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HP A-PRIORI ERROR ESTIMATES FOR A NON-DISSIPATIVE
SPECTRAL DISCONTINUOUS GALERKIN METHOD TO SOLVE

THE MAXWELL EQUATIONS IN THE TIME DOMAIN

S. PERNET AND X. FERRIERES

Abstract. In this paper, we present the hp-convergence analysis of a non-
dissipative high-order discontinuous Galerkin method on unstructured hexa-
hedral meshes using a mass-lumping technique to solve the time-dependent
Maxwell equations. In particular, we underline the spectral convergence of the
method (in the sense that when the solutions and the data are very smooth,
the discretization is of unlimited order). Moreover, we see that the choice
of a non-standard approximate space (for a discontinuous formulation) with
the absence of dissipation can imply a loss of spatial convergence. Finally we
present a numerical result which seems to confirm this property.

1. Introduction

The most widely used time domain method for solving Maxwell equations is
the Finite Difference Time Domain method (FD-TD) based on the well known Yee
scheme [5], [6]. This method uses an orthogonal Cartesian grid and is based on a
centered difference approximation in space and a leap-frog approximation in time.
That provides a second order accurate scheme. However the FD-TD method suffers
from a certain number of drawbacks. For example, to treat curved objects, the
staircase approximation of the boundary generates parasitic diffraction phenomena
which can seriously damage the accuracy of the solution [7].

Scientists and engineers have tried to develop several efficient methods which
make it possible to take into account the complex shapes of the objects [25], [9].
Moreover, the growing need to solve accurately propagating electromagnetic waves
over many wavelengths has forced them to develop high-order or spectral methods
[27], [8].

Their first choice has naturally turned to the Finite Element Method (FEM)
which is a powerful tool to develop new numerical techniques [26]. One of the
difficulties in using an FEM in the Maxwell types of problems is the construction of a
finite dimension subspace of the continuous space H(curl, Ω). Indeed, the tangential
components of a function belonging to H(curl, Ω) are continuous across any surface,
but the normal components of the same function may be discontinuous. It is well
know that the use of classical Lagrange finite elements of the space [H1(Ω)]3 leads to
spurious solutions. The appropriate finite element space was introduced by Nedelec
in the 1980s [21], [22]. Unfortunately, the classical version of the edge finite elements
leads to a high computational cost since a matrix inversion is needed at each time

Received by the editor June 20, 2005 and, in revised form, June 4, 2006.
2000 Mathematics Subject Classification. Primary 35B45; Secondary 65M12.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1801



1802 S. PERNET AND X. FERRIERES

step. This drawback becomes more and more important when the order of the
approximation increases. The mass-lumping technique is used in order to use this
type of method in transient problems. One of the most efficient methods for solving
the Maxwell equations was developed by Cohen and Monk in [23]. In this method,
the use of the Gauss-Lobatto quadrature formulae yields a block diagonal mass
matrix which allows one to obtain an explicit scheme for all polynomial orders of
approximation.

The second choice is the use of Discontinuous Galerkin Methods (DGM). These
methods were born in the first half of the Seventies throughout the work of Reed
and Hill [18] on the scalar neutron transport equation. The first mathematical
analysis was carried out by Lesaint and Raviart in 1974 [19]. One of the basic ideas
came from certain authors who weakly imposed the Dirichlet boundary condition
in the FEMs instead of taking it into account directly in functional spaces. Then
they decided to use this technique not only on the boundary of the computational
domain but directly on the boundary of each element of the mesh in order to
restore certain continuities of the solution of the studied problem (for example
tangential, normal continuity, etc.). Following these first studies, many DGMs
were developed and analyzed by many scientists in order to solve a large variety
of problems (hyperbolic, parabolic, elliptic, etc.). An exhaustive review of these
methods since their beginning is presented in [14]. However, one will note that few
papers deal with the resolution of the Maxwell equations. In fact the use of this
type of method to solve electromagnetism problems is relatively recent. For the
frequency domain, one can quote the works of [17], [16] and for the time domain,
one can quote the works of [24] (space-time discontinuous approximation), [12]
(efficient local divergence-free basis functions), [15] (refinements on cartesian grid),
[8] (very efficient spectral discontinuous spatial approximation with low storage
Runge-Kutta scheme for time approximation : high order RKDG scheme). One
can notice that before the use of these high-order methods, Finite Volume methods
(that can be viewed as low order DG schemes) were used to solve the Maxwell
equations. These methods suffer from the too important presence of dissipation
[10] or dispersion [11] which makes their use inaccurate in problems of big size in
terms of wavelength.

The DGM have the following advantages:

• arbitrary order which is chosen according to the precision on the desired
exact solution.

• methods easily parallelisable: discontinuous elements, mass matrices which
are diagonal per blocks (= number of degrees of freedom in the cell).

• to treat complicated geometries and simple ways to treat the boundary
conditions.

• adaptive strategies: space refinements natural (without taking account of
the continuities as in finite elements), order of approximation different from
one cell to the others.

Moreover, there are two approaches in implementing the DGMs, namely, the h-
version and the p-version. The h-version allows the mesh size to be decreased to
achieve convergence at a rate of the employed polynomial basis. The alternative p-
version allows the order of polynomials to be increased with the sizes of the elements
kept at an initial triangulation. A hybrid hp-version can also be considered. This
paper is devoted to the study of the convergence study of this type of method.
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The outline of the paper is as follows. In section 2, we describe the discontinuous
Galerkin formulation that we have chosen to solve the Maxwell equations. In section
3, we justify the choice of an H1-type projector to carry out our analysis and we
derive some hp-projection errors for this one. In section 4, first we determine the
a-priori error estimates of the DGM for the spatial semi-discrete approximation
without numerical integration; second, we study the effect of the use of the Gauss
quadrature rule to compute the integrals on the previous error estimates. Finally,
in section 5, a numerical example which confirms the theoretical analysis is given.

2. Presentation of the discontinuous Galerkin method

2.1. Time-dependent Maxwell’s equations. Let Ω be a bounded open subset
of R

3 whose boundary is ∂Ω and n denotes the unit outward normal to Ω. Let
ε(x) , µ(x) and σ(x) denote, respectively, the permittivity, the permeability and
the conductivity tensors of the medium.

