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AN EXPONENTIALLY CONVERGENT ALGORITHM
FOR NONLINEAR DIFFERENTIAL EQUATIONS

IN BANACH SPACES

IVAN P. GAVRILYUK AND VOLODYMYR L. MAKAROV

Abstract. An exponentially convergent approximation to the solution of a
nonlinear first order differential equation with an operator coefficient in Ba-
nach space is proposed. The algorithm is based on an equivalent Volterra
integral equation including the operator exponential generated by the opera-
tor coefficient. The operator exponential is represented by a Dunford-Cauchy
integral along a hyperbola enveloping the spectrum of the operator coefficient,
and then the integrals involved are approximated using the Chebyshev inter-
polation and an appropriate Sinc quadrature. Numerical examples are given
which confirm theoretical results.

1. Introduction

We consider the problem
∂u(t)

∂t
+ Au(t) = f(t, u(t)), t ∈ (0, 1],

u(0) = u0,
(1.1)

where u(t) is an unknown vector valued function with values in a Banach space X,
u0 ∈ X is a given vector, f(t, u) : (R+ × X) → X is a given function (nonlinear
operator) and A is a linear densely defined closed operator with the domain D(A)
acting in X. The abstract setting (1.1) covers many applied problems such as non-
linear heat conduction or diffusion in porous media, the flow of electrons and holes
in semiconductors, nerve axon equations, chemically reacting systems, equations of
the population genetics theory, dynamics of nuclear reactors, Navier-Stokes equa-
tions of the viscous flow, etc. (see e.g. [26] and the references therein). This fact
together with theoretical interest are important reasons to study efficient discrete
approximations of problem (1.1).

Given a discretization parameter N we are interesting in approximations pos-
sessing an exponential convergence rate with respect to N → ∞ which for a given
tolerance ε provide algorithms of optimal or low complexity [14, 13]. Exponentially
convergent algorithms were proposed recently for various linear problems.

Such algorithms for linear homogeneous parabolic problems of the type (1.1)
were proposed probably first in [17, 19] and later in [11, 14, 20, 35, 40]. These
algorithms are based on a representation of the operator exponential T (t) = e−At
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by the improper Dunford-Cauchy integral along a path enveloping the spectrum of
A where a hyperbola containing the spectrum of A or a parabola as the integration
path were used. The methods from [20, 17, 11, 23] use Sinc-quadratures [32, 37]
and possess an exponential convergence rate. An exponential convergence rate
for all t ≥ 0 was proven in [12, 41] under assumptions that the initial function u0

belongs to the domain of D(Aσ) for some σ > 1, where the preliminary computation
of Aσu0 is needed. Note that all these algorithms cannot be directly applied to
inhomogeneous problems due to the inefficiency of computation of the operator
exponential at t = 0. In [20] a hyperbola as the integration path and a proper
modification of the resolvent were used which allows one to get the uniform and
numerically stable exponential convergence rate with respect to t ≥ 0 without
preliminary computation of Aσu0. An exponentially convergent algorithm for the
case of an operator family A(t) depending on the parameter t was proposed in
[16]. This algorithm uses an exponentially convergent algorithm for the operator
exponential generating by a constant operator. Moreover, these algorithms inherit
two levels of parallelism (with respect to various time points and with respect
to the treatment of the summands in the quadrature sum) which was perhaps
first observed in the paper [34] and independently for the exponentially convergent
algorithms in [17, 19, 11]. A parallel method for the numerical solution of an
integro-differential equation with positive memory was described in [28].

In [14, 12, 13, 10] exponentially convergent algorithms based on the Dunford-
Cauchy integral representation and on the Sinc-quadratures were proposed for par-
abolic and elliptic solution operators, for the Silvester operator equation, for the
inverse of an elliptic operator and other operator-valued functions. Moreover, the
paper [13] combines exponentially convergent algorithms with tensor product ap-
proximations in order to obtain algorithms of almost linear complexity (with respect
to the discretization parameter in one dimension only) for high dimensional prob-
lems. The paper [6] deals with exponentially convergent algorithms for parabolic
PDE’s based on the Runge-Kutta methods. In [29, 30] exponentially convergent
algorithms for inverting Laplace transforms were proposed and justified. The pa-
per [4] deals with exponentially convergent algorithms for the first order differential
equations with an operator coefficient possessing a variable domain. But the ex-
ponentially convergent methods for nonlinear parabolic problems in an abstract
framework are missing in the literature.

In the present paper which represents a development of the technical report [22]
we construct exponentially convergent approximations to the solution of nonlin-
ear problem (1.1). To this end we use an equivalent Volterra integral equation
including the operator exponential and represent the operator exponential by a
Dunford-Cauchy integral along a hyperbola enveloping the spectrum of the oper-
ator coefficient. Then we approximate the integrals involved using the Chebyshev
interpolation and an appropriate Sinc quadrature.

Problem (1.1) is equivalent to the nonlinear Volterra integral equation

(1.2) u(t) = uh(t) + unl(t),

where

(1.3) uh(t) = T (t)u0,
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T (t) = e−At is the operator exponential (the semi-group ) generated by A and the
nonlinear term is given by

(1.4) unl(t) =
∫ t

0

e−A(t−s)f(s, u(s))ds.

We suppose that the solution u(t) and the function f(t, u(t)) can be analytically
extended (with respect to t) into a domain which we will describe below.

The aims of this paper are to propose a suitable abstract framework covering
typical applied nonlinear problems relative to (1.1) and allowing exponentially con-
vergent (for certain holomorphic right-hand sides), parallelizable approximations.
In this sense the present paper extends the problem classes from the papers cited
above for which it is possible to construct efficient algorithms with exponential
accuracy.

The paper is organized as follows. In Section 2 using results from [20] we rep-
resent the operator exponential by the Dunford-Cauchy integral along a hyperbola
enveloping the spectral angle of the operator A which implies that the Volterra in-
tegral equation (1.2) contains two integrals: the first one over a variable but finite
time interval and the second one over the real axis. The first integral is then approxi-
mated by the Gauss-Chebyshev quadrature and the second one by a Sinc quadrature
rule. This procedure leads to a system of nonlinear algebraic equations which can
be solved by an iteration method. Section 4 is devoted to the error analysis of this
algorithm in the case of a small Lipschitz constant. Under some natural assumption
on the spectral properties of the unbounded operator A and on the nonlinear term
f(t, u) we show that our algorithm possesses a uniform with respect to t exponential
convergence rate. As an auxiliary result which we could not find in the literature on
approximation theory we proved the following estimates for the classical Lebesque
functions Λ(1)

j (ξ) =
∑N

k=1

∣∣∣∫ ξ

−1
χj(η)Lk,N−1(η)dη

∣∣∣ ≤ κj

√
π(ξ + 1), Λ(2)

j (ξ) =∑N
k=1

∣∣∣∫ xj,N

ξ
χj(η)Lk,N−1(η)dη

∣∣∣ ≤ κj

√
π(xj,N − ξ), ξ ∈ (−1, xj,N ), j = 1, ..., N ,

where Lk,N−1(η) are the Lagrange fundamental polynomials subject to the Cheby-
shev nodes xj,N and |χj(η)| ≤ κj ∀η ∈ [−1, 1], j = 1, ..., N , are some bounded
functions.

Section 5 is concerned with a modification and with the analysis of the numerical
algorithm from Section 4 for the case of an arbitrary Lipschitz constant.

In Section 6 we discuss the implementation of our algorithm. Several numerical
and analytical examples are given throughout the text in order to make clear or to
confirm the theoretical results.

