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PRIME DECOMPOSITION IN
THE ANTI-CYCLOTOMIC EXTENSION

DAVID BRINK

Abstract. For an imaginary quadratic number field K and an odd prime
number l, the anti-cyclotomic Zl-extension of K is defined. For primes p of K,
decomposition laws for p in the anti-cyclotomic extension are given. We show
how these laws can be applied to determine if the Hilbert class field (or part
of it) of K is Zl-embeddable. For some K and l, we find explicit polynomials
whose roots generate the first step of the anti-cyclotomic extension and show
how the prime decomposition laws give nice results on the splitting of these
polyniomials modulo p. The article contains many numerical examples.

I. Introduction

Let l be an odd prime number, and denote by Zl the infinite pro-cyclic l-group
lim←− Z/ln. Consider an imaginary quadratic number field K. As is well known, K has
a unique Zl-extension which is pro-dihedral over Q. We call it the anti-cyclotomic
Zl-extension of K (for reasons later to be clear).

The purpose of this paper is to study the decomposition of primes p of K in the
anti-cyclotomic extension. Since this extension is pro-cyclic over K, the decomposi-
tion type of p is completely determined by the number of steps of the anti-cyclotomic
extension in which p is unramified, and the number of steps in which p splits totally.
By the nth step of a Zl-extension we understand the subextension of degree ln over
the ground field.

Such decomposition laws are given in Section III (Theorems 1 and 2). The laws
involve representations of primes p or prime powers ph by certain quadratic forms.

As we shall see, the decomposition laws also depend on how many steps of the
anti-cyclotomic extension are unramified. This dependence may be turned around,
meaning that if we know how certain primes decompose, then we can compute the
number of unramified steps. In particular, we can answer whether the Hilbert class
field of K is contained in the anti-cyclotomic extension and thus is Zl-embeddable.

In Section IV we show how to find explicit polynomials whose roots generate
the first step of the anti-cyclotomic extension. When K is not l-rational (to be
defined in Section II), this involves using the decomposition laws to identify the
right polynomial f among a finite number of candidates. When this is done, one
obtains nice laws for the splitting of f modulo p. For instance, we show that
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X5 + 20X + 32 splits into linear factors modulo a prime number p �= 2, 5 iff p is of
the form x2 + 125y2 or 2x2 + 2xy + 63y2.

Throughout the article we use the following notation:

l : an odd prime number
∆: a square–free natural number
K : the imaginary quadratic number field Q(

√
−∆)

dK : the discriminant of K
h, µ, u : we write the class number of K as h = lµu with l � u
O : the ring of integral elements in K
p : a prime of K, i.e. a prime ideal in O
p : the rational prime divisible by p

KH : the Hilbert class field of K
Kmax : the maximal abelian extension of K unramified outside l

K
(n)
anti : the nth step of the anti-cyclotomic extension Kanti

ν : the non-negative integer defined by Kanti ∩ KH = K
(ν)
anti

II. The cyclotomic and the anti-cyclotomic extension

In Iwasawa [4] it is shown that any Zl-extension of K is unramified outside l.
This result motivates the study of the maximal abelian extension Kmax of K which
is unramified outside l. If Kf denotes the ray class field over K of conductor f ,
then Kmax is the union of the tower

K ⊆ K1 ⊆ Kl ⊆ Kl2 ⊆ . . . .

Here, K1 is the Hilbert class field of K which we also denote KH .
Let τ denote complex conjugation. Clearly, Kmax is normal over Q, so τ operates

on Gal(Kmax/K) by conjugation.

Main Lemma 1. We may write Gal(Kmax/K) = U × W × T × T ′ such that
(i) U is isomorphic to Zl, and τ operates trivially on U ,
(ii) W is isomorphic to Zl, and τ operates by inversion on W ,
(iii) T is a finite l-group, and τ operates by inversion on T ,
(iv) T ′ is finite of order prime to l.

Furthermore, we may write Gal(Kmax/KH) = U × V × T ∗ × S′ where
(v) V is isomorphic to Zl, contained in W × T , and has |V : W ∩ V | ≤ |T |,
(vi) T ∗ is trivial unless l = 3, ∆ ≡ 3 mod 9, and ∆ �= 3; in this exceptional

case, T ∗ has order 3 and is contained in T ,
(vii) S′ is contained in T ′ (and thus finite of order prime to l).