We consider the problem described by the Maxwell equations: Find (E,H) : Ω×
]0, T [→ R

3 × R
3 such that:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂E
∂t

−∇× H + σE + Js = 0 in Ω,

µ
∂H
∂t

+ ∇× E = 0 in Ω,

E× n(x) = 0 on ∂Ω,

E(x, 0) = E0(x) and H(x, 0) = H0(x) in Ω,

where E, H denote the electric and magnetic field intensities, Js specifies the ap-
plied current and E0, H0 are the initial conditions.

We assume that ε, µ, σ ∈ [L∞(Ω)]3×3 are symmetric definite positive matrices
and ∃C1, C2 > 0 such that:

∀ξ ∈ R
3 : C1|ξ|2 ≤ εξ.ξ ≤ C2|ξ|2, C1|ξ|2 ≤ µξ.ξ ≤ C2|ξ|2, C1|ξ|2 ≤ σξ.ξ ≤ C2|ξ|2.

Moreover if we assume Js ∈ C0(0, T ; [L2(Ω)]3), we have the existence and the
uniqueness of the solution (E,H) ∈ [C1(0, T ; [L2(Ω)]3) ∩ C0(0, T ; H0(curl, Ω))]2

[3].

2.2. Discontinuous formulation. We assume that the computational domain,
Ω, is split into a set of cells, Th such that Ω =

⋃Ne

i=1 Ki, where Ki ∈ Th, K̇i ∩ K̇j =
∅, ∀i 	= j and Ki is a hexahedron. We denote the set of faces of Th by Fh = F i

h∪F b
h

where F i
h (Γ ∈ F i

h, Γ = K ′∩K) and F b
h (Γ ∈ F b

h, Γ = K ∩∂Ω) are the sets of the
interior and boundary faces. To each element K ∈ Th, we associate the outward
unit normal nK .

For a real s ≥ 0, we define the classical broken space:

(2.2) Hs(Th) = {v ∈ L2(Ω) : ∀K ∈ Th, v|K ∈ Hs(K)}.
Hs(Th) is equipped with the natural norm: Let v ∈ Hs(Th),

(2.3) ‖v‖s,h =
( ∑

K∈Th

‖v‖2
s,K

) 1
2
,

where ‖.‖s,K is the usual Sobolev norm of Hs on K.
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For s > 1
2 , we define the jump of a function v ∈ Hs(Th):

(2.4)
∀Γ ∈ F i

h such that Γ = K ′ ∩ K, [[v]]KΓ = (v|K′)|Γ − (v|K)|Γ

∀Γ ∈ F b
h such that Γ ⊂ ∂K, [[v]]KΓ = −(v|K)|Γ.

We denote Hs(Th) as the vectorial broken space [Hs(Th)]3 and its norm is defined
by

(2.5) ‖v‖s,h =
( 3∑

i=1

‖vi‖2
s,h

) 1
2

where v = (v1, v2, v3) ∈ Hs(Th).
We rewrite the problem (2.1) under the following discontinuous form:
Find (E(·, t),H(·, t)) ∈ H1(Th) × H1(Th) such that, ∀K ∈ Th and ∀φ1, φ2 ∈

H1(Th),

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
K

εEK · φ1Kdx −
∫

K

∇× HK · φ1Kdx

+
∫

K

σEK · φ1Kdx +
∫

K

Js · φ1Kdx

=
∫

∂K

α[[nK × (E× nK)]]K∂K · φ1Kdσ +
∫

∂K

β[[H× nK ]]K∂K · φ1Kdσ

d

dt

∫
K

µHK · φ2Kdx +
∫

K

∇× EK · φ2Kdx

=
∫

∂K

γ[[E × nK ]]K∂K · φ2Kdσ +
∫

∂K

δ[[nK × (H× nK)]]K∂K · φ2Kdσ

where EK = E|K , HK = H|K , φjK = φj|K , dσ is the surface measurement associ-
ated with ∂K and α, β, γ, δ are four reals that could be different from one face to
another.

We get a non-dissipative formulation. For that we choose the parameters :
• ∀Γ ∈ F i

h, α, δ = 0, β = −1
2 and γ = 1

2 ,
• ∀Γ ∈ F b

h, α, δ = 0, β = 0 and γ = 1.

Indeed, by using this choice, the classical electromagnetic energy E (t) =
∫

Ω

εE(t) ·

E(t)dx +
∫

Ω

µH(t) · H(t)dx is time-conserved, i.e. E (t) = E (0), ∀t.

2.3. Spatial approximation. Given a non-negative integer r and E ⊂ R
d, Qr(E)

is the space of polynomials of degree at most equal to r in each variable on E. Let
us introduce the standard unit cube K̂ = [0, 1]3. ∀K ∈ Th, FK : K̂ → K denotes
the trilinear mapping which associates the vertices of each element. (x̂1, x̂2, x̂3) are
the coordinates on the reference element and (x1, x2, x3) the coordinates on the
elements of the mesh. DFK and JK are the Jacobian matrix and its determinant
associated with the map FK .

We use the discontinuous finite element space:

(2.7) Uh = {vh ∈ L2(Ω) : ∀K ∈ Th, DF ∗
Kvh|KoFK ∈ [Qr(K̂)]3}

where r ∈ N.
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In (2.7), the Jacobian matrix is the essential ingredient to build a conform Hing-
curl approximation [21]. In our case, it allows us to reduce the storage of the
stiffness and the jump matrices [34]. We do not detail this point here because the
aim of this paper is only the study of the convergence of this approximation. For
more details on this point, we can see [34] or [4].

The first step to define the basis functions of Uh is to construct a vector valued
polynomial basis of [Qr]3, ∀K ∈ Th. We denote by (ξ̂l, ω̂l)r+1

l=1 the Gauss quadrature
rule on [0, 1] where (ξ̂l)r+1

l=1 are the quadrature points and (ω̂l)r+1
l=1 are the associated

quadrature weights. The quadrature points and weights of the corresponding rules
on K̂ are the cartesian product of 1D points {ξ̂l,m,n = (ξ̂l, ξ̂m, ξ̂n) : ∀1 ≤ l, m, n ≤
r + 1} and the set {ω̂l,m,n = ω̂lω̂mω̂n : ∀1 ≤ l, m, n ≤ r + 1} respectively. Let
(ϕ̂l)r+1

l=1 be the set of Lagrange polynomials associated with the set of points (ξ̂l)r+1
l=1 .