2. Exponentially convergent approximation

to the operator exponential

Let A be a densely defined strongly positive operator in a Banach space X with
the domain D(A), i.e. its spectrum Σ(A) lies in the sector

(2.1) Σ = {z = a0 + reiθ : r ∈ [0,∞), |θ| < ϕ <
π

2
}

and on its boundary ΓΣ, and outside of the sector the following estimate for the
resolvent holds true:

(2.2) ‖(zI − A)−1‖ ≤ M

1 + |z|
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Figure 1. Spectral characteristics of the operator A.

with some positive constant M (compare with [15, 27, 33, 36]). The angle ϕ is called
the spectral angle of the operator A. A practically important example of strongly
positive operators represents a strongly elliptic partial differential operator [7, 15,
16, 33] where the parameters a0, ϕ of the sector Σ are defined by its coefficients.
We call the hyperbola

(2.3) Γ0 = {z(ξ) = a0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = a0 tanϕ}

the spectral hyperbola, which pathes through the vertex (a0, 0) of the spectral angle
and possesses asymptotes which are parallel to the rays of the spectral angle Σ. We
choose the following hyperbola as an integration path [20]:

(2.4) ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)},

where

aI = a0 cos
(π

4
− ϕ

2

)
− b0 sin

(π

4
− ϕ

2

)

=
√

a2
0 + b2

0 cos
(π

4
+

ϕ

2

)
= a0

cos
(

π
4 + ϕ

2

)
cos ϕ

,

bI = a0 sin
(π

4
− ϕ

2

)
+ b0 cos

(π

4
− ϕ

2

)

=
√

a2
0 + b2

0 sin
(π

4
+

ϕ

2

)
= a0

sin
(

π
4 + ϕ

2

)
cos ϕ

.

(2.5)

Obviously this integration path envelops the spectral hyperbola but does not
intersect it. Since the operator A is strongly positive it holds on the integration
path and outside of it:

‖(zI − A)−1w‖ ≤ M

1 + |z| ‖w‖,

‖A(zI − A)−1w‖ ≤ (1 + M)‖w‖.
(2.6)
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Now, Theorem 4 from [27] yields

‖A1−α(zI − A)−1w‖ ≤ K‖A(zI − A)−1w‖1−α‖(zI − A)−1w‖α,

∀w ∈ X, α ∈ [0, 1],
(2.7)

where the constant K depends on α and M only.
We consider the following representation of the operator exponential on an ele-

ment u0:

(2.8) uh(t) =
1

2πi

∫
ΓI

e−zt(zI − A)−1u0dz.

One can also represent

(2.9) uh(t) =
1

2πi

∫
ΓI

e−zt

[
(zI − A)−1 − 1

z
I

]
u0dz

instead of (2.8) (for t > 0 the integral from the second summand is equal to zero due
to the analyticity of the integrand inside of the integration path), and this integral
represents the solution of the homogeneous problem (1.1) for u0 ∈ D(Aα), α > 0.
For the modified resolvent the following estimate holds true [20]:

‖
[
(zI − A)−1 −

m+1∑
k=1

Ak−1

zk

]
u0‖ = ‖ 1

zm+1
(zI − A)−1Am+1u0‖

=
1

|z|m+1
‖A1−α(zI − A)−1Am+αu0‖ ≤ 1

|z|m+1

(1 + M)K
(1 + |z|)α

‖Am+αu0‖,

∀α ∈ [0, 1],

(2.10)

provided that u0 ∈ D(Am+α).
After parametrizing integral (2.9) by (2.4) we get

(2.11) uh(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ

with

F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)t(aI sinh ξ − ibI cosh ξ)
[
(z(ξ)I − A)−1 − 1

z(ξ)
I

]
.

(2.12)

It was shown in [20] that

‖F(t, ξ)‖ ≤ C(ϕ, α)e−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0,(2.13)

with C(ϕ, α) = (1 + M)K tan
(

π
4 + ϕ

2

)(
2 cos ϕ

a0 cos (π
4 + ϕ

2 )

)α

. The change of ξ ∈ R to

w = ξ + iν ∈ C implies that the integration hyperbola will be translated into the
parametric set of hyperbolas

Γ(ν) = {z(w) = aI cosh (ξ + iν) − ibI sinh (ξ + iν) : ξ ∈ (−∞,∞)}
= {z(w) = a(ν) cosh ξ − ib(ν) sinh ξ : ξ ∈ (−∞,∞)}(2.14)
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so that Γ(0) = ΓI , where [20]

a(ν) = aI cos ν + bI sin ν =
a0 sin (ν + π/4 − ϕ/2)

cos ϕ

=
a0 cos (π/4 + ϕ/2 − ν)

cos ϕ
,

b(ν) = bI cos ν − aI sin ν =
a0 sin (π/4 + ϕ/2 − ν)

cos ϕ
.

(2.15)

The vector valued function F(t, w) is analytic with respect to w = ξ + iν in the
strip

(2.16) Dd1 = {w = ξ + iν : ξ ∈ (−∞,∞), |ν| < d1/2},

where d1 = π/2 − ϕ for all t ≥ 0. Moreover, for an arbitrarily small positive δ in
the strip Dd with d = d1 − δ there holds

‖F(t, w)‖

≤ (1 + M)K tan
(π

4
+

ϕ

2
− ν
)( 2 cos ϕ

a0 cos (π/4 + ϕ/2 − ν)

)α

e−α|ξ|‖Aαu0‖,

∀w ∈ Dd.

(2.17)

It was also shown that

|z′(w)/z(w)| ≤ b(ν)/a(ν) = tan (π/4 + ϕ/2 − ν),

|z′(w)|/|z(w)|1+α ≤ tan
(π

4
+

ϕ

2
− ν
)( 2 cos ϕ

a0 cos
(

π
4 + ϕ

2 − ν
)
)α

,
(2.18)

which implies

‖F(t, ·)‖H1(Dd) ≤ C(ϕ, α, δ)‖Aαu0‖,(2.19)

where

C(ϕ, α, δ) =
2
α

[C+(ϕ, α, δ) + C−(ϕ, α, δ)],

C±(ϕ, α, δ) = (1 + M)K(cosϕ)α tan
(

π

4
+

ϕ

2
± d

2

)(
2

a0 cos
(

π
4 + ϕ

2 ± d
2

)
)α

(2.20)

and the constant C(ϕ, α, δ) tends to ∞ if α → 0 or δ → 0, ϕ → π/2.
We approximate integral (2.11) by the following Sinc-quadrature:

(2.21) uN (t) = e−At
N u0 =

h

2πi

N∑
k=−N

F(t, z(kh)),

where

(2.22) e−At
N =

h

2πi

N∑
k=−N

FA(t, z(kh))
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is an approximation to the operator exponential. For the error we have the estimate
(see [20])

‖ηN (F , h)‖ = ‖u(t) − uN (t)‖

≤ c‖Aαu0‖
α

{
e−πd/h

sinh (πd/h)
+ exp[−aIt cosh ((N + 1)h) − α(N + 1)h]

}
,

(2.23)

where the constant c does not depend on h, N, t.
Moreover, it is easy to see that

‖AβηN (F , h)‖ = ‖Aβ(u(t) − uN (t))‖

≤ c‖Aα+βu0‖
α

{
e−πd/h

sinh (πd/h)
+ exp[−aIt cosh ((N + 1)h) − α(N + 1)h]

}
∀ β ≥ 0, ∀ α > 0.

(2.24)

Since we also apply this quadrature later for t → 0, it is important that it
converges exponentially for all t ≥ 0. Equalizing both exponentials for t = 0 by

(2.25)
2πd

h
= α(N + 1)h

we get for the step size

(2.26) h =

√
2πd

α(N + 1)

the following error estimates:

(2.27) ‖ηN (F , h)‖ ≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)
‖Aαu0‖

and

(2.28) ‖AβηN (F , h)‖ ≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)
‖Aα+βu0‖ ∀ β ≥ 0, ∀α > 0

with a constant c independent of t, N .
The first summand in the exponent of e[−aIt cosh ((N+1)h)−α(N+1)h] contributes

mainly to the error order. Setting h = c1 ln N/N with some positive constant c1 in
(2.23) we remain asymptotically for a fixed t > 0 with an error

(2.29) ‖ηN (F , h)‖ ≤ c
[
e−πdN/(c1 ln N) + e−c1aItN/2−c1α ln N

]
‖Aαu0‖,

where c is a positive constant. Thus, we have proven the following result.