Consider a conductor f = le with e ≥ 1. Then Gal(Kmax/Kf ) = Uf × V f where
(viii) Uf is contained in U and has index |U : Uf | = le−1,
(ix) V f is contained in V . If l � ∆, then |V : V f | = le−1. If l | ∆, then

|V : V f | = le unless l = 3 and ∆ ≡ 3 mod 9; in this case, |V : V f | = 3e−1.
The subgroups U , W × T , T , T ′, V , T ∗, S′, Uf , and V f are unique with these
properties.

A similar representation of Gal(Kmax/K) appears in Carroll and Kisilevsky [3],
proved using idèles rather than ideals as here.

A proof will be given at the end of the section. At this point, we only note
that the uniqueness statement is seen as follows: U is the maximal subgroup of
the l-part of Gal(Kmax/K) on which τ operates trivially, W × T is the maximal
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subgroup of the l-part of Gal(Kmax/K) on which τ operates by inversion, T is
the l-torsion and T ′ is the non-l-part1 (and the non-l-torsion) of Gal(Kmax/K), V
equals Gal(Kmax/KH) ∩ (W × T ), T ∗ is the l-torsion, and S′ is the non-l-part of
Gal(Kmax/KH). Note that W is not unique if T is non-trivial.

Proposition 1. (a) K has a unique Zl-extension which is pro-cyclic over Q. It
is called the cyclotomic extension and is denoted Kcycl. Adjoin to Q all roots of
unity of l-power-order, and let Qcycl be the l-part of this extension. Then Kcycl is
the composite of K and Qcycl.

(b) K has a unique Zl-extension which is pro-dihedral over Q. It is called the
anti-cyclotomic extension and is denoted Kanti.

(c) Kcycl and Kanti are the only absolutely normal Zl-extensions of K. They are
linearly disjoint over K, and any Zl-extension of K is contained in the composite
KcyclKanti. The l-part of the Hilbert class field KH (or any other part of it) is
embeddable in a Zl-extension of K iff it is contained in Kanti.

(d) The Galois group of the maximal abelian l-extension of K which is unramified
outside l is isomorphic to Zl × Zl × T where T is a finite l-group. If T is trivial,
the l-part of KH is cyclic and Zl-embeddable.

Proof. Everything follows from the theorem: Kcycl is the fixed field of W ×T ×T ′,
and Kanti is the fixed field of U × T × T ′. Any Zl-extension of K is contained in
the fixed field of the torsion T × T ′, i.e. in KcyclKanti. Kcycl and Kanti are the
only absolutely normal Zl-extensions of K since U and W are the only τ -invariant
subgroups of U × W with quotient Zl. Since KH is generalised dihedral over Q,
the maximal Zl-embeddable subfield of it is KH ∩ Kanti. If T is trivial, the l-part
of KH is contained in Kanti. It is clear that Qcycl is a Zl-extension of Q. Hence
KQcycl is a Zl-extension of K and a (Zl × Z/2)-extension of Q. The uniqueness of
Kcycl implies Kcycl = KQcycl. �

The situation is particularly simple when the torsion T is trivial. If this is the
case, K is called l-rational.

Lemma 2. (a) Let X be an infinite abelian pro-l-group, and assume V and T ∗

are subgroups of X of which V is pro-cyclic with finite index, and T ∗ is finite.
Then we may write X = W × T with W pro-cyclic, T finite containing T ∗, and
|V : V ∩ W | ≤ |T |.

(b) Let X be an abelian pro-l-group with a subgroup V . Assume τ is an auto-
morphism of order 2 on X that operates by inversion both on V and on X/V . Then
τ operates by inversion on X.

(c) Let X be an abelian pro-l-group with a subgroup U . Assume τ is an au-
tomorphism on X that operates trivially on U and by inversion on X/U . Then
X = U × V where V = {x ∈ X | xτ = x−1}.
Proof. (a) Assume V × T ∗ has index l in X; the general case will then follow by
induction. Pick an x ∈ X\(V × T ∗) and write xl = vt with v ∈ V and t ∈ T ∗. If v
is an lth power in V , then X = V × T with a T containing T ∗. If vl is not an lth

power in V , then X = W × T ∗ where W is the pro-cyclic group generated by x;
from xl·|T∗| = v|T