We have ϕ̂l(ξ̂j) = δl,j and (ϕ̂l)r+1
l=1 is a set of basis functions of Pr([0, 1]) =

Qr([0, 1]).
Now, we define the basis functions of [Qr(K̂)]3 in the following way:

(2.8) ϕi
l,m,n(x̂1, x̂2, x̂3) = ϕ̂l(x̂1)ϕ̂m(x̂2)ϕ̂n(x̂3)ei

where i = 1, 2 or 3 and (ei)i=1,2,3 is the canonical basis of R
3.

We have ϕi
l,m,n(ξ̂l′,m′,n′) = δl,l′δm,m′δl,l′�es. The choice of the basis functions at

the quadrature points allows us to mass-lump the mass matrix [4].
Let Bh be a set of basis functions of Uh. We define an element ψh ∈ Bh in the

following way: ψh ∈ Bh ⇔ supp(ψh) = K ∈ Th, ∃ϕi
l,m,n such that

ψhoFK = DF ∗−1
K ϕi

l,m,n.

Let vh ∈ Uh. So, we have the decomposition:

(2.9) ∀K ∈ Th, vh|KoFK =
3∑

i=1

r+1∑
l,m,n=1

vi
K,l,m,nDF ∗−1

K ϕi
l,m,n

where vi
K,l,m,n are the degrees of freedom of vh.

Finally, we obtain the following semi-discrete discontinuous Galerkin problem:
find (Eh(·, t),Hh(·, t)) ∈ Uh × Uh such that, ∀K ∈ Th and ∀φh1, φh2 ∈ Bh,

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫ G

K

εEhK · φh1Kdx −
∫ G

K

∇× HhK · φh1Kdx

+
∫ G

K

σEhK · φh1Kdx +
∫ G

K

Js · φh1Kdx

=
∫ G

∂K

β[[Hh × nK ]]K∂K · φh1Kdσ,

d

dt

∫ G

K

µHhK · φh2Kdx +
∫ G

K

∇× EhK · φh2Kdx

=
∫ G

∂K

γ[[Eh × nK ]]K∂K · φh2Kdσ

where
∫ G

K
and

∫ G

∂K
denote the integrals computed with the quadrature rule G after

a change of variables on the unit cube K̂.
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Remark 2.1. Recall that the orders of the Gauss quadrature rule is 2r + 1, i.e.
exact for [Qr(K̂)]3.

3. Study of a projector on the approximate space

In this part, we choose a projector on Uh and we carry out its hp-convergence
analysis. In particular, we prove some error estimates for this projector on a hexa-
hedral mesh.

3.1. Definitions and properties of meshes. We assume that all hexahedrons K
are convex in order to ensure the existence of the diffeomorphism FK ∈ [Q1(K̂)]3.
Now let us give some definitions and properties on the quadrilateral finite elements
(for more details see [1], [2]) and on the transformation FK : To characterize an
element K ∈ Th, we define:

(3.1)

hK = diameter of K,

σK =
hK

ρK
= regularity parameter

where ρK = ‖JF−1
K

‖
1
3
∞,K with JF−1

K
as the determinant of the Jacobian matrix of

F−1
K .

Remark 3.1. In two dimensions, we can give a geometric characterization of ρK

(see [33]). Indeed, in this case, ρK is the minimum of the diameters of the inscribed
circles in the four triangles being able to be built with the nodes of the quadrangle
K.

We note that

(3.2)

|FK |m,∞,K̂ = sup
x̂∈K̂

‖DmFK(x̂)‖Lm(R3,R3),

|F−1
K |m,∞,K = sup

x∈K
‖DmF−1

K (x)‖Lm(R3,R3)

where Lm(R3, R3) is the set of the m-linear applications of R
3 in R

3, DmFK(x̂)
and DmF−1

K (x) are respectively the mth derivatives of FK and F−1
K at the points

x̂ and x. We will use the following estimates given in [2]:

(3.3)

|FK |1,∞,K̂ ≤ ChK , ‖JK‖∞,K̂ ≤ Ch3
K ,

|F−1
K |1,∞,K ≤ C

h2
K

ρ3
K

, ‖JF−1
K

‖∞,K = ρ−3
K ,

|FK |2,∞,K̂ ≤ ChK , |FK |2,∞,K̂ ≤ Ch2
K if K is almost a parallelepiped

where C > 0 is independent of K and r.

Remark 3.2. By the expression “almost a parallelepiped”, one wants to say a small
deformation of a parallelepipedic cell. In this case, the second derivatives of FK are
zero.
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Remark 3.3. We have by definition

(3.4)
D(F−1

K )(x) =
(
DFK(F−1(x))

)−1
,

JF−1
K

oFK =
1

JK

where D(F−1
K ) is the Jacobian matrix of F−1

K .

Using the properties (3.3), it is easy to deduce the following proposition:

Proposition 1. We have the following estimates: ∀x̂ ∈ K̂,

(3.5)

λ((DFKDF ∗
K)(x̂)) ≤ Ch2

K ,

λ((DF−1
K DF ∗−1

K )(x̂)) ≤ C
h4

K

ρ6
K

where λ(A) belongs to the spectrum of A and C > 0 is independent of K and r.

Proof. Let x̂ ∈ K̂. As (DFKDF ∗
K)(x̂) and (DF−1

K DF ∗−1
K )(x̂) are symmetrical ma-

trices, we can write:

(3.6)
ρ((DFKDF ∗

K)(x̂)) = sup
v∈R∗3

‖(DFKDF ∗
K)(x̂)v‖

‖v‖ = ‖(DFKDF ∗
K)(x̂)‖

≤ ‖(DFK)(x̂)‖‖(DF ∗
K)(x̂)‖ ≤ |FK |2

1,∞,K̂
;

ρ(A) is the spectral radius of A. Using (3.3), we immediately obtain the first
inequality of (3.5). A similar reasoning allows us to prove the second estimate of
(3.5). �

Finally, we define the regularity of a mesh:

Definition 3.4. A family Th of triangulation of Ω is known as regular when h
tends toward 0, if there exists a number σ > 0, independent of h, such that:

(3.7) σK ≤ σ, ∀K ∈ Th.

3.2. Choice of a projector. When deriving error estimates, an important point is
the choice of a “good” projector on the approximate space used for discretization.
Indeed, the use of an inappropriate projector can lead to sub-optimal estimates
which give any interesting information about the numerical scheme. This part
aims at justifying our choice.