Theorem 2.1. Let A be a densely defined, closed, strongly positive linear operator
and u0 ∈ D(Aα), α ∈ (0, 1). Then Sinc-quadrature (2.21) represents an approxi-
mate solution of the homogeneous initial value problem (1.1) (i.e. u(t) = e−Atu0)
and possesses a uniform with respect to t ≥ 0 exponential convergence rate with
estimate (2.23) which is of the order O(e−c

√
N ) uniformly in t ≥ 0 provided that

h = O(1/
√

N) and of the order

O
(
max

{
e−πdN/(c1 ln N), e−c1aItN/2−c1α ln N

})
for each fixed t ≥ 0 provided that h = c1 ln N/N .
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3. A discretization scheme of Chebyshev type

Changing in (1.2) the variables by

(3.1) t =
x + 1

2
we transform problem (1.2) to the following problem on the interval [−1, 1]:

(3.2) u(
x + 1

2
) = gh(x) + gnl(x, u)

with

gh(x) = e−A x+1
2 u0,

gnl(x, u) =
1
2

∫ x

−1

e−A x−ξ
2 f(

ξ + 1
2

, u(
ξ + 1

2
))dξ.

(3.3)

Using the representation of the operator exponential by the Dunford-Cauchy
integral along the integration path ΓI defined above in (2.4), (2.5) and enveloping
the spectral curve Γ0 we obtain

gh(x) = e−A x+1
2 u0 =

1
2πi

∫
ΓI

e−z x+1
2 [(zI − A)−1 − 1

z
I]u0dz,

gnl(x, u) =
1
2

∫ x

−1

e−A x−η
2 f(

η + 1
2

, u(
η + 1

2
))dη

=
1

4πi

∫ x

−1

∫
ΓI

e−z x−η
2 [(zI − A)−1 − 1

z
I]f(

η + 1
2

, u(
η + 1

2
))dzdη

(3.4)

(note, that P.V.
∫
ΓI

z−1dz = 0, but this term in the resolvent provides the nu-
merical stability of the algorithm below when t → 0; see [20] for details). After
parametrizing the first integral in (3.4) by (2.4) we have

(3.5) gh(x) =
1

2πi

∫ ∞

−∞
Fh(x, ξ)dξ

with

Fh(x, ξ) = FA((x + 1)/2, ξ)u0(3.6)

(in the case A = 0 we define FA(t, ξ) = 0).
We approximate integral (3.5) by the following Sinc-quadrature (see (2.21),

(2.26), (2.27)):

(3.7) gh,N1(x) =
h

2πi

N1∑
k=−N1

Fh(x, kh), h =

√
2πd

α(N1 + 1)
,

with the error

(3.8) ‖ηN1(Fh, h)‖ = ‖E((x + 1)/2)u0‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aαu0‖,

where

(3.9) E((x − η)/2) =
1

2πi

∫ ∞

−∞
FA((x − η)/2, ξ)dξ − 1

2πi

N1∑
k=−N1

FA((x − η)/2, kh)
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and the constant c independent of x, N1. Analogously we transform the second
integral in (3.4) to

gnl(x, u) =
1

4πi

∫ x

−1

∫
ΓI

e−z x−η
2 [(zI − A)−1 − 1

z
I]f(

η + 1
2

, u(
η + 1

2
))dzdη

=
1

4πi

∫ x

−1

∫ ∞

−∞
Fnl(x, ξ, η)dξdη,

(3.10)

where

(3.11) Fnl(x, ξ, η) = FA((x − η)/2, ξ)f(
η + 1

2
, u(

η + 1
2

)).

Replacing the infinite integral by quadrature rule (3.7) we arrive at the approxima-
tion

(3.12) gnl,N1(x, u) =
h

4πi

∫ x

−1

N1∑
k=−N1

Fnl(x, kh, η)dη.

In order to approximate the nonlinear operator gnl,N1(x, u) we choose the mesh
ωN = {xk,N = cos (2k−1)π

2N , k = 1, ..., N} on [−1, 1], where xk,N are zeros of Cheby-
shev orthogonal polynomial of first kind TN (x) = cos (N arccos x). For the step-
sizes τk,N = xk,N − xk−1,N it is well known that (see [38],Ch.6, Th.6.11.12, [39],
p. 123)

τk,N = xk+1,N − xk,N < π
N , k = 1, ..., N,

τmax = max1≤k≤N τk,N < π
N .(3.13)

Let

(3.14) PN−1(x; f(·, u)) =
N∑

p=1

f((xp,N + 1)/2, u((xp,N + 1)/2))Lp,N−1(x)

be the interpolation polynomial for the function f(x, u(x)) on the mesh ωN , i.e.
PN−1(xk,N ; f(·, u)) = f((xk,N +1)/2, u((xk,N +1)/2)), k = 1, 2, ..., N , where Lp,N−1

= TN (x)
T ′

N (xp,N )(x−xp,N ) , p = 1, ..., N , are the Lagrange fundamental polynomials. Given
a vector y = (y1, ..., yN ), yi ∈ X, let

(3.15) PN−1(x; f(·, y)) =
N∑

p=1

f((xp,N + 1)/2, yp)Lp,N−1(x)

be the polynomial which interpolates f(x, y), i.e.

PN−1(xk,N ; f(·, y)) = f((xk,N + 1)/2, yk), k = 1, 2, ..., N.

Substituting PN−1(t; f(·, y)) instead of f(t, u) into (3.11), (3.12) we get the approx-
imation

(3.16) gnl,N,N1(x, y) =
h

4πi

∫ x

−1

N1∑
k=−N1

FA((x − η)/2, kh)PN−1(η; f(·, y))dη.

Substituting approximations (3.7) and (3.16) into (3.2) and collocating the resulting
equation on the grid ωN we arrive at the following Algorithm A1 for solving
problem (3.2): find y = (y1, ..., yN ), yi ∈ X, such that

(3.17) yj = gh,N1(xj,N ) + gnl,N,N1(xj,N , y), j = 1, ..., N,
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or

yj =
h

2πi

N1∑
k=−N1

Fh(xj,N , kh)

+
h

4πi

N1∑
k=−N1

∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

j = 1, ..., N.

(3.18)

Equations (3.17) or (3.18) define a nonlinear operator A so that

y = A(y) + φ,(3.19)

where

y = (y1, y2, ..., yN ), yi ∈ X,

[A(y)]j =
h

4πi

N1∑
k=−N1

∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

(φ)j =
h

2πi

N1∑
k=−N1

Fh(xj,N , kh) =
h

2πi

N1∑
k=−N1

FA((xj,N + 1)/2, kh)u0,

j = 1, ..., N.

(3.20)

This is a system of nonlinear equations which can be solved by an iteration method.
Since the integrands in
(3.21)

Ij,k =
∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη, j = 1, ..., N, k = −N1, ..., N1,

are products of the exponential function and polynomials, these integrals can be
calculated analytically, for example, by computer algebra tools.

Given the vector y = (y1, ..., yN ) the interpolation polynomial ũ(x) = PN−1(x; y)
represents an approximation for u((x + 1)/2) = u(t), i.e. u((x + 1)/2) = u(t) ≈
PN−1(x; y).

4. The error analysis for a small Lipschitz constant

In this section we investigate the error of algorithm (3.18). The projection of
the exact equation (3.2) onto the grid ωN provides

u(tj) = e−Atj u0 +
1
2

∫ xj,N

−1

e−A(xj,N−ξ)/2f(
1 + ξ

2
, u(

1 + ξ

2
))dξ,

tj =
1 + xj,N

2
, xj,N = cos

(2j − 1)π
2N

, j = 1, ..., N.

