V nc
h by∫

e

πhvds =
∫

e

vds, ∀v ∈ H1
0 (n), for any e ∈ F ,

∫
K

πhvdxdy =
∫

K

vdxdy, for any K ∈ Jh.

(35)

We have the following result

Lemma 6.1.

|
∑
K

∫
∂K

vψ · nds |≤ Ch‖v‖1,h‖ψ‖1, ∀v ∈ V nc
h , ∀ψ ∈ (H1(Ω))2,(36)

‖v − πhv‖ + h | v − πhv |1,h≤ Ch2 | v |2, ∀v ∈ H2(n) ∩ H1
0 (n),(37)

Proof. The proof can be found in [13, 22, 15]. �

Remark 6.2. Note that (36) is obviously satisfied by V c
h ∈ H1

0 (Ω), consequently we
shall not differ V 1,h from V 2,h when the consistency error is concerned.

For the projection operator Rh, we have the following approximation property,

Lemma 6.3. There exists a constant C, for any u ∈ (H1(Ω))2, such that

‖Rhu − u‖0 ≤ Ch‖u‖1.(38)

Proof. The proof is elementary. �

Lemma 6.4. Let G ∈ L2(Ω) and F ∈ (H1(Ω))2, u be the weak solution to the
following boundary value problem

−�u = G −∇ · F in Ω,(39)

u |∂Ω= 0,(40)

and uh ∈ V nc
h be the solution to the discrete problem

(∇huh,∇hv) = (G, v) + (F,∇hv), ∀v ∈ V nc
h .(41)

Then there exists a constant C independent of h, G and F such that

‖u − uh‖1,h ≤ Ch(‖G‖0 + ‖F‖1),(42)

‖u − uh‖0 ≤ Ch2(‖G‖0 + ‖F‖1).(43)

Proof. Using Lemma 6.1, we can obtain (42)-(43) by standard arguments from
nonconforming finite element methods for the second order elliptic problems [24,
25, 6]. For the brevity, we omit the details. �

Theorem 6.5. Let (r, φ, p, ω) and (rh, φh, ph, ωh) be the solution to Problem 2.2
and 4.2, respectively. For any g ∈ L2(Ω) and t ∈ (0, 1], there exists a constant C
independent of h, g and t, such that

‖r − rh‖1,h + ‖φ − φh‖1,h + ‖p − ph‖0 + t‖ curl(p − ph)‖0

+ ‖ω − ωh‖1,h ≤ Ch‖g‖0.
(44)



RECTANGULAR ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1781

Proof. Throughout the proof, i = 1, 2. Owing to (3), (15) and Lemma 6.4, we have

‖∇h(r − rh)‖0 ≤ Ch‖g‖0.

We have by (4) and (16) for any ψ ∈ V i,h, i = 1, 2, that

ah(φh − ψ, φh − ψ) = ah(φ − ψ, φh − ψ)
+ (curl(ph − p), φh − ψ) + (∇hrh −∇r, φh − ψ)
− ah(φ, φh − ψ) + (curl p, φh − ψ) + (∇r, φh − ψ).

By (5) and (17), we obtain for any ψ ∈ V i,h and q ∈ Qh that

λ−1t2‖ curl(ph − q)‖2
0 = λ−1t2(curl(p − q), curl(ph − q)) − (φh − φ, curl(ph − q))

= λ−1t2(curl(p − q), curl(ph − q)) − (φh − ψ, curl(ph − q))

+ (φ − ψ, curl(ph − q)).

Taking these two equations together,

ah(φh − ψ, φh − ψ) + λ−1t2‖ curl(ph − q)‖2
0

= ah(φ − ψ, φh − ψ)

+ (∇hrh −∇r, φh − ψ) + λ−1t2(curl(p − q), curl(ph − q))

− (curl(p − q), φh − ψ) + (φ − ψ, curl(ph − q))

− ah(φ, φh − ψ) + (curl p, φh − ψ) + (∇r, φh − ψ).

(45)

It follows from (36) (resp. Remark 6.2 ) and (4) that

(46) |ah(φ, φh − ψ) + (curl p, φh − ψ) + (∇r, φh − ψ)| ≤ Ch‖φ‖2|φh − ψ|1,h.

For any ψ ∈ (H1
0 (n))2∪V i,h and q ∈ H1(Ω), we need to bound the term (ψ, curl q).

Integrating by parts and using (36), we derive it as

(ψ, curl q) = −
∑

K∈Jh

∫
K

rotψq dx +
∑
e∈E

∫
e

[ψ] · tq ds

≤ C(‖ψ‖1,h‖q‖0 + h‖ψ‖1,h‖q‖1).
(47)

Thanks to Lemma 5.3, Lemma 5.4 and Lemma 5.5, we get by (4), (16), (46) and
(47) that

β‖ph − q‖0 ≤ sup
ψ∈V i,h

(ψ, curl(ph − q))
‖ψ‖1,h

≤ C(‖φh − φ‖1,h + ‖∇hrh −∇r‖0 + h‖φ‖2) + sup
ψ∈V i,h

(ψ, curl(p − q))
‖ψ‖1,h

≤ C(‖φh − ψ‖1,h + ‖φ − ψ‖1,h + ‖∇hrh −∇r‖0 + h‖φ‖2)

+ C(h‖p − q‖1 + ‖p − q‖0).