∗| it follows that |V : W ∩ V | ≤ |T ∗|.
1The l-part of an abelian pro-finite group is its Sylow-l-subgroup, the “non-l-part” is the

product of the l′-parts for l′ �= l. The l-part of an abelian field extension is the fixed field of the
non-l-part of the Galois group, and vice versa.
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(b) Let x ∈ X. Then xτ = x−1v for some v ∈ V . Hence x = xττ = x−τvτ = xv−2

and therefore v2 = e, v = e (since X has no elements of order 2), and xτ = x−1.
(c) Let x ∈ X. Then xτ = x−1u for a u ∈ U . Every element in X is a square, so

there is a u0 ∈ U with u2
0 = u−1. Put v = xu0. Then vτ = xτu0 = x−1uu0 = v−1,

i.e. v ∈ V . Hence x = u−1
0 v ∈ U × V . �

Lemma 3. Let e ≥ 1. The group of units in the ring O/le may be written as
(O/le)∗ = U × V × S′ such that the following hold:

(a) Complex conjugation τ operates trivially on U which is isomorphic to Z/le−1.
(b) Complex conjugation τ operates by inversion on V , and

V ∼=

⎧⎪⎨
⎪⎩

Z/le−1 if l � ∆,
Z/le if l | ∆, unless l = 3 and ∆ ≡ 3 mod 9,
Z/3e−1 × Z/3 if l = 3 and ∆ ≡ 3 mod 9.

(c) S′ is the non-l-part of (O/le)∗ and has order

|S′| =

⎧⎪⎨
⎪⎩

(l − 1)2 if (−∆/l) = 1,
l2 − 1 if (−∆/l) = −1,
l − 1 if (−∆/l) = 0.

There is a subgroup S′′ of S′ of order l − 1 such that (Z/le)∗ = U × S′′.

Proof. To begin with, note that each coset of O/le has a unique representative of
the form a + b

√
−∆ with a, b ∈ {0, 1, . . . , le − 1}.

The order of (O/le)∗ depends on the decomposition of l in K as follows:

|(O/le)∗| =

⎧⎪⎨
⎪⎩

(l − 1)2l2e−2 if l splits,
(l2 − 1)l2e−2 if l is inert,
(l − 1)l2e−1 if l ramifies.

This gives the order of S′.
The subgroups U := 〈1+ l〉 and V ′ := 〈1+ l

√
−∆〉 of (O/le)∗ are both ∼= Z/le−1

and have trivial intersection. Clearly, τ operates trivially on U and by inversion on
(U ×V ′)/U . So by Lemma 2(c), U ×V ′ = U ×V for a group V ∼= Z/le−1 on which
τ operates by inversion. This shows (a) and (b) when l � ∆.

When l | ∆, the same arguments work for V ′ := 〈1 +
√
−∆〉 unless l = 3 and

∆ ≡ 3 mod 9. In the exceptional case l = 3 and ∆ ≡ 3 mod 9, however, the 3-part
of (O/9)∗ is 〈1+3〉×〈1+3

√
−∆〉×〈1+

√
−∆〉 ∼= (Z/3)3, showing V ∼= Z/3e−1×Z/3.

This finishes the proof of (b).
To see the last part of (c), note U = {u ∈ (Z/le)∗ | u ≡ 1 mod l}. �

Proof of Main Lemma 1. Consider conductors f = le with e ≥ 1. Let Jf
K be the

group of fractional ideals prime to f (i.e. prime to l) and let P f
K be the subgroup

generated by the principal ideals (α) with integral α ≡ 1 mod f . By class field
theory, the Artin symbol is a surjective homomorphism(

Kf/K
)

: Jf
K → Gal(Kf/K)
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with kernel P f
K . It maps the group PK of principal ideals prime to l onto

Gal(Kf/KH) and behaves nicely with respect to restriction when e varies. More-
over, since τ = τ−1, the Artin symbol satifies(

Kf/K

τ (p)

)
= τ

(
Kf/K

p

)
τ .

Assume for simplicity that ∆ �= 1, 3. We then have the natural exact sequence

1 → {±1} → (O/le)∗ → PK/P f
K → 1

where an α ∈ (O/le)∗ is sent to the principal ideal (α). The Artin symbol thus
induces an isomorphism

lim←− (O/le)∗/{±1}
∼=−→ Gal(Kmax/KH) .