(4.1)

Using equations (3.18) we represent the error of the algorithm in the form

Zj = u(tj) − yj

= ψ
(0)
j + ψ

(1)
j + ψ

(2)
j + ψ

(3)
j , j = 1, ..., N,

(4.2)
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where

ψ
(0)
j = ηN (Fh, h)

=

{
e−Atj − h

2πi

N1∑
k=−N1

z′(kh)e−tjz(kh)

[
(z(kh)I − A)−1 − 1

z(kh)
I

]}
u0

ψ
(1)
j =

1
2

∫ xj,N

−1

f

(
1 + η

2
, u

(
1 + η

2

)){
e−A

(xj,N−η)
2

− h

2πi

N1∑
k=−N1

z′(kh)e−z(kh)
(xj,N −η)

2

[
(z(kh)I − A)−1 − 1

z(kh)
I

]}
dη,

ψ
(2)
j =

h

2πi

N1∑
k=−N1

z′(kh)
1
2

∫ xj,N

−1

e−z(kh)(xj,N−η)/2

[
(z(kh)I − A)−1 − 1

z(kh)
I

]

×
[
f

(
1 + η

2
, u

(
1 + η

2

))
−

N∑
l=1

f(tl, u(tl))Ll,N−1(η)

]
dη,

ψ
(3)
j =

h

2πi

N1∑
k=−N1

z′(kh)
1
2

∫ xj,N

−1

e−z(kh)(xj,N−η)/2

[
(z(kh)I − A)−1 − 1

z(kh)
I

]

×
[

N∑
l=1

[f(tl, u(tl)) − f(tl, yl)]Ll,N−1(η)

]
dη,

z(ξ) = aI cosh ξ − ibI sinh ξ.

(4.3)

Using notations (3.6), (3.9) we can write down

ψ
(0)
j = E((xj,N + 1)/2)u0

ψ
(1)
j =

1
2

∫ xj,N

−1

E((xj,N − η)/2)f(
1 + η

2
, u(

1 + η

2
))dη,

ψ
(2)
j =

1
2

∫ xj,N

−1

h

2πi

N1∑
k=−N1

FA((xj,N − η)/2, kh)

×
[
f(

1 + η

2
, u(

1 + η

2
)) − PN−1(η; f(·, u(·)))

]
dη,

ψ
(3)
j =

1
2

∫ xj,N

−1

h

2πi

N1∑
k=−N1

FA((xj,N − η)/2, kh)

× [PN−1(η; f(·, u(·)) − f(·, y(·)))] dη

= [A(u)]j − [A(y)]j

(4.4)

where u = (u(t1), ..., u(tN )), y = (y1, ..., yN ) and ψj = ψ
(0)
j + ψ

(1)
j + ψ

(2)
j is the

truncation error.
For the first summand we have estimate (3.8):

(4.5) ‖ψ(0)
j ‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aαu0‖
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and obviously the estimate

(4.6) ‖Aαψ
(0)
j ‖ ≤ c

β − α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aβu0‖ ∀ β > α > 0.

In order to estimate ψ
(1)
j we assume that

(i)

(4.7) f(t, u(t)) ∈ D(Aα) ∀ t ∈ [0, 1] and
∫ 1

0

‖Aαf(t, u(t))‖dt < ∞.

Using this assumption we obtain analogously to (4.5), (4.6)

(4.8) ‖ψ(1)
j ‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)∫ 1

0

‖Aαf(t, u(t))‖dt

and
(4.9)

‖Aαψ
(1)
j ‖ ≤ c

β − α
exp

(
−
√

πdα

2
(N1 + 1)

)∫ 1

0

‖Aβf(t, u(t))‖dt ∀ β > α > 0.

In order to estimate ψ
(2)
j we assume in addition to (4.7) that

(ii) the vector valued function Aαf( 1+ξ
2 , u( 1+ξ

2 )) of ξ can be analytically ex-
tended from the interval B = [−1, 1] into the domain Dρ enveloped by the so called
Bernstein’s regularity ellipse Eρ = Eρ(B) (with the foci at z = ±1 and the sum of
semi-axes equal to ρ > 1):

Eρ = {z ∈ C : z =
1
2

(
ρeiϕ +

1
ρ
e−iφ

)
}

= {(x, y) :
x2

a2
+

y2

b2
= 1, a =

1
2

(
ρ +

1
ρ

)
, b =

1
2

(
ρ − 1

ρ

)
}.

Using (2.10) with m = 0, the first inequality (2.18) with ν = 0 and the fact
that the Lebesque constant for the Chebyshev interpolation process is bounded by
c ln N we obtain

‖ψ(2)
j ‖ ≤ c · SN1 · ln N · EN (Aαf (·, u (·)))(4.10)

where SN1 =
∑N1

k=−N1
h|z′(kh)|/|z(kh)|1+α, c is a constant independent of N, N1, η

and EN (Aαf (·, u (·))) is the value of the best approximation of Aαf(t, u(t)) by
polynomials of degree not greater than N − 1 in the maximum norm with respect
to t. Using the estimate

|z(kh)| =
√

a2
I cosh2 (kh) + b2

I sinh2 (kh)

≥ aI cosh (kh) ≥ aIe
|kh|/2

(4.11)

the last sum can be estimated by

|SN1 | ≤
c√
N1

N1∑
k=−N1

e−α|k/
√

N1| ≤ c

∫ √
N1

−
√

N1

e−αtdt ≤ c/α.(4.12)
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Due to assumption (ii) we have for the value of the best polynomial approxima-
tion [5, 20]

(4.13) EN (Aαf (·, u (·))) ≤ ρ−N

1 − ρ
sup

z∈Dρ

‖Aαf(z, u(z))‖

which together with (4.10)and (4.12) yields

(4.14) ‖ψ(2)
j ‖ ≤ c

α
ln Nρ−N sup

z∈Dρ

‖Aαf(z, u(z))‖

and

(4.15) ‖Aαψ
(2)
j ‖ ≤ c

β − α
ln Nρ−N sup

z∈Dρ

‖Aβf(z, u(z))‖ ∀ β > α > 0.

Before we go over to the estimating of ψ
(3)
j let us introduce the functions

(4.16) Λ(1)
j (ξ) =

N∑
k=1

∣∣∣∣∣
∫ ξ

−1

χj(η)Lk,N−1(η)dη

∣∣∣∣∣ , j = 1, ..., N,

and

(4.17) Λ(2)
j (ξ) =

N∑
k=1

∣∣∣∣
∫ xj,N

ξ

χj(η)Lk,N−1(η)dη

∣∣∣∣ , j = 1, ..., N,

with some bounded functions χj(η):

(4.18) |χj(η)| ≤ κj ∀η ∈ [−1, 1], j = 1, ..., N,

and prove the following auxiliary assertion.

Lemma 4.1. There holds

Λ(1)
j (ξ) ≤ κj

√
π(ξ + 1),

Λ(2)
j (ξ) ≤ κj

√
π(xj,N − ξ), ξ ∈ (−1, xj,N ), j = 1, ..., N.

(4.19)

Proof. Let

ε
(1)
k,j = sign

{∫ ξ

−1

χj(η)Lk,N−1(η)dη

}
,

ε
(2)
k,j = sign

{∫ xj,N

ξ

χj(η)Lk,N−1(η)dη

}
.