For our DG scheme, the first idea is to use an L2 projector. In particular, one
can use the projector defined in the following way:

First, we can split the approximate space Uh in the following way:

(3.8) Uh =
⊕

K∈Th

UK

where UK = {v ∈ L2(K) : DF ∗
KvoFK ∈ [Qr(K̂)]3}.

Then, in the first step, we define the L2 projector π̂0
r on [Qr(K̂)]3:

Definition 3.5 (Projector L2). Let v̂ ∈ L2(K̂) and r ≥ 0. We define the projector
L2, π̂0

r v̂, of v̂ on [Qr(K̂)]3 by : ∀ϕ̂ ∈ [Qr(K̂)]3, we have

(3.9)
∫

K̂

π̂0
r v̂ · ϕ̂dx̂ =

∫
K̂

v̂ · ϕ̂dx̂.
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In the second step, we come back to UK by defining the projector π0
K .

Definition 3.6 (Projector on UK). Let v ∈ L2(K). We define the projection π0
Kv

of v on UK by

(3.10)
(
π0

Kv
)
oFK = DF ∗−1

K π̂0
r v̂

where v̂ = DF ∗
Kv ◦ FK .

Finally we define the projection operator on Uh.

Definition 3.7 (Projector on Uh). Let v ∈ L2(Ω). We define the projection π0
hv

of v on Uh by: For K ∈ Th,

(3.11)
(
π0

hv
)
|K = π0

Kv|K .

When examining the DG scheme in more detail, one sees that it is necessary to
know error estimates of the first order derivatives of the projector used (because
of the presence of the rational terms). So, an H1 type projector on Uh can be a
possibility for this study. In particular, we have considered the projector defined
as:

First, we define the H1 projector π̂1
r on [Qr(K̂)]3.

Definition 3.8 (Projector H1). Let v̂ ∈ H1(K̂) and r ≥ 0. We define the H1

projection, π̂1
r v̂, of v̂ on [Qr(K̂)]3 by ∀ϕ̂ ∈ [Qr(K̂)]3, we have

(3.12)
∫

K̂

(
π̂1

r v̂ − v̂
)
· ϕ̂dx̂ +

3∑
k=1

∫
K̂

∂

∂x̂k

(
π̂1

r v̂ − v̂
)
· ∂

∂x̂k
ϕ̂dx̂ = 0.

Remark 3.9. In (3.12),
∂w
∂x̂k

means
(∂w1

∂x̂k
,
∂w2

∂x̂k
,
∂w3

∂x̂k

)∗
.

Then, we come back to UK . Let K ∈ Th and v ∈ Hs(K) with s ≥ 1. We define
the projector π1

K on UK by

(3.13)
(
π1

Kv
)
oFK = DF ∗−1

K

(
π̂1

r v̂
)

where v̂ = DF ∗
K(voFK).

Finally we define the projection operator on Uh.

Definition 3.10 (Projector on Uh). Let v ∈ L2(Ω). We define the projection π1
hv

of v on Uh by: For K ∈ Th,

(3.14)
(
π1

hv
)
|K = π1

Kv|K .

We must be able to discriminate against these two projectors. The following sub-
section (“hp-projection errors”) shows that the study identically applies to the two
projectors and consequently gives the same interpolation error estimates. Moreover,
section 4 shows that the two projectors lead to the same h convergence rate. How-
ever, the study of the spectral or of the hp convergence shows that these projectors
do not give the same result:

Using theorem 57 of [31] as well as a tensorisation argument (i.e. π̂0
r = π̂0

r,x̂3
oπ̂0

r,x̂2

oπ̂0
r,x̂1

), we obtain the projection errors for π̂0
r :

Theorem 3.11. ∀û ∈ Hp(K̂), it exists a constant C such that

(3.15) ‖û − π̂0
r û‖q,K̂ ≤ Crσ(p,q)‖û‖p,K̂
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where

(3.16) σ(p, q) =

⎧⎪⎨
⎪⎩

3
2
q − p, 0 ≤ q ≤ 1,

2q − p − 1
2
q, q ≥ 1,

and 0 ≤ q ≤ p.

As already mentioned, we need the H1 projection error to estimate the error of
the GD scheme. The previous theorem gives us:

(3.17) ‖û − π̂0
r û‖1,K̂ ≤ Cr

3
2−p‖û‖p,K̂ .

(3.17) shows that we do not have the optimality for the H1 norm.
However, for π̂1

r , we can find in [30] the following estimate: ∀t, s ∈ R verifying
0 ≤ t ≤ 1 ≤ s, then for v̂ ∈ Hs(K̂), there exists a constant C > 0 independent of r
such that:

(3.18) ‖v̂ − π̂1
r v̂‖t,K̂ ≤ Crt−s‖v̂‖s,K̂ .

In particular, we will use the two estimates: (t = 0, 1 in (3.18)).

Proposition 2. For v̂ ∈ Hs(K̂), s ≥ 1,

(3.19)

‖v̂ − π̂1
r v̂‖0,K̂ ≤ C

rs
‖v̂‖s,K̂,

‖v̂ − π̂1
r v̂‖1,K̂ ≤ C

rs−1
‖v̂‖s,K̂

where C > 0 is a constant independent of r.

In this case, we obtain the optimal projection errors (1/rs and 1/rs−1 for the L2

and the H1 norms respectively). In conclusion, we have decided to use the projector
π1

h to analyze the convergence properties of the DG scheme in the hp-version.

3.3. hp-projection errors. To study the projection error introduced by π̂1
r , we

use the bracket semi-norm: Let u ∈ Wm,p(K̂),

(3.20) [u]2
m,p,K̂

=
3∑

i=1

‖∂mu

∂x̂m
i

‖2
p,K̂

.

and the Bramble-Hilbert lemma adapted to Qr (see [33], [1], [2]):

Lemma 3.12 (Bramble-Hilbert). Let p, q be two numbers such that 1 ≤ p, q ≤ ∞
and let r, m be two integers such that r ≥ 0 and m ≤ r + 1,

(3.21) W r+1,p(K̂) ↪→ Wm,q(K̂).

Let Π ∈ L (W r+1,p(K̂); Wm,q(K̂)) be an operator which verifies

(3.22) ∀p ∈ Qr, Πp = p.