We conclude from Lemma 3 that Gal(Kmax/KH) = U × V × T ∗ × S′ with U , V ,
and T ∗ as in the theorem, and S′ is finite of order

|S′| =

⎧⎪⎨
⎪⎩

(l − 1)2/2 if (−∆/l) = 1,
(l2 − 1)/2 if (−∆/l) = −1,
(l − 1)/2 if (−∆/l) = 0.

From Lemma 3 it also follows that Gal(Kmax/Kf ) = Uf × V f with Uf and V f as
in the theorem.

The rest is group theory: Write Gal(Kmax/K) = X ×T ′ with l-part X and non-
l-part T ′. Then X contains U ×V ×T ∗, and T ′ contains S′ with index |T ′ : S′| = u.
It is well known that KH is a generalised dihedral extension of Q, so that τ operates
by inversion on X/(U × V × T ∗). It follows from Lemma 2(b) that τ operates by
inversion on X/U . By Lemma 2(c), X = U × Y where Y = {x ∈ X | xτ = x−1}.
Clearly, Y contains V × T ∗ with finite index |Y : V × T ∗| = lµ. By Lemma 2(a),
Y = W × T with W ∼= Zl, T finite containing T ∗, and |V : W ∩ V | ≤ |V |.

In the case ∆ = l = 3, the occurrence of a factor of order 3 in O∗ causes T ∗ to
vanish. So in this situation, we are not in the “exceptional case”. �

III. Prime decomposition laws

Consider a prime ideal p of K, and let p be the rational prime it divides. Our
main objective is to give a law for the decomposition or factorisation of p in Kanti.
For the sake of completeness, we start with the cyclotomic extension in which the
law has the simplest form possible.

Proposition 2. If p = l, then p is totally ramified in Kcycl. If p �= l, then p

is unramified in Kcycl, and p splits totally in the nth step of Kcycl iff p ≡ ±1
mod ln+1.

Proof. This is an immediate consequence of Proposition 1(a) and the law on de-
composition of prime numbers in cyclotomic fields. �

Now we turn to the anti-cyclotomic extension. Recall that Kanti/K is unramified
outside l by Iwasawa’s result. Define ν ≥ 0 such that Kanti ∩ KH = K

(ν)
anti. Then

any prime P of K
(ν)
anti dividing l ramifies totally in Kanti.
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The ring class field Nf over K of conductor f is the maximal subfield of the
ray class field Kf being dihedral over Q. So Kanti is contained in the union of the
tower

K ⊆ N1 ⊆ N l ⊆ N l2 ⊆ . . . .

If p is inert (resp. ramified) in K/Q, then the ideal class of p is trivial (resp. of
order 2) in the ideal class group of K, and hence class field theory ([5, Theorem
7.3]) gives that p splits totally in any ring class field Nf (resp. in a subfield L of
Nf with |Nf : L| = 2) of conductor f prime to l. In particular, p splits totally in
Kanti if p is different from l and non-split in K (another proof of this is given in
[3, Section III]). So the remaining problem is the case where p �= l splits in K. We
treat first the easier situation where K is l-rational (as defined in Section II).

Theorem 1. Assume K is l-rational, and consider a prime p � dK l and an integer
n ≥ 0. Write the class number of K as h = lµu with l � u. For n ≤ µ, p splits in
K

(n)
anti iff p is representable by a quadratic form of discriminant dK whose order in

the form class group is not divisible by lµ−n+1. For n > µ, p splits in K
(n)
anti iff p is

representable by a quadratic form of discriminant{
dK · l2(n−µ+1) if l � ∆ or ∆ = l = 3,

dK · l2(n−µ) otherwise

whose order in the form class group is prime to l.

Proof. First some general observations. Consider a ring class field Nf of K with
arbitrary conductor f . The Galois group Gal(Nf/K) is isomorphic to the ring
class group of conductor f via the Artin isomorphism. This ring class group is
again isomorphic to the form class group C of discriminant −dKf2. Now let L be
any field with K � L � Nf . By the main theorem of Galois theory and the above
isomorphisms, there corresponds to L some subgroup H of C . For a prime number
p dividing neither dK nor f , class field theory gives that p splits totally in L iff p
is representable by a quadratic form f whose equivalence class k belongs to H.

Assume n ≤ µ and let N be the ring class field of K with conductor f = 1 (which
equals the Hilbert class field). The l-part of N/K is K

(µ)
anti since K is l-rational.