(4.20)

Then taking into account that all coefficients of the Gauß quadrature relating to
the Chebyshev orthogonal polynomials of the first kind are equal to π/N and the
Lagrange fundamental polynomials Lk,N (η) are orthogonal [38] with the weight
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1/
√

1 − η2 we obtain

Λ(1)
j (ξ) =

∫ ξ

−1

χj(η)
N∑

k=1

ε
(1)
k,jLk,N−1(η)dη

≤
√

ξ + 1

⎧⎨
⎩
∫ ξ

−1

χ2
j (η)

[
N∑

k=1

ε
(1)
k,jLk,N−1(η)

]2

dη

⎫⎬
⎭

1/2

≤ κj

√
ξ + 1

⎧⎨
⎩
∫ ξ

−1

[
N∑

k=1

ε
(1)
k,jLk,N−1(η)

]2

/
√

1 − η2dη

⎫⎬
⎭

1/2

≤ κj

√
ξ + 1

⎧⎨
⎩

N∑
k,p=1

ε
(1)
k,jε

(1)
p,j

∫ 1

−1

Lk,N−1(η)Lp,N−1(η)/
√

1 − η2dη

⎫⎬
⎭

1/2

= κj

√
ξ + 1

{
N∑

k=1

(
ε
(1)
k,j

)2
∫ 1

−1

L2
k,N−1(η)/

√
1 − η2dη

}1/2

= κj

√
π/N

√
ξ + 1

{
N∑

k=1

1

}1/2

= κj

√
π(1 + ξ).

(4.21)

Analogously we obtain

Λ(2)
j (ξ) =

∫ xj,N

ξ

χj(η)
N∑

k=1

ε
(2)
k,jLk,N−1(η)dη

≤
√

xj,N − ξ

⎧⎨
⎩
∫ xj,N

ξ

χ2
j(η)

[
N∑

k=1

ε
(2)
k,jLk,N−1(η)

]2

dη

⎫⎬
⎭

1/2

≤ κj

√
xj,N − ξ

⎧⎨
⎩
∫ xj,N

ξ

[
N∑

k=1

ε
(2)
k,jLk,N−1(η)

]2

/
√

1 − η2dη

⎫⎬
⎭

1/2

≤ κj

√
xj,N − ξ

⎧⎨
⎩

N∑
k,p=1

ε
(2)
k,jε

(2)
p,j

∫ 1

−1

Lk,N−1(η)Lp,N−1(η)/
√

1 − η2dη

⎫⎬
⎭

1/2

= κj

√
π(xj,N − ξ) =

√
2πκj cos

(2j − 1)π
4N

.

(4.22)

The proof is complete. �

Corollary 4.2. We define the numbers

(4.23) Λ(1)
j = Λ(1)

j (xj,N ) =
N∑

k=1

∣∣∣∣
∫ xj,N

−1

χj(η)Lk,N−1(η)dη

∣∣∣∣ , j = 1, ..., N.
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Then using Lemma 4.1 we derive

(4.24) Λ(1)
j ≤ κj

√
π(1 + cos

(2j − 1)π
2N

) =
√

2πκj cos
(2j − 1)π

4N
, j = 1, ..., N.

Conjecture. Setting χ(η) = 1, we obtain from (4.24) that

(4.25) Λ(1)
j ≤ Λ(1)

u,j ≤
√

2π cos
(2j − 1)π

4N

and the upper bound Λ(1)
u,j of Λ(1)

j is monotonically decreasing in j. At the same

time, calculations indicate the behavior of Λ(1)
j given by Table 1. Our hypothesis is

that each Λ(1)
j is also monotonically decreasing in j and Λ(1)

u,j = 2 cos (2j−1)π
4N .

Table 1. The behavior of Λ(1)
j and of Λ(1)

u,j for N = 8.

j 1 2 3 4 5 6 7 8
Λj 1.9807 1.8516 1.6037 1.2630 .8934 .5213 .2462 .3097e − 1

Λu,j 1.9903 1.9138 1.76384 1.5460 1.2687 .9427 .5805 .1960

Corollary 4.3. The numbers Λ(1)
j remain bounded also if χj(η) = e−z(xj,N−η),

where z = ρeiθ is a complex number with ρ ≥ 0, θ ∈ (−π/2, π/2).
Actually, we have in this case

Λ(1)
j =

N∑
k=1

∣∣∣∣
∫ xj,N

−1

e−ρexp{iθ}(xj,N−η)Lk,N−1(η)dη

∣∣∣∣
≤

N∑
k=1

∣∣∣∣
∫ xj,N

−1

χj,1(η)Lk,N−1(η)dη

∣∣∣∣
+

N∑
k=1

∣∣∣∣
∫ xj,N

−1

χj,2(η)Lk,N−1(η)dη

∣∣∣∣

(4.26)

where
χj,1(η) = e−ρ cos θ(xj,N−η) cos [ρ sin θ(xj,N − η)],

χj,2(η) = e−ρ cos θ(xj,N−η) sin [ρ sin θ(xj,N − η)].
(4.27)

Applying Lemma 4.1 for each summand and each of functions χj,1(η) ≤ 1 and
χj,1(η) ≤ 1 we arrive at the estimate

(4.28) Λ(1)
j ≤ 2

√
2π cos

(2j − 1)π
4N

, j = 1, ..., N.

Now, we are in the position to estimate ψ
(3)
j .

To this end we assume that
(iii) The function f(t, y) = f(t, y; N) in the domain

G = {(t, y, N) : 0 ≤ t ≤ 1, |‖y − u|‖ < γ, N ≥ N0},
in addition to (i), (ii), satisfies

|‖Aα[f(t, y1) − f(t, y2)]|‖ ≤ L|‖y1 − y2|‖ ∀y1, y2 ∈ G,(4.29)
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for all (t, yi, N) ∈ G, i = 1, 2, where |‖Z‖| = |‖y − u‖| = maxj=1,...,N ‖yj − u(tj)‖,
γ is a positive real constant and N0 is a fixed natural number large enough.

Under this assumption and taking into account Lemma 4.1 and Corollary 4.3 as
well as (4.11), (4.12), we have

‖ψ(3)
j ‖ ≤ cLh

N1∑
k=−N1

|z′(kh)|
|z(kh)|1+α

N∑
l=1

∣∣∣∣
∫ xj,N

−1

e−z(kh)(xj,N−η)Ll,N−1(η)dη

∣∣∣∣ ‖Zl‖

≤ |‖Z‖|cLh

N1∑
k=−N1

|z′(kh)|
|z(kh)|1+α

Λ(1)
j ≤ cLSN1Λ

(1)
j |‖Z‖| ≤ c∗

α
L|‖Z‖|

(4.30)

with a new positive constant c∗. This estimate together with (4.2) implies

|‖Z‖| ≤ α

α − c∗L
|‖ψ‖|(4.31)

with a constant c independent of α, N provided that c∗L/α < 1. Analogously we
obtain

‖Aαψ
(3)
j ‖ ≤ c∗

β − α
L|‖AβZ‖| ∀ β > α > 0(4.32)

and

|‖AαZ|‖ ≤ β − α

β − α − c∗L
|‖Aβψ‖| ∀ β > α > 0(4.33)

with a constant c∗ independent of α, β, N provided that c∗L/(β − α) < 1.
Taking into account (4.2) and estimates (4.5), (4.8), (4.14) as well as (4.30) we

arrive at the estimate

|‖Z‖| ≤ c

α − c∗L
×
(

e−c1
√

N1

(
‖Aαu0‖ +

∫ 1

0

‖Aαf(t, u(t))‖dt

)

+ lnNρ−N sup
z∈Dρ

‖Aαf(z, u(z))‖
)(4.34)

provided that the Lipschitz constant L is such that c∗L/α < 1. Equalizing the
exponents by N 


√
N1 (i.e. the number of the interpolation points must be

proportional to the square root of the number of nodes in the Sinc-quadrature) we
obtain

|‖Z‖| = |‖u − y‖| ≤ c

α − c∗L
ln N1e

−c1
√

N1

×
(
‖Aαu0‖ +

∫ 1

0

‖Aαf(t, u(t))‖dt + sup
z∈Dρ

‖Aαf(z, u(z))‖
)

,
(4.35)

and due to (4.6), (4.9), (4.15), (4.33) in a more strong norm

|‖AαZ‖| = |‖Aα(u − y)‖| ≤ c

β − α − c∗L
ln N1e

−c1
√

N1

×
(
‖Aβu0‖ +

∫ 1

0

‖Aβf(t, u(t))‖dt + sup
z∈Dρ

‖Aβf(z, u(z))‖
)

,

∀ β > α > 0, β − α > c∗L.