(48)

Substituting (46), (48) and (47) into (45), and using Lemma 5.5, Lemma 5.7 and
the inverse estimate, we proceed as

‖φh − ψ‖1,h + t‖ curl(ph − q)‖0

≤ C(‖φ − ψ‖1,h + t‖p − q‖1 + ‖∇hrh −∇r‖0 + h‖φ‖2)

+ C(h‖p − q‖1 + ‖p − q‖0).
(49)
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We now use the triangle inequality to obtain

‖φh − φ‖1,h + t‖ curl(ph − p)‖0

≤ C(‖φ − ψ‖1,h + t‖p − q‖1 + h‖p − q‖1

+ ‖p − q‖0 + ‖∇hrh −∇r‖0 + h‖φ‖2).

It follows from (48) and (49) that

‖ph − p‖0 ≤ C(‖φ − ψ‖1,h + t‖p − q‖1 + h‖p − q‖1

+ ‖p − q‖0 + ‖∇hrh −∇r‖0 + h‖φ‖2).
(50)

We take q = πh
1p with πh

1 the bilinear Clement interpolation operator [23] which
admits the following approximation property:

‖p − πh
1 p‖0 + h‖p − πh

1 p‖1 ≤ Ch‖p‖1 and ‖p − πh
1 p‖1 ≤ Ch‖p‖2.(51)

Applying Lemma 2.3, Lemma 6.3 and Lemma 6.4, we finally obtain

‖φ − φ‖1,h + ‖p − ph‖0 + t‖ curl(ph − p)‖0 ≤ Ch‖g‖0,

since ψ ∈ V i,h is arbitrary.
Now, we remain to bound ‖ω − ωh‖1,h. Let ω̄h ∈ V nc

h be the solution to the
following problem:

(∇hω̄h,∇hs) = (φ + λ−1t2∇r,∇hs), ∀s ∈ V nc
h .

Taking into account Lemma 6.4, we deduce

‖∇h(ω − ω̄h)‖0 ≤ Ch‖φ + λ−1t2∇r‖1 ≤ Ch‖g‖0.(52)

It follows from (6) and (18) that

(∇h(ωh − ω̄h),∇hs) = (φh − φ + λ−1t2(∇hrh −∇r),∇hs).(53)

Let s = ωh − ω̄h in (53); we have

‖∇h(ωh − ω̄h)‖0 ≤ C(‖φh − φ‖0 + t2‖∇hrh −∇r‖0) ≤ Ch‖g‖0,

which, together with (52), implies

‖ωh − ω‖1,h ≤ Ch‖g‖0,

which completes the proof. �

In order to analyse the L2 error, we need to introduce the following dual problem

Problem 6.6. Find (φd, pd) ∈ (H1
0 (n))2 × Ĥ1(Ω), such that

a(φd, ψ) − (ψ, curl pd) = (d, ψ), ∀ψ ∈ (H1
0 (Ω))2,(54)

−(φd, curl q) − λ−1t2(curl pd, curl q) = 0, ∀q ∈ Ĥ1(Ω).(55)

The solution to Problem 6.6 admits the following regularity:

‖φd‖2 + ‖pd‖1 + t‖pd‖2 ≤ C‖d‖0.(56)

Define the following interpolation:

Πhψ =
{

(πh
1ψ1, π

h
1ψ2) when V 1,h is used,

(πhψ1, πhψ2) when V 2,h is used

for any (ψ1, ψ2) = ψ ∈ (H1
0 (Ω))2. We have the following estimates

(57) ‖Πhψ − ψ‖0 + h‖Πhψ − ψ‖1,h ≤ Ch‖ψ‖1 and ‖Πhψ − ψ‖1,h ≤ Ch‖ψ‖2.
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Theorem 6.7. Let (r, φ, p, ω) and (rh, φh, ph, ωh) be the solution to Problem 2.2
and 4.2, respectively. For any g ∈ L2(Ω) and t ∈ (0, 1], there exists a constant C
independent of h, g and t, such that

‖φ − φh‖0 + ‖ωh − ω‖0 ≤ Ch2‖g‖0.(58)

Proof. First, it follows from Lemma 6.4 that

‖r − rh‖0 ≤ Ch2‖g‖0.(59)

Applying (16) and (17) as well as (54) and (55), we derive it as

(d, φ − φh) = (d, φ − φh) − ah(φd, φ − φh) + (φ − φh, curl pd)

+ a(φd, φ − φh) − (φ − φh, curl pd)

= (d, φ − φh) − ah(φd, φ − φh) + (φ − φh, curl pd)

+ ah(Πhφd − φd, φ) − (Πhφd − φd, curl p) − (∇r, Πhφd − φd)

+ ah(φd − Πhφd, φ − φh)

− (φ − φh, curl(pd − πh
1pd))

+ (Πhφd − φd, curl(p − ph))

+ (∇r −∇hrh, Πhφd)

+ λ−1t2(curl(p − ph), curl(πh
1pd − pd)) = I1 + · · · + I7.