The subgroup H of the form class group C of discriminant dK corresponding to
L := K

(n)
anti consists of the classes of forms of order not divisible by lµ−n+1. This

proves the first claim.
Now assume n > µ. We only prove the case l � ∆. Let N be the ring class field

of K with conductor f = ln−µ+1. By the Main Lemma, the l-part of N/K is K
(n)
anti

since K is l-rational. The subgroup H of the form class group C of discriminant
dKf2 corresponding to L := K

(n)
anti consists of the classes of forms of order prime to

l. This proves the second claim. �

Antoniadis [1] gives a prime decomposition law for ring class fields and their
subfields involving coefficients of L-series.

Example 1. (i) Let l = 3 and ∆ = 3. We seek the primes p �= 3 that split in K
(1)
anti.

The form class group of discriminant −3 · 34 = −243 has order 3. So p splits iff it
is representable by the principal form x2 + xy + 61y2.
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(ii) Let l = 5 and ∆ = 5. The form class group of discriminant −20 · 52 = −500
has order 10. So for a prime p �= 2, 5 splits in K

(1)
anti iff it is representable by either

the principal form x2 + 125y2 or the form 2x2 + 2xy + 63y2 of order 2.
(iii) Let l = 7 and ∆ = 1. The form class group of discriminant −4·74 = −9604 is

cyclic of order 28. So a prime p �= 2, 7 splits in K
(1)
anti iff it is representable by either

the principal form x2 + 2401y2, or the form 2x2 + 2xy + 1201y2 of order 2, or the
form 41x2 +20xy +61y2 of order 4 (the other form of order 4 is 41x2 −20xy +61y2

which represents the same numbers).
When K is not l-rational, the l-part of the ring class fields of l-power conductor

are not contained in Kanti, and the problem lies in identifying their intersection.

Theorem 2. Assume that p is different from l and splits in K. We may then write

(1) ph =

{
a2 + ∆b2 if ∆ �≡ 3 mod 4,

a2 + ab + ((∆ + 1)/4)b2 if ∆ ≡ 3 mod 4,

with relatively prime a, b ∈ Z. Put ω :=
√
−∆ if ∆ �≡ 3 mod 4, otherwise ω :=

(1 +
√
−∆)/2. Let n ≥ 0 be an integer.

(a) Suppose l splits in K. Write (a + bω)l−1 = a∗ + b∗ω. Then p splits totally
in K

(n)
anti iff b∗ ≡ 0 mod ln+1+µ−ν .

(b) Suppose l is inert in K. Write (a+bω)l+1 = a∗+b∗ω. Then the conclusion
of (a) holds.

(c) Suppose l is ramified in K and we are not in the exceptional case (see
below). Then p splits totally in K

(n)
anti iff b ≡ 0 mod ln+µ−ν .

(d) Suppose l = 3 and ∆ ≡ 3 mod 9 (the exceptional case). Write (a+ bω)3 =
a∗ + b∗ω. Then p splits totally in K

(n)
anti iff b∗ ≡ 0 mod 3n+2+µ−ν .

In all cases, p only splits in a finite number of steps of Kanti.2

Proof. Write (p) = pq with conjugate prime ideals p, q of K. By definition of h, ph

and qh are principal, i.e. ph = (a + bω) and qh = (a + bω̄) for some a, b ∈ Z. When
∆ �≡ 3 mod 4, we have (ph) = phqh = (a + b

√
−∆)(a − b

√
−∆) = (a2 + ∆b2) and

consequently ph = a2 + ∆b2. The representation of ph in case ∆ ≡ 3 mod 4 is
similar. If a and b were not relatively prime, then ph = (a + bω) and qh = (a + bω̄)
would not be relatively prime either, a contradiction.

Now assume a representation

ph = (u + vω)(u + vω̄)

is given with relatively prime u, v ∈ Z. Then phqh = (ph) = (u + vω)(u + vω̄). If
(u + vω) and (u + vω̄) were not relatively prime, then one of these ideals would
be divisible by pq = (p), which is not the case since u and v are relatively prime.
Hence the ideal (u + vω) equals either ph or qh, say (u + vω) = ph = (a + bω).

The remainder of the proof relies on Main Lemma 1 whose notation we adopt.
The different cases are now treated separately.

(a) Assume l splits in K. It follows immediately from the definition of ν that
Gal(Kmax/K

(ν)
anti) = U × V × T × T ′. Hence lν = |W × T : V × T | and |T | = lµ−ν

since |W × T : V | = lµ.