(4.36)
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These estimates show in particular that the operator A is contractive on G provided
that c∗L/α < 1 and N ≥ N0. Taking into account the Banach fixed point theorem
we obtain by usual arguments that there exists the unique solution of (3.19) in G
for which the estimate (4.35) holds.

Thus, we have proven the following main result of this paper.

Theorem 4.4. Let A be a densely defined, closed, strongly positive linear operator
with the domain D(A) in a Banach space X and let the assumptions (i), (ii), (iii)
hold. Then algorithm A1 defined by (3.18) for the numerical solution of the nonlin-
ear problem (1.1) possesses a uniform with respect to t exponential convergence rate
with estimates (4.35), (4.36) provided that N 


√
N1 and the Lipschitz constant L

is sufficiently small.

Remark 4.5. The same result can be obtained if one uses the interpolation polyno-
mial on the Chebyshev-Gauss-Lobatto grid

ωCGL
N = {xk,N = xCGL

k,N = cos
(N − j)π

N
, k = 0, 1, ..., N}(4.37)

where the nodes are zeros of the polynomial (1 − x2)T ′
N (x).

Example 4.6. In order to have a view of the possible size of the Lipschitz constant
let us consider the following nonlinear Cauchy problem:

d�u(t)
dt

+ A�u(t) = �f(t, �u(t)), t > 0,

�u(0) = �u0

(4.38)

with a linear self-adjoint positive definite operator A such that

(4.39) A = A∗ ≥ λ0I, λ0 > 0.

In this case algorithm (3.18) takes the form

�y(tj) = �yj = e−Atj�u0 +
N∑

p=1

1
2

∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη �f(tp, �yp),

j = 1, ..., N.

(4.40)

For the error �zj = �yj − �u(tj) = �yj − �uj we have the equation

�zj =
N∑

p=1

1
2

∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη[�f(tp, �yp) − �f(tp, �up)] + �ψj ,

j = 1, ..., N,

(4.41)

where

(4.42) �ψj =
1
2

∫ xj,N−η

−1

e−A(xj,N−η)/2[PN−1(η, �u) − �f(
η + 1

2
, u(

η + 1
2

))]dη
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is the truncation error. Using the equation∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη

= −
∫ xj,N

−1

e−A(xj,N−η)/2 d

dη

∫ xj,N

η

Lp,N−1(ξ)dξdη

= e−A(xj,N+1)/2

∫ xj,N

−1

Lp,N−1(η)dη

+
1
2

∫ xj,N

−1

Ae−A(xj,N−η)/2

∫ xj,N

η

Lp,N−1(ξ)dξdη

(4.43)

we obtain

�zj =
N∑

p=1

1
2

{
e−A(xj,N+1)/2

∫ xj,N

−1

Lp,N−1(η)dη

+
1
2

∫ xj,N

−1

Ae−A(xj,N−η)/2

∫ xj,N

η

Lp,N−1(ξ)dξdη

}
[�f(tp, �yp) − �f(tp, �up)]

+ �ψj , j = 1, ..., N.

(4.44)

Since A is a self-adjoint, positive definite operator we have

‖Ae−A(xj,N−η)/2‖ = max
λ0≤λ<∞

(λe−λ(xj,N−η)/2) ≤ 2
e(xj,N − η)

,

‖e−A(xj,N+1)/2‖ ≤ 1.

(4.45)

This estimate together with (4.44) and Lemma 4.1 implies

‖�zj‖ ≤ L
N∑

p=1

1
2

∣∣∣∣
∫ xj,N

−1

Lp,N−1(η)dη

∣∣∣∣ |‖�z‖|
+ L

1
2

N∑
p=1

1
2

∫ xj,N

−1

‖Ae−A(xj,N−η)/2‖ ·
∣∣∣∣
∫ η

−1

Lp,N (ξ)dξ

∣∣∣∣dη · |‖�z‖| + ‖�ψj‖

≤ 1
2
LΛ(1)

j (xj,N )|‖�z‖| + L

2e

∫ xj,N

−1

1
xj,N − η

Λ(2)
j (η)|‖�z‖| + ‖�ψj‖

≤ L

2
Λj |‖�z‖| +

L
√

π

2e

∫ xj,N

−1

1√
xj,N − η

|‖�z‖| + ‖�ψj‖

≤
(√

π

2
+

√
2π

e

)
L|‖�z‖| + ‖�ψj‖.

(4.46)

The last inequality yields the following condition:

(4.47) L <

√
2e√

πe + 2
√

π

on the Lipschitz constant L which provides the convergence of the fixed point
iteration and the corresponding a priori estimate for |‖�z‖|.

Remark 4.7. Given N1 choose the integer number N2 = [
√

N1] and set y(t) =
PN2−1(2t − 1; y) with y defined by algorithm (3.18). In order to get an error
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estimate for all t ∈ [0, 1] we represent

Z(t) = u(t) − PN2−1(2t − 1; y)

= u(t) − PN2−1(2t − 1; u) + [PN2−1(2t − 1; u) − PN2−1(2t − 1; y)].

Taking into account that the Lebesque constant relating to the Chebyshev interpo-
lation nodes is bounded by c ln N2 and using the estimates (4.35), ‖PN2−1(2t−1; u)−
PN2−1(2t−1; y)‖ ≤ c lnN2|‖Z‖| ≤ c ln2 N2e

−c1
√

N2 and ‖u(t)−PN2−1(2t−1; u)‖ ≤
c ln N2e

−c1
√

N2 , we derive

(4.48) max
0≤t≤1

‖u(t) − PN2−1(2t − 1; y)‖ ≤ c ln2 N2e
−c1

√
N2 .

5. Modified algorithm for arbitrary Lipschitz constant

In this section we show how the algorithm above can be modified for a nonlin-
earity with an arbitrary Lipschitz constant. To this end we suppose that u(t) ∈
D(Aσ), σ > c∗L/2. We cover the interval [0, 1] by the grid ωG = {ti = i ·
τ : i = 0, 1, ..., K, τ = 1/K} and consider problem (1.1) on each subinterval
[tk−1, tk], k = 1, ..., K. The substitution t = tk−1(1 − ξ)/2 + tk(1 + ξ)/2, v(ξ) =
u(tk−1(1 − ξ)/2 + tk(1 + ξ)/2) translates the original equation into the differential
equation

v′(ξ) + Ãv = f̃(ξ, v)(5.1)

on the reference interval [−1, 1] with Ã = τ
2A and with the function f̃(ξ, v) =

τ
2 f(tk−1(1−ξ)/2+tk(1+ξ)/2, u(tk−1(1−ξ)/2+tk(1+ξ)/2)) satisfying the Lipschitz
condition with the Lipschitz constant L̃ = τL/2 which can be made arbitrarily
small by the appropriate choice of τ . We cover each subinterval [tk−1, tk] by the
Chebyshev-Gauss-Lobatto grid

ωCGL
k,N = {tk,j : tk,j = tk−1(1 − xj,N )/2 + tk(1 + xj,N )/2, j = 0, 1, ..., N},

xj,N = cos (π(N − j)/N)
(5.2)

and denote vk(xj,N ) = vk,j = u(tk,j), vk,0 = vk, u(tk,0) = u(tk) = uk, �vk =
[vk,j ]j=1,...,N , �uk = [u(tk,j)]j=1,...,N . Then, algorithm (3.18) with the corresponding
Chebyshev-Gauss-Lobatto interpolation polynomial can be applied which provides
an exponential accuracy on the subinterval [tk−1, tk] under the assumption that the
initial vector uk−1 is known. This is exactly the case for k = 1, and by algorithm
(3.18) we obtain a value v1,N = v1 as an approximation for u(t1). Starting on the
subinterval [t1, t2] with the approximate initial value v1 we obtain an approximate
solution for this subinterval and so on.