Then there exists C dependent on K̂ and r such that

(3.23) ∀v ∈ W r+1,p(K̂), |v − Πv|m,q,K̂ ≤ C[v]r+1,p,K̂ .
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In (3.23), | · |m,q,K̂ is the semi-norm defined by: Let v ∈ Wm,q(K̂),

|v|m,q,K̂ =

( ∑
|α|=m

∫
K̂

| ∂
|α|

∂x̂α
v|qdx̂

) 1
q

.

The Bramble-Hilbert lemma applied to the operator π̂1
r , immediately leads to:

Proposition 3. For r ≥ 0 and m ≤ r + 1, there exists C dependent on K̂ and r
such that:

(3.24) ∀v̂ ∈ Hr+1(K̂), |v̂ − π̂1
r v̂|m,K̂ ≤ C[v]r+1,K̂ .

In order to derive the hp-projection error estimates for π1
h, we must specify the

exact r-dependence of the constant C of (3.24). To do so, we come back to the
proof of the Bramble-Hilbert lemma but directly considering π1

h. The first step, to
prove this type of result, is to write [1]: ∀v̂ ∈ Hr+1(K̂),

(3.25)
|v̂ − π̂1

r v̂|m,K̂ ≤ ‖I − π̂1
r‖L (Hr+1(K̂),Hm(K̂)) inf

p̂∈[Qr(K̂)]3
‖v̂ + p‖r+1,K̂

≤ C1‖I − π̂1
r‖L (Hr+1(K̂),Hm(K̂))[v]r+1,K̂

where C1 is independent of r.
By using (3.18), (3.25) we immediately get:

(3.26) |v̂ − π̂1
r v̂|m,K̂ ≤ C2(K̂)

rr+1−m
[v]r+1,K̂ , 0 ≤ m ≤ r + 1.

In order to determine the projector errors, we will need the following estimate :

Lemma 3.13. Let K ∈ Th and v ∈ Wm,p(K). We have the estimate:

(3.27) [v ◦ FK ]m,p,K̂ ≤ C
hm

K

ρ
3
p

K

|v|m,p,K .

If Th belongs to a regular family of triangulation, we give:

(3.28) [v ◦ FK ]m,p,K̂ ≤ Cσ
3
p h

m− 3
p

K |v|m,p,K

where C > 0 independent of K and r.

Proof. Note FK = (F 1
K , F 2

K , F 3
K). To prove this lemma, we use the property:

(3.29) ∂2
x̂2

k
F i

K = 0 for i = 1, 2, 3,

because F i
K ∈ Q1(K̂). �

Let v ∈ Hr+1(K), r ≥ 0.

Lemma 3.14. There exists C independent of K and r such that:

(3.30)

‖v − π1
Kv‖0,K ≤ C

h
1
2
K

rr+1
[v̂]r+1,K̂ ,

|v − π1
Kv|1,K ≤ C

h
1
2
Krr

[v̂]r+1,K̂ .
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Proof. We prove only the second inequality. It suffices to use the same process to
obtain the first. Write w = v − π1

Kv = (w1, w2, w3)∗ (∗ reads for the transposition
operator). We have

(3.31) |w|21,K =
3∑

i=1

3∑
l=1

∫
K̂

|JK ||(∂xl
wi)oFK |2dx̂

where the notation ∂xl
means

∂

∂xl
. By definition, we have w = DF ∗−1

K oF−1
K ŵoF−1

K

where ŵ = v̂ − π̂1
r v̂ and DF ∗

K writes:

(3.32) DF ∗
K =

⎛
⎝ ∂x̂1x1 ∂x̂1x2 ∂x̂1x3

∂x̂2x1 ∂x̂2x2 ∂x̂2x3

∂x̂3x1 ∂x̂3x2 ∂x̂3x3

⎞
⎠

where xi = F i
K(x̂) for i = 1, 2, 3.

Inverting this matrix with the help of the co-factors formula, we obtain:

DF ∗−1
K =

1

JK⎛
⎜⎜⎜⎜⎝

∂x̂2x2∂x̂3x3−∂x̂2x3∂x̂3x2 −∂x̂2x1∂x̂3x3 + ∂x̂2x3∂x̂3x1 ∂x̂2x1∂x̂3x2−∂x̂2x2∂x̂3x1

−∂x̂1x2∂x̂3x3 + ∂x̂1x3∂x̂3x2 ∂x̂1x1∂x̂3x3−∂x̂1x3∂x̂3x1 −∂x̂1x1∂x̂3x2 + ∂x̂1x2∂x̂3x1

∂x̂1x2∂x̂2x3−∂x̂1x3∂x̂2x2 −∂x̂1x1∂x̂2x3 + ∂x̂1x3∂x̂2x1 ∂x̂1x1∂x̂2x2−∂x̂1x2∂x̂2x1

⎞
⎟⎟⎟⎟⎠ .

Note that DF ∗−1
K =

1
JK

(mi,j)i,j=1,··· ,3, so we have wi =
3∑

j=1

mi,joF
−1
K

JKoF−1
K

ŵjoF
−1
K .

Now, we derive the last expression with respect to xl:
(3.33)

∂xlwi =

3∑
j=1

[∂xl(mi,joF
−1
K )JKoF−1

K − mi,joF
−1
K ∂xl(JKoF−1

K )

(JKoF−1
K )2

ŵjoF
−1
K

+
mi,joF

−1
K

JKoF−1
K

∂xl(ŵjoF
−1
K )

]

=

3∑
j=1

[ 3∑
k=1

(∂x̂kmi,j)oF
−1
K ∂xl x̂kJKoF−1

K − mi,joF
−1
K (∂x̂kJK)oF−1

K ∂xl x̂k

(JKoF−1
K )2

ŵjoF
−1
K

+
mi,joF

−1
K

JKoF−1
K

(∂x̂k ŵj)oF
−1
K ∂xl x̂k

]

Note that

(3.34)

T k,l
i,j =

(∂x̂k
mi,j)∂xl

x̂koFKJK − mi,j(∂x̂k
JK)∂xl

x̂koFK

(JK)2

T̃ k,l
i,j =

mi,j

JK
∂xl

x̂koFK
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so we can write:

(3.35) (∂xl
wi)oFK =

3∑
j,k=1

[
T k,l

i,j ŵj + T̃ k,l
i,j ∂x̂k

ŵj
]
.