2I wish to thank the referee for calling my attention to this.
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Consider the conductor f = le with e = n + 1 + µ − ν. By Main Lemma 1(v)
and (ix), V f is contained in W and hence

Gal(Kf/K) = Ū × W̄ × T × T ′

where Ū = U/Uf is cyclic of order le−1 = ln+µ−ν , W̄ = W/V f is cyclic of order
le−1+ν = ln+µ, and T ′ has order prime to l. The fixed field of Ū ×T ×T ′ is K

(n+µ)
anti .

It follows from Lemma 3 that the image of (Z/le)∗ under the Artin symbol(
Kf/K

)
: (O/le)∗ → Gal(Kf/K)

is Ū × S′′ where S′′ is a subgroup of T ′ with index u(l − 1).
Let W0 be the subgroup of W̄ of order lµ. Then K

(n)
anti is the fixed field of

Ū × W0 × T × T ′. Now class field theory yields (see Neukirch [5]),

p splits in K
(n)
anti ⇔

(
Kf/K

p

)
∈ Ū × W0 × T × T ′

⇔
(

Kf/K

ph(l−1)

)
∈ Ū × S′′

⇔ b∗ ≡ 0 mod le

if we write ph(l−1) = (a∗ + b∗ω).
To show that p only splits in a finite number of steps of Kanti, we must show

that b∗ �= 0. But this follows from (a∗, b∗) = 1, which is seen in the same way as
(a, b) = 1 above.

(b) If l is inert in K, everything goes the same way except that T ′ now has order
u(l2 − 1)/2.

(c) Suppose l ramifies in K and we are not in the exceptional case. Then T ′ has
order u(l − 1)/2, and everything goes as above using the conductor f = le with
e = n + µ − ν.

(d) Suppose we are in the exceptional case. Then |T | = 3µ−ν+1 and |T ′| =
u(l− 1)/2. Using the conductor f = le with e = n+2+µ− ν, the same arguments
hold if we write p3h = (a∗ + b∗ω). �

Remark. Everything goes the same way if one uses the exponent of K’s class group
instead of h.

Corollary 1. No rational prime p splits completely in Kanti.

Proof. The prime l is (infinitely) ramified in Kanti, since otherwise Kanti would be an
infinite unramified extension of K, contradicting the finiteness of the class number.
If p is different from l, the claim follows from the last statement of Theorem 2. �

When the l-Hilbert class field of K is non-trivial, the decomposition law depends
on how much of it is contained in Kanti, expressed by the number ν. Since all
primes trivially split in K

(0)
anti = K, but not all primes split in K

(1)
anti, we can give

the following description of ν (here stated in the case where l splits in K, the other
cases are similar): Let p run through all primes �= l that split in K, and compute
b∗ as in Theorem 2(a). Then ν is the minimal integer such that l1+µ−ν divides all
the b∗. We illustrate this principle by three examples.
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Example 2. Let l = 5 and K = Q(
√
−599). The class group of K is cyclic of

order 25. Thus µ = 2 and ν = 0, 1, or 2. The prime p = 2 splits in K since
(−599/2) = 1. We therefore write 225 = a2 + ab + 150b2 with a = 5737 and b = 49
and find b∗ = 37079430566955 (Theorem 2(a)). Since b∗ is divisible by 5, but not
by 25, we conclude ν = 2. In other words: the entire Hilbert class field KH of K is
contained in Kanti.

Example 3. Let l = 5 and K = Q(
√
−479). Again, the class group of K is cyclic

of order 25, so µ = 2 and ν = 0, 1, or 2. Further, p = 2 again splits in K. Writing
225 = a2 + ab + 120b2 with a = −56 and b = 529 gives b∗ = −14765386940175
which is divisible by 25, but not by 125. This shows ν ≥ 1, so KH contains at least
K

(1)
anti. Now class field theory gives a simple decomposition law for K

(1)
anti: a prime

ideal p of K splits in K
(1)
anti iff it has order 1 or 5 in the ideal class group. Since 25

is not of the form a2 + ab + 120b2, a prime p of K dividing 2 has order 25 in the
class group, so it does not split in K

(1)
anti. If ν were equal to 2, Theorem 2(a) would

contradict this. Hence ν equals 1, and we conclude: Kanti contains the subfield of
KH of degree 5 over K, but not the entire KH .