In order to write down this idea as an algorithm we derive from (5.1) the relation

vk,j = e−Ã(1+xj,N )uk−1 +
∫ xj,N

−1

e−Ã(xj,N−η)f̃(η, vk(η))dη.(5.3)

Denoting by yk,j approximations to vk,j , approximating the operator exponential
by (2.22) with N1 nodes and the nonlinearity by the Chebyshev-Gauss-Lobatto
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interpolation polynomial

PN (η,
�̃
f) =

N∑
l=0

f̃(xl,N , yk,l)Ll,N (η),

Ll,N (η) =
(1 − η2)T ′

N (η)
(η − xl,N ) d

dη [(1 − η2)T ′
N (η)]η=xl,N

,

�̃f = [f̃(xj,N , yk,j)]Nj=0

(5.4)

we arrive at the following system of nonlinear equations (analogous to (3.18)):

yk,j = e
−Ã(1+xj,N )
N1

yk−1 +
∫ xj,N

−1

e
−Ã(xj,N−η)
N1

PN (η, �̃f)dη,(5.5)

which expresses yk,j , j = 1, 2, ..., N (in particular yk,N = yk+1) through yk−1.
Now, we can formulate the following algorithm.
Algorithm A2.
Given K satisfying (5.9), N1 computes the approximate solution of nonlinear

problem (1.1) with an arbitrary Lipschitz constant by solving of the nonlinear dis-
crete system (5.5) on each subinterval

1. Choose K satisfying (5.9) and N1, and set τ = 1/K, t0 = 0, y0 = u0.
2. For i := 1 step 1 to K do
2.1. Set ti = ti−1 + τ and find the approximate solution yi,j , j = 1, 2, ..., N ,

of problem (1.1) on the Chebyshev-Gauss-Lobatto grid (5.2) covering the interval
[ti−1, ti] by algorithm (5.5) using yi−1 as the initial value.

2.2. Set yi = yi,N .
Now, let us analyze the error zk,j = u(tk,j − yk,j) = vk,j − yk,j of this algorithm.

We have the representation

zk,j = ψk,j +
3∑

p=0

ψ
(p)
k,j ,(5.6)

where

ψk,j = e
−Ã(xj,N+1)
N1

zk−1,

ψ
(0)
k,j = [e−Ã(xj,N+1) − e

−Ã(xj,N+1)
N1

]uk−1,

ψ
(1)
k,j =

∫ xj,N

−1

[e−Ã(xj,N−η) − e
−Ã(xj,N−η)
N1

]f̃(η, vk(η))dη,

ψ
(2)
k,j =

∫ xj,N

−1

e
−Ã(xj,N−η)
N1

[f̃(η, vk(η)) −
N∑

l=0

f̃(xl,N , vk,l)Ll,N (η)]dη,

ψ
(3)
k,j =

∫ xj,N

−1

e
−Ã(xj,N−η)
N1

N∑
l=0

[f̃(xl,N , vk,l) − f̃(xl,N , yk,l)]Ll,N (η)dη.

(5.7)
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Under the same assumptions and analogously to (4.5), (4.8), (4.14), (4.30) we obtain
the following estimates:

‖ψk,j‖ ≤ c

αk
‖Ãαkzk−1‖,

‖ψ(0)
k,j‖ ≤ c

αk
exp

(
−
√

πdαk

2
(N1 + 1)

)
‖Ãαkuk−1‖,

‖ψ(1)
k,j‖ ≤ c

αk
exp

(
−
√

πdαk

2
(N1 + 1)

)∫ 1

−1

‖Ãαk f̃(t, vk(t))‖dt,

‖ψ(2)
k,j‖ ≤ c

αk
ln Nρ−N sup

z∈Dρk

‖Ãαk f̃(z, vk(z))‖,

‖ψ(3)
k,j‖ ≤ c∗

αk

Lτ

2
|||�zk|||,

(5.8)

where αk are some positive numbers, Dρk
are the analyticity ellipses for

Ãαk f̃(z, vk(z)) and |||�zk||| = max
1≤j≤N

‖zk,j‖. Choosing τ = 1/K such that

c∗

αk

Lτ

2
< 1(5.9)

we obtain from (5.6), (5.8)

|||�zk||| = max
1≤j≤N

‖zk,j‖ ≤ c(τ/2)αk

αk − c∗Lτ/2

{
‖Aαkzk−1‖

+

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt + ‖Aαku(tk−1)‖
]

exp

(
−
√

πdαk

2
(N1 + 1)

)

+
τ

2
ln Nρ−N sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
}

,

k = 2, 3, ..., K,

tk(z) = tk−1
1 − z

2
+ tk

1 + z

2
.

(5.10)

Equalizing the exponents by setting N 

√

N1 (i.e. the number of the interpolation
points on each subinterval must be proportional to the square root of the number
of nodes in the Sinc approximation of the operator exponential) we obtain from
(5.10)

|||Aαk+1�zk||| ≤
c(τ/2)αk

αk − αk+1 − c∗Lτ/2

{
|‖Aαkzk−1|‖

+ lnN1e
−c1

√
N1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt + ‖Aαku(tk−1)‖

+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]}

,

k = 2, 3, ..., K,

(5.11)
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where αk satisfy

αk − αk+1 − c∗Lτ/2 > 0,

0 < αk ≤ σ, k = 1, 2, ..., K.
(5.12)

Taking into account that z0 = 0 we have for k = 1 the estimate

|||Aα2�zk||| ≤
c(τ/2)α1

α1 − α2 − c∗Lτ/2
ln N1e

−c1
√

N1

[
‖Aα1u0‖ +

∫ t1

t0

‖Aα1f(t, u(t))‖dt

+
τ

2
sup

z∈Dρ1

‖Aαkf(tk(z), u(tk(z)))‖
]

.

(5.13)

Estimate (5.11) can be rewritten in the form

wk ≤ µk(gk + wk−1), k = 1, 2, ..., K,(5.14)

with

wk = |||Aα2�zk|||, µk =
c(τ/2)α1

αk − αk+1 − c∗Lτ/2
,

gk = lnN1e
−c1

√
N1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt + ‖Aαku(tk−1)‖

+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
](5.15)

which yields

wk ≤ µk(gk + wk−1), k = 1, 2, ..., K,(5.16)

and further recursively

wk ≤ µkgk + µk−1µkgk−1 + · · · + µ1µ2 · · ·µkg1.(5.17)

Conditions (5.12) imply

0 < αk+1 < α1 − c∗Lkτ/2 > 0, k = 1, 2, ..., K.(5.18)

Let us choose α1 = σ, ε ∈ (0, σ−c∗L/2
c∗L ) and

αk+1 = σ −
(

1
2

+ ε

)
c∗Lkτ, k = 1, 2, ..., K.(5.19)

Then we have

ρk =
c(τ/2)αk

εc∗Lτ
=

c(τ/2)αk−1

2εc∗L
<

c

2εc∗L
(τ/2)σ−(0.5+ε)c∗L = q(5.20)

and (5.17) implies

(5.21) max
1≤k≤K

wk ≤ max{qK , q}
K∑

p=1

gp
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or

max
1≤k≤K

|||Aα2�zk|||

≤ max{qK , q} ln N1e
−c1

√
N1

K∑
k=1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt + ‖Aαku(tk−1)‖

+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]

.

(5.22)

Thus, we have proven the following second main result of this paper concerning
the rate of convergence of Algorithm A2.

Theorem 5.1. Let A be a densely defined closed strongly positive linear operator
with the domain D(A) in a Banach space X and let the assumptions (i), (ii),
(iii) hold. If the solution of the nonlinear problem (1.1) belongs to the domain
D(Aσ) with σ > c∗L/2, then Algorithm A2 possesses a uniform with respect to t
exponential convergence rate with estimate (5.22), provided that N 


√
N1 and the

chosen number of subintervals K satisfies (5.9).