(60)

I1 and I2 are consistency error terms, which can be estimated by a classic argument

(61) |I1| ≤ Ch‖φd‖2‖φ − φh‖1,h and |I2| ≤ Ch‖φ‖2‖Πhφd − φd‖1,h.

Owing to Lemma 5.5

|I3| ≤ C‖Πhφd − φd‖1,h‖φ − φh‖1,h.(62)

Thanks to (47),

(63) |I4| ≤ C(‖φ − φh‖1,h‖pd − πh
1 pd‖0 + h‖φ − φh‖1,h‖pd − πh

1 pd‖1).

Using (47) again, we have by the inverse and triangle inequality

I5 = (Πhφd − φd, curl(p − πh
1 p)) + (Πhφd − φd, curl(πh

1p − ph))

≤ C‖Πhφd − φd‖1,h(‖p − πh
1 p‖0 + ‖πh

1p − ph‖0 + h‖p − πh
1 p‖1)

≤ C‖Πhφd − φd‖1,h(‖p − πh
1 p‖0 + h‖p − πh

1p‖1 + ‖p − ph‖0).

(64)

We have the following decomposition for the sixth term I6:

(65) I6 = (∇r −∇hrh, Πhφd − φd) + (∇r −∇hrh, φd).

By virtue of Theorem 6.5, we bound the first term in (65) as

(∇r −∇hrh, Πhφd − φd) ≤ Ch‖g‖0‖Πhφd − φd‖1,h.(66)

Integrating by parts and applying (59), the second term in (65) can be bounded as

(∇r −∇hrh, φd) = −(r − rh, div φd) +
∑
e∈E′

∫
e

[r − rh]φd · ne ds

≤ Ch(h‖g‖0 + ‖r − rh‖1,h)‖φd‖1.

(67)
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Finally, we have the following estimate for the last term I7:

|I7| ≤ Ct2‖p − ph‖1‖pd − πh
1 pd‖1.(68)

Substituting inequalities (61)-(68) into (60), using the regularity (56) and the in-
terpolation error estimate (57) and (51) with Theorem 6.5, we obtain

(d, φ − φh) ≤ Ch2‖d‖0‖g‖0,(69)

which gives us

‖φ − φh‖0 ≤ Ch2‖g‖0.

Now, we turn to bound ‖ω − ωh‖0. We first introduce the following problem: Find
θ ∈ H1

0 (Ω) such that

(∇θ,∇s) = (φ,∇s), ∀s ∈ H1
0 (Ω).

Let θ̄h ∈ V nc
h be the solution of the discrete problem

(∇hθ̄h,∇hs) = (φ,∇hs), ∀s ∈ V nc
h .(70)

It follows from Lemma 6.4 that

‖θ̄h − θ‖0 ≤ Ch2‖φ‖1 ≤ ch2‖g‖0.(71)

From (6), θ = ω − λ−1t2r. Denote θh = ωh − λ−1t2rh; by (18) and (70), we have

(∇h(θh − θ̄h),∇hs) = (φh − φ,∇hs), ∀s ∈ V nc
h .

Setting s = θh − θ̄h,

‖∇h(θh − θ̄h)‖0 ≤ C‖φh − φ‖0 ≤ Ch2‖g‖0.(72)

It follows from (59), (71) and (72) that

‖ω − ω‖0 ≤ ‖θ − θh‖0 + λ−1t2‖r − rh‖0

≤ ‖θ − θ̄h‖0 + ‖θh − θ̄h‖0 + λ−1t2‖r − rh‖0

≤ Ch2‖g‖0. �

Remark 6.8. We can extend our analysis to the element of [16] and obtain its
optimal L2 error estimate, which is missing in the literature.

Remark 6.9. To simplify the notation and fix the main idea, we present the anal-
ysis on the rectangular mesh. Obviously, both elements can be generalized to the
general quadrilateral mesh. In addition, a similar argument herein shows that the
energy error estimate is of order hα, and that the L2 norm error estimate is of order
h2α, provided that the mesh satisfies the (1 + α) section condition with 0 ≤ α ≤ 1
[17]. This implies that the convergence rates in both norms depend on the mesh
parameter α. As a consequence, optimal error estimates hold only for mildly dis-
torted meshes with α = 1. In [18], two nonconforming quadrilateral elements are
proposed with optimal error estimates uniformly in α with respect to both energy
norm and L2 norm.
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