Example 4. Let l = 5 and K = Q(
√
−2887). The class group of K is cyclic

of order 25. Writing 225 = a2 + ab + 722b2 with a = 4771 and b = 119 gives
b∗ = −503658527236874547125 which is divisible by 125. The same arguments as
in Example 2 show that p = 2 is inert in HK . This implies ν = 0 and therefore:
KH and Kanti are linearly disjoint over K.

IV. The first step of the anti-cyclotomic extension

In this section we address the problem of finding the first step K
(1)
anti of the anti-

cyclotomic extension Kanti/K. By “finding” we understand displaying explicitly a
polynomial f over Q of degree l having K

(1)
anti as its splitting field. The decompo-

sition laws from Section II then dictate the factorisation of f modulo p. In some
cases we will actually use this knowledge of the factorisation to identify f among a
number of candidates.

To begin with, recall that K
(1)
anti is a dihedral extension of Q of degree 2l having

K as its quadratic subfield, and that K
(1)
anti/K is unramified outside l. If K is l-

rational, K
(1)
anti is unique with these properties. We state without proof a lemma

that allows us easily to determine if a given dihedral extension is unramified, or
unramified outside l, over its quadratic subfield.

Lemma 4. Consider a dihedral extension M/Q of degree 2l having K as its qua-
dratic subfield. Let L be one of the l subfields of M of absolute degree l. Then the
cyclic extension M/K is unramified iff the field discriminants satisfy dL = d

(l−1)/2
K .

Further, M/K is unramified outside l iff dL = (power of l) · d (l−1)/2
K .

So when K is l-rational, we can find K
(1)
anti by guessing a Dl-polynomial f whose

splitting field contains K, and such that the discriminant condition of the lemma
is satisfied. Some examples are given in the following table.



2136 DAVID BRINK

∆ h f (for l = 3) f (for l = 5)
1 1 X3 − 3X − 4 X5 + 2500X + 120000
2 1 X3 − 3X − 10 X5 + 6875X + 17500
3 1 X3 − 3 X5 + 10X3 − 15X2 + 10X − 12
5 2 X3 − 3X − 8 X5 + 20X + 32
6 2 X3 + 3X − 2 X5 + 15X3 − 70X2 + 60X − 24
7 1 X3 − 3X − 5 X5 + 15X3 − 5X2 + 35X − 91

10 2 X3 − 3X − 22 X5 − 5X + 12
11 1 X3 + 6X − 1 X5 − 15X3 − 15X2 + 110X + 143
13 2 X3 + 9X − 36 X5 + 25772500X − 395460000
14 4 X3 − 3X − 26 X5 + 10X3 − 140X2 + 585X − 532
15 2 X3 + 3X − 1 X5 + 5X2 + 3
17 4 X3 + 6X − 28 X5 − 35X3 − 30X2 + 1060X − 2616
19 1 X3 + 6X − 5 X5 + 35X3 − 40X2 + 160X − 232

Consider one of the polynomials f from the table, and let p be a prime not
dividing the discriminant of f . If p is inert in K, then it splits in K

(1)
anti. It follows

that f is the product of one linear and (l − 1)/2 irreducible quadratic polynomials
modulo p. If, on the other hand, p splits as pq in K, then f is either irreducible
modulo p, or f is the product of linear factors modulo p; this happens according to
whether p is inert or splits in K

(1)
anti.

For example, the result mentioned in the introduction about the factorisation of
the polynomial X5 + 20X + 32 modulo p follows immediately from the above table
and Example 1 in Section III.

When K is not l-rational, finding K
(1)
anti is harder since it is no longer unique with

the property of being dihedral over Q and unramified outside l over K. But this case
can be dealt with by first finding all fields with that property, and then identifying
K

(1)
anti using our knowledge of which primes split in that field. This method always

leads to a conclusive answer, for different Galois extensions have different sets of
splitting primes by a theorem of Bauer (see Neukirch [5, page 572]). We illustrate
by two examples.