The mesh regularity leads to:

(3.36)

|T k,l
i,j | ≤

C

h2
K

,

|T̃ k,l
i,j | ≤

C

h2
K

where C > 0 independent of K and r. Indeed, the definition of mi,j gives us
|mi,j | ≤ Ch2

K and |∂x̂k
mi,j | ≤ Ch2

K (keep in mind that xi = F i
K(x) for i ∈ [[1, 3]]).

Moreover, the estimates (3.3) imply |∂xl
x̂koFK | ≤ C/hK , |JK | ≤ Ch3

K , |∂x̂k
JK | ≤

Ch3
K and |JK | ≥ C ′h3

K . That allows us to obtain:

(3.37) |(∂xl
wi)oFK |2 ≤ C

h4
K

3∑
j,k=1

[
|ŵj |2 + |∂x̂k

ŵj |2
]
.

Return to our semi-norm: Using (3.37), (3.31) leads to

(3.38)

|w|21,K ≤ C
‖JK‖∞,K̂

h4
K

3∑
i=1

3∑
l=1

3∑
j,k=1

∫
K̂

[
|ŵj |2 + |∂x̂k

ŵj |2
]
dx̂

≤ C

hK
‖ŵ‖2

1,K̂
.

Finally (3.26) gives the lemma. �

The following step is to increase [v̂]m,K̂ by a power of hK and ‖v‖m,K .

Lemma 3.15. Let v ∈ Hm(K). We have the following estimate:

(3.39) [v̂]m,K̂ ≤ C
1∑

l=0

|FK |l+1,∞,K̂ [voFK ]m−l,K̂

where C > 0 independent of K and r.

Proof. We have v̂ = DF ∗
KvoFK and [v̂]2

m,K̂
=

3∑
i=1

3∑
j=1

∫
K̂

|∂
mv̂j

∂x̂m
i

|2dx̂. We can write

v̂j =
3∑

k=1

Jj,kvkoF where DF ∗
K = (Jj,k)j,k=1,··· ,3. The Leibniz formula leads to:

(3.40)
∂mv̂j

∂x̂m
i

=
3∑

k=1

m∑
l=0

(
l
m

)
∂l(Jj,k)

∂x̂l
i

∂m−l(vkoF )
∂x̂m−l

i

.
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For l ≥ 2, we have
∂l(Jj,k)

∂x̂l
i

= 0 (indeed FK ∈ [Q1(K̂)]3). That implies:

(3.41)

∫
K̂

|∂
mv̂j

∂x̂m
i

|2dx̂ ≤ C

3∑
k=1

1∑
l=0

|FK |2
l+1,∞,K̂

∫
K̂

|∂
m−l(vkoF )
∂x̂m−l

i

|2dx̂

≤ C
3∑

k=1

1∑
l=0

|FK |2
l+1,∞,K̂

[vkoFK ]2
m−l,K̂

.

So, we obtain the following result:

[v̂]2
m,K̂

≤ C
3∑

i=1

3∑
j=1

3∑
k=1

1∑
l=0

|FK |2
l+1,∞,K̂

[vkoFK ]2
m−l,K̂

≤ C

1∑
l=0

|FK |2
l+1,∞,K̂

[voFK ]2
m−l,K̂

. �
(3.42)

Finally, by grouping (3.30), (3.28) and (3.39) together, we obtain the following
error estimates:

Proposition 4. Let v ∈ Hr+1(K). Then there exists C independent of the cell K
and r such that:

(3.43)

‖v − π1
Kv‖0,K ≤ C

hr
K

rr+1

(
|v|r,K + hK |v|r+1,K

)
,

|v − π1
Kv|1,K ≤ C

hr−1
K

rr

(
|v|r,K + hK |v|r+1,K

)
.

Now, by using the interpolation Theorem 1.4 of [33], we extend the result to the
real exponents.

Proposition 5. Let v ∈ Hs+1(K), for 0 ≤ s ≤ r real and assume that 0 < hK ≤ 1.
Then there exists C independent of the cell K and r and such that:

(3.44)

‖v − π1
Kv‖0,K ≤ C

hs
K

rs+1
‖v‖s+1,K ,

|v − π1
Kv|1,K ≤ C

hs−1
K

rs
‖v‖s+1,K .

Proof. Let r1 < r2 be two positive integers and θ ∈ [0, 1]. Assume that π0
K ∈

L (Hr1+1(K), Hm(K)) ∩ L (Hr2+1(K), Hm(K)) for m = 0, 1. Then we have:

‖I − π1
K‖L (Hθr1+(1−θ)r2+1(K),Hm(K))

≤ C‖I − π1
K‖θ

L (Hr1+1(K),Hm(K))‖I − π1
K‖1−θ

L (Hr2+1(K),Hm(K)).

The inequalities (3.43) lead to:

‖I − π1
K‖L (Hr1+1(K),Hm(K)) ≤ C

hr1−m
K

rr1+1−m
,

‖I − π1
K‖L (Hr2+1(K),Hm(K)) ≤ C

hr2−m
K

rr2+1−m
.
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So we obtain:

‖I − π1
K‖L (Hθr1+(1−θ)r2+1(K),Hm(K)) ≤ C

h
θr1+(1−θ)r2−m
K

rθr1+(1−θ)r2+1−m
.

Finally, take r1 = 0, r2 = r and s = (1 − θ). We can write the inequality:

‖v − π1
Kv‖m,K ≤ ‖I − π1

K‖L (Hs+1(K),Hm(K))‖v‖s+1,K

≤ C
hs−m

K

rs+1−m
‖v‖s+1,K . �

Now, if we take v ∈ Hs(K) with s ≥ r + 1, we prove easily the error estimates:

(3.45)

‖v − π1
Kv‖0,K ≤ C

hr
K

rs
‖v‖s,K ,

|v − π1
Kv|1,K ≤ C

hr−1
K

rs−1
‖v‖s,K .

Finally, (3.43) and (3.45) lead to the global result: Let v ∈ Hs+1(K) with s ≥ 0:

(3.46)

‖v − π1
Kv‖0,K ≤ C

h
min(s,r)
K

rs+1
‖v‖s+1,K ,

|v − π1
Kv|1,K ≤ C

h
min(s−1,r−1)
K

rs
‖v‖s+1,K

where C is independent of the cell K and r.

4. A-priori error estimates for the spatial

semi-discrete approximation

In this part, we consider that all the integrals are computed in an exact way.
Let (E,H) and (Eh,Hh) be respectively the solutions of (2.1) and (2.10). Our goal
is to estimate ‖E − Eh‖0,Ω and ‖H− Hh‖0,Ω. For that, we introduce the energy
norm:

(4.1) ‖(E,H)‖2
∗ = ‖E‖2

0,Ω,ε + ‖H‖2
0,Ω,µ.