6. Implementation of the algorithm

Algorithm (3.18) represents a nonlinear system of algebraic equations which can
be solved by the fixed point iteration

y
(m+1)
j =

h

2πi

N1∑
k=−N1

Fh(xj,N , kh)

+
h

4πi

∫ xj

−1

N1∑
k=−N1

FA(ξ, xj − η)PN−1(η; f(·, y(m)))dη,

j = 1, ..., N, m = 0, 1, ....

(6.1)

Since the operator A is contractive we obtain the following inequality:

(6.2) |‖y(m+1)
j − y

(m)
j |‖ ≤ Lc∗|‖y(m)

j − y
(m−1)
j |‖

which justifies the convergence of the fixed point iteration (6.1) with the speed of
a geometric progression with the denominator Lc∗ < 1, provided the assumptions
of Theorem 4.4 hold.

Let us estimate the asymptotical computational costs of our method and a pos-
sible alternative polynomially convergent method (e.g. step-by-step implicit Euler
method) in order to arrive at a given tolerance ε. Assuming the time step τ and
the spatial step h in the Euler scheme to be equal we have asymptotically to make
t∗

ε steps in order to arrive at a tolerance ε at a given fixed point t = t∗. At each
step the nonlinear equation τf(tk+1, yk+1) − (τAyk+1 + I) = yk should be solved,
where yk is an approximation for u(tk). Assuming the computational costs for
the solution of this nonlinear equation to be M we arrive at the total computa-
tional costs for the Euler method TE 
 t∗M/ε. From the asymptotical relation
ln N1e

−c
√

N1 < e−c1
√

N1 
 ε we obtain that in our algorithm N 

√

N1 
 ln (1/ε).
It is natural to assume that the computational costs for the numerical solution of
the nonlinear equation (6.1) (or (3.19)) are not greater than NM 


√
N1M . Then

the total costs of our algorithm are TO 
 M ln (1/ε) � TE for ε small enough.
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Example 6.1. Let us consider the nonlinear initial value problem

u′(t) + u(t) = µe−2t − µ[u(t)]2, t ∈ (−1, 1],

u(−1) = e
(6.3)

with the exact solution u(t) = e−t (independent of µ). The equivalent Volterra
integral equation is

(6.4) u(t) = ϕ(t) − µ

∫ t

−1

e−(t−s)u2(s)ds,

where

(6.5) ϕ(t) = e−t + µ[e1−t − e−2t].

Algorithm (3.18) combined with the fixed point iteration takes in this case the form

y
(m+1)
j = ϕj − µ

N∑
p=1

αp,j [y(m)
p ]2,

y
(0)
j = 1/2, j = 1, ..., N, m = 0, 1, ...,

(6.6)

where

αp,j = e−xj,N

∫ xj,N

−1

Lp,N−1(s)esds,

yj = y(xj,N ), ϕj = ϕ(xj,N ).
(6.7)

The algorithm was implemented in Maple 8 (Digits=30) for µ = 1/4 where
integrals (6.7) were computed analytically. We denote by It the number of iterations
necessary to satisfy the interruption criterium |y(m+1)

J,N − y
(m)
J,N | < e−N · 10−2 and

accept y
(It)
j = y

(m+1)
J,N as the approximate solution. The error is computed as

εN = ‖u − y‖N,∞ = max1≤j≤N |u(xj,N ) − y
(It)
j |. The numerical results are given

by Table 2 and confirm our theory.

Table 2. The error of algorithm (3.18) for problem (6.3).

N εN It
2 0.129406 6
4 0.626486 e-2 8
8 0.181353 e-5 9
16 0.162597 e-14 16
32 0.110000 e-28 26

Example 6.2. Let us consider the problem
∂u

∂t
+ Au = f(t, u(t)),

u(−1) = u0

(6.8)

with the linear operator A given by

D(A) = {w(x) ∈ H2(0, 1) : w′(0) = 0, w′(1) = 0},
Av = −w′′ ∀w ∈ D(A),

(6.9)
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with the nonlinear operator f given by

(6.10) f(t, u) = −2tu2

and with the initial condition given by

(6.11) u0 = u(−1, x) = 1/2.

Since the numerical algorithm above supposes that the operator coefficient is strong-
ly positive, we shift its spectrum by the variables transform u(t, x) = ed2tv(t, x) with
a real number d. Then we obtain the problem

∂v

∂t
+ Adv = fd(t, v(t)),

v(−1) = v0

(6.12)

with the linear operator Ad given by

D(Ad) = D(A),

Adw = Aw + d2w ∀w ∈ D(Ad),
(6.13)

with the nonlinear operator fd given by

(6.14) fd(t, v) = −2ted2tv2

and with the initial condition

(6.15) v0 = v(−1, x) = ed2
/2.

It is easy to check that the exact solution of this problem is

(6.16) v(t, x) = e−d2t/(1 + t2).

The equivalent Volterra integral equation for v has the form

(6.17) v(t, x) =
1
2
e−Ad(t+1)ed2 − 2

∫ t

−1

e−Ad(t−s)sed2s[v(s, ·)]2ds.

Returning to the unknown function u the integral equation takes the form

(6.18) u(t, x) =
1
2
e−Ad(t+1)ed2(t+1) − 2

∫ t

−1

e−Ad(t−s)se−d2s[u(s, ·)]2ds.

Our algorithm was implemented in Maple with numerical results given by Table
3 where εN = max1≤j≤N εj,N , εj,k,N = |u(xj,N , kh) − yj,k|, j = 1, ..., N, k =
−N1, ..., N1. The numerical results are in good agreement with Theorem 4.4.

Table 3. The error of algorithm (3.18) for problem (6.3).

N εN It
4 0.8 e-1 12
8 0.7 e-3 10
16 0.5 e-6 11
32 0.3 e-12 12
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Example 6.3. This example deals with the two-dimensional nonlinear problem

∂u

∂t
+ Au = f(t, u(t)),

u(0) = u0

(6.19)

where

D(A) = {w(x, y) ∈ H2(Ω) : w|∂Ω = 0},
Av = −∆v ∀v ∈ D(A),

Ω = [0, 1] × [0, 1]

(6.20)

with the nonlinear operator f given by

(6.21) f(t, u) = −u3 + e−6π2t sin3 πx sin3 πy

and with the initial condition given by

(6.22) u0 = u(0, x, y) = sin πx sin πy.

The exact solution is given by u = e−2π2t sin πx sin πy. Algorithm (3.18) with
N =

√
N1 Chebyshev-Gauss-Lobatto nodes combined with the fixed point iteration

provides the error which is presented in Table 4.

Table 4. The error εN of algorithm (3.18) for problem (6.19)–(6.22).

N εN It
4 .3413e-6 12
8 .1761e-6 10
16 .8846e-7 14
32 .5441e-8 14

Example 6.4. Let us consider again the nonlinear initial value problem (6.3) and
apply the Algorithm A2 for various values of the Lipschitz constant 2µ. Inequality
(4.47) guarantees the convergence of algorithm (3.18) combined with the fixed point
iteration for µ < 0.4596747673. Numerical experiments indicate the convergence
also for µ > 0.4596747673, but beginning with µ ≈ 1 the process becomes divergent
and Algorithm A2 should be applied. The corresponding results for various µ are
presented in Table 5.

Table 5. The results of Algorithm A2 for problem (6.3) with
various values of the Lipschitz constant µ.

µ K It
0.9 1 22
1 2 20
10 32 20
20 50 25
50 128 25
100 256 24
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Here the degree of the interpolation polynomial is N = 16, K is the number of
subintervals of the whole interval [−1; 1], It denotes the number of the iterations
in order to arrive at the accuracy exp(−N) ∗ 0.01.
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