Example 1. Let l = 3 and consider K = Q(
√
−21). This field is not 3-rational,

indeed it has (two linearly disjoint and hence) four Z/3-extensions which are un-
ramified outside 3 and dihedral over Q (see Brink [2]). Using Lemma 4 and a
computer, we easily find four polynomials f1, . . . , f4 whose splitting fields are the
above-mentioned four dihedral fields. The polynomials are shown in the table be-
low together with all primes < 200 modulo which they split into linear factors.
These prime lists are the “fingerprints” of the polynomials, and we shall use them
to uncover the culprit among our four suspects.

i fi primes < 200 modulo which fi splits
1 X3 − 3X + 16 17, 101, 107, 139, 179, 193
2 X3 + 9X + 12 11, 19, 89, 103, 191
3 X3 + 9X + 30 5, 71, 109, 199
4 X3 + 18X + 12 23, 31, 37, 41, 173

Now consider a prime p that splits in K, i.e. with (−21/p) = 1. The class group of
K has exponent 2, so we may write

p2 = a2 + 21b2
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with relatively prime a, b ∈ N. This is shown in the table below for all p < 200. We
have

(a + b
√
−21)3 = (a3 − 63ab2) + (3a2b − 21b3)

√
−21 .

Therefore, by Theorem 2(d), p splits in K
(1)
anti iff b∗ = 3a2b− 21b3 is divisible by 27.

The primes for which this is the case are typed with bold in the table.

p a b b∗

5 2 1 −9
11 10 1 279
17 10 3 333
19 5 4 −1044
23 2 5 −2565
31 25 4 6156
37 5 8 −10152
41 34 5 14715
71 50 11 54549
89 86 5 108315

p a b b∗

101 74 15 175545
103 47 20 −35460
107 82 15 231705
109 59 20 40860
139 85 24 229896
173 170 7 599697
179 10 39 −1233999
191 170 19 1503261
193 185 12 1195812
199 185 16 1556784

Comparing the bold primes with the ones in the previous table reveals f4 as the
wanted polynomial.

Let us note additionally that p splits in the 3-part of K’s ray class field of
conductor 3 iff b is divisible by 3. The table shows that this is the case for the
primes 17, 101, 107 etc., i.e. the primes modulo which the polynomial f1 splits. So
this ray class field is the splitting field of f1. Finally, all four polynomials fi split
modulo p iff b is divisible by 9.

Example 2. We now aim at finding the first step of the anti-cyclotomic extension
of K = Q(

√
−107) for l = 3. Again, there are four Z/3-extensions of K which are

unramified outside 3 and dihedral over Q (see Brink [2]), and we find four candidate
polynomials:

i fi primes < 200 modulo which fi splits
1 X3 − X + 4 29, 47, 83, 137
2 X3 + 6X − 17 23, 37, 47, 61, 79, 101, 149
3 X3 + 15X − 28 11, 19, 47, 151, 163, 197
4 X3 + 18X − 45 13, 41, 47, 53, 89, 193, 199

The class number of K is 3, and since f1 generates a cubic field with discriminant
−107, the splitting field of f1 is the Hilbert class field of K. The anti-cyclotomic
decomposition law depends on whether this class field is contained in Kanti (and
thus equals K

(1)
anti) or not.

Let p �= 3 be a prime that splits in K. Since K has class number 3, we write

p3 = a2 + ab + 27b2

with relatively prime a, b ∈ Z. This representation is shown in the table below for
all p < 200. We are in case (a) of Theorem 2 and must compute

(a + bω)2 = (a2 − 27b2) + (2ab + b2)ω .



2138 DAVID BRINK

Thus, p splits in K
(1)
anti iff b∗ = 2ab + b2 is divisible by 33−ν .

p a b b∗

11 1 7 63
13 1 9 99
19 64 9 1233
23 89 11 2079
29 107 20 4680
37 163 27 9531
41 118 43 11997
47 253 34 18360
53 341 29 20619
61 442 27 24597
79 523 81 91287

p a b b∗

83 109 142 51120
89 694 79 115893

101 962 47 92637
137 163 304 191520
149 953 281 614547
151 1412 207 627417
163 1360 279 836721
193 1189 441 1243179
197 2690 83 453429
199 316 531 617553

Now if the Hilbert class field were contained in Kanti, that is, if ν = 1, then all the
primes in the table would split in K

(1)
anti since all the b∗ are divisible by 9. Not only

does this seem unlikely, it is also demonstrably false since none of the polynomials
fi splits modulo all these primes. Hence ν = 0, and the Hilbert class field is not
contained in Kanti. So the p’s that split in K

(1)
anti are the ones for which 27 divides

b∗. These primes (typed bold in the table) are the ones in the second line of the
previous table, thereby identifying f2 as the polynomial whose splitting field is
K

(1)
anti.
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