The norm (4.1) is more adapted to our estimations because it appears naturally in
the Maxwell equations. So, we prefer to estimate:

(4.2) ‖(E− Eh,H− Hh)‖∗ =
√
‖E− Eh‖2

0,Ω,ε + ‖H− Hh‖2
0,Ω,µ.

Introduce the projection of the exact solution (E,H) i.e. (π1
hE, π1

hH) (we assume
that E and H have the regularity necessary for the definition of projections in (4.2)):

(4.3)

‖(E− Eh,H− Hh)‖2
∗

= ‖E− π1
hE + π1

hE− Eh‖2
0,Ω,ε + ‖H− π1

hH + π1
hH− Hh‖2

0,Ω,µ

≤ ‖∆P
E‖2

0,Ω,ε + ‖∆I
E‖2

0,Ω,ε + 2‖∆P
E‖0,Ω,ε‖∆I

E‖0,Ω,ε

+‖∆P
H‖2

0,Ω,µ + ‖∆I
H‖2

0,Ω,µ + 2‖∆P
H‖0,Ω,µ‖∆I

H‖0,Ω,µ
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where ∆P
E = E− π1

hE (projection error) and ∆I
E = Eh − π1

hE (interpolation error).
We have the same thing for H. Using the inequality 2ab ≤ a2 + b2, (4.3) becomes:

(4.4) ‖(E− Eh,H− Hh)‖2
∗ ≤ 2(‖(∆P

E, ∆P
H)‖2

∗ + ‖
(
∆I

E, ∆I
H

)
‖2
∗).

To estimate the error introduced by the spatial approximation, we have to evaluate
‖(∆P

E, ∆P
H)‖∗ and ‖

(
∆I

E, ∆I
H

)
‖∗. The estimation of the first term does not pose any

problem, it is sufficient to use the projection errors of the previous section; on the
other hand, the second term requires more work. This will be done in three steps:
first we will set up the equations which will make it possible to evaluate this error,
then we will present two trace lemmas which will be used to estimate the surface
integrals and finally we will consecutively evaluate the interpolation error for the
study in h and r.

4.1. Orthogonal property. Introducing
(
π1

hE, π1
hH

)
in the semi-discrete DG sys-

tem (without numerical integration) and taking φ1h = ∆I
E, we obtain:

(4.5)

1

2

d

dt

(
∆I

E, ∆I
E

)
0,K,ε

= −
( ∂

∂t
π1

hE, ∆I
E

)
0,K,ε

+
(
∇× ∆I

H, ∆I
E

)
0,K

+
(
∇× π1

hH, ∆I
E

)
0,K

−
(
∆I

E, ∆I
E

)
0,K,σ

−
(
π1

hE, ∆I
E

)
0,K,σ

−
(
Js, ∆

I
E

)
0,K

+
(
β[[∆I

H × nK ]]K∂K , ∆I
E|K

)
0,∂K

+
(
β[[π1

hH × nK ]]K∂K , ∆I
E|K

)
0,∂K

.

It is easy to see that the exact solution verifies:

(4.6)

(
∂

∂t
∆P

E, ∆I
E)0,K,ε + (

∂

∂t
π1

hE, ∆I
E)0,K,ε − (∇× ∆P

H, ∆I
E)0,K

−(∇× π1
hH, ∆I

E)0,K + (∆P
E, ∆I

E)0,K,σ

+(π1
hE, ∆I

E)0,K,σ +
(
Js, ∆I

E

)
0,K

= 0.

Combine (4.5) and (4.6):

(4.7)

1
2

d

dt

(
∆I

E, ∆I
E

)
0,K,ε

= −
(
∆I

E, ∆I
E

)
0,K,σ

+ (
∂

∂t
∆P

E, ∆I
E)0,K,ε

+
(
∇× ∆I

H, ∆I
E

)
0,K

− (∇× ∆P
H, ∆I

E)0,K + (∆P
E, ∆I

E)0,K,σ

+
(
β[[∆I

H × nK ]]K∂K , ∆I
E|K

)
0,∂K

+
(
β[[π1

hH × nK ]]K∂K , ∆I
E|K

)
0,∂K

.

Applying the same reasoning for the H equation, we have:

(4.8)

1
2

d

dt

(
∆I

H, ∆I
H

)
0,K,µ

= (
∂

∂t
∆P

H, ∆I
H)0,K,µ −

(
∇× ∆I

E, ∆I
H

)
0,K

+(∇× ∆P
E, ∆I

H)0,K +
(
γ[[∆I

E × nK ]]K∂K , ∆I
H|K

)
0,∂K

+
(
γ[[π1

hE × nK ]]K∂K , ∆I
H|K

)
0,∂K

.

The Green formula gives:

(4.9) (∇× ∆I
H, ∆I

E)0,K = (∆I
H,∇× ∆I

E)0,K + (∆I
H|K , ∆I

E|K × nK)0,∂K .
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Adding (4.7) and (4.8), we obtain:

(4.10)

1
2

d

dt

[(
∆I

E, ∆I
E

)
0,K,ε

+
(
∆I

H, ∆I
H

)
0,K,µ

]

=
[( ∂

∂t
∆P

E, ∆I
E

)
0,K,ε

+
( ∂

∂t
∆P

H, ∆I
H

)
0,K,µ

]
+ (∇× ∆P

E, ∆I
H)0,K

−(∇× ∆P
H, ∆I

E)0,K −
(
∆I

E, ∆I
E

)
0,K,σ

+ (∆P
E, ∆I

E)0,K,σ

+
(
β[[∆I

H × nK ]]K∂K , ∆I
E|K

)
0,∂K

+
(
β[[π1

hH× nK ]]K∂K , ∆I
E|K

)
0,∂K

+(∆I
H|K , ∆I

E|K × nK)0,∂K −
(
γ[[∆I

E × nK ]]K∂K , ∆I
H|K

)
0,∂K

+
(
γ[[π1

hE × nK ]]K∂K , ∆I
H|K

)
0,∂K

.

We know that ∀t ∈ (0, T ), (E,H)(t) ∈ H0(rot, Ω) × H(rot, Ω), so we have ∀Γ =
(K ∩K ′) ∈ F i

h, [[E × nK ]]K ou K′

Γ = 0 and [[H × nK ]]K ouK′

Γ = 0. Moreover, keep in
mind that ∀Γ ∈ F b

h, β = 0.
By summing (4.10) over all the cells of the mesh and using the previous proper-

ties, we can write:

(4.11)

1

2

d

dt
‖(∆I

E , ∆I
H)‖2

∗ =
1

2

d

dt

∑
K∈Th

[(
∆I

E, ∆I
E

)
0,K,ε

+
(
∆I

H, ∆I
H

)
0,K,µ

]

≤
∑

K∈Th

[∣∣( ∂

∂t
∆P

E , ∆I
E

)
0,K,ε

∣∣ +
∣∣( ∂

∂t
∆P

H, ∆I
H

)
0,K,µ

∣∣ + |(∇× ∆P
E , ∆I

H)0,K |

+|
(
∇× ∆P

H, ∆I
E

)
0,K

| + |(∆P
E, ∆I

E)0,K,σ| + |
(
β[[∆P

H × nK ]], ∆I
E,K

)
0,∂K

|

+|
(
γ[[∆P

E × nK ]], ∆I
H,K

)
0,∂K

|
]

To obtain (4.11), we have used the fact that
(
∆I

E, ∆I
E

)
0,K,σ

≥ 0 and to eliminate

surface terms in ∆I
E and ∆I

H, we have used the identity:∑
K∈Th

((
β[[∆I

H × nK ]]K∂K , ∆I
E|K

)
0,∂K

−
(
γ[[∆I

E × nK ]]K∂K , ∆I
H|K

)
0,∂K

+ (∆I
H|K , ∆I

E|K × nK)0,∂K

)
= 0.

4.2. Trace lemmas. To estimate the surface integrals, we will need several inter-
mediate results:

Lemma 4.1. Let uh ∈ Uh and K ∈ Th; then there exists a constant C > 0 inde-
pendent of K and r such that:

(4.12) (uh|K ,uh|K)0,∂K ≤ Cσ11
K

r2

ρK
(uh,uh)0,K .
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Moreover, if Th belongs to a regular family of meshes, we have:

(4.13) (uh|K ,uh|K)0,∂K ≤ C
r2

hK
(uh,uh)0,K .

Proof. We have:

(4.14)

∫
∂K

|uhK |2dσ∫
K

|uhK |2dx
=

∫
∂K̂

|JK |‖DF ∗−1
K n̂‖

(
DF−1

K DF ∗−1
K ûK

)
· ûKdσ̂∫

K̂

|JK |
(
DF−1

K DF ∗−1
K ûK

)
· ûKdx̂

.

The estimations (3.3) lead to:

(4.15)

∫
∂K

|uhK |2dσ∫
K

|uhK |2dx

≤ C
σ11

K

ρK

∫
∂K̂

ûK · ûKdσ̂∫
K̂

ûK · ûKdx̂

.

In [29], we can find the estimation:

(4.16)

∫
∂K̂

ûK · ûKdσ̂∫
K̂

ûK · ûKdx̂
≤ Cr2.

So, we obtain the wanted result. �

We will need the trace inequality also:

Lemma 4.2. Let K ∈ Th. There exists C > 0 independent of K and r such that
∀v ∈ H1(K),

(4.17) ‖v‖2
0,∂K ≤ C(‖v‖0,K‖∇v‖0,K + ρ−1

K σ−1
K ‖v‖2

0,K).

Moreover, if Th belongs to a regular family of meshes, we have:

(4.18) ‖v‖2
0,∂K ≤ C(‖v‖0,K‖∇v‖0,K + h−1

K ‖v‖2
0,K).

Proof. Let K ∈ Th and v ∈ H1(K). Pose v̂ = voFK . So, we have the trace
inequality:

(4.19) ‖v̂‖2
0,∂K̂

≤ C(‖v̂‖0,K̂‖∇̂v̂‖0,K̂ + ‖v̂‖2
0,K̂

).

See for example the annexes of [28] to obtain a proof of this result.
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Now, we are going to return to the cell K. We have the estimations:

•‖v̂‖2
0,∂K̂

=
∫

∂K̂

v̂2dσ̂ =
∫

∂K

1
|JK |‖DF ∗−1

K n̂‖
v2dσ

≥ 1
‖JK‖∞,K̂ |F−1

K |1,∞,K

‖v‖2
0,∂K

≥ C
σ3

K

h2
K

‖v‖2
0,∂K by using (3.3),

(4.20)

•‖v̂‖2
0,K̂

=
∫

K̂

v̂2dx̂ =
∫

K

1
|JK |v

2dx ≤ ‖J−1
K ‖∞,K‖v‖2

0,K = ρ−3
K ‖v‖2

0,K ,(4.21)

•‖∇̂v̂‖2
0,K̂

=
∫

K̂

∇̂v̂ · ∇̂v̂dx̂ =
∫

K

1
|JK |DF ∗

K∇v · DF ∗
K∇vdx

≤ C
σ2

K

ρK
‖∇v‖2

0,K by using (3.3).

(4.22)

(4.20) becomes:

(4.23) C1
σ3

K

h2
K

‖v‖2
0,∂K ≤ C(C2

σK

ρ2
K

‖v‖0,K‖∇v‖0,K + C3
1

ρ3
K

‖v‖2
0,K).

We obtain the wanted result. �

4.3. Error estimates. The use of (4.12) allows us to establish the following esti-
mations of the surface terms:

(4.24)

∑
K∈Th

[|
(
β[[∆P

H × nK ]], ∆I
E|K

)
0,∂K

| + |
(
γ[[∆P

E × nK ]], ∆I
H|K

)
0,∂K

|]

≤
∑

K∈Th

[|β|‖[[∆P
H × nK ]]‖0,∂K‖∆I

E|K‖0,∂K

+|γ|‖[[∆P
E × nK ]]‖0,∂K‖∆I

H|K‖0,∂K ]

≤ C
∑

K∈Th

σ
11
2

K

r

ρ
1
2
K

[|β|‖[[∆P
H × nK ]]‖0,∂K‖∆I

E‖0,K,ε

+|γ|‖[[∆P
E × nK ]]‖0,∂K‖∆I

H‖0,K,µ]

where C is a constant independent of K and r, but dependent on materials in the
event here of B1 defined in the first section.
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(4.17) gives:

(4.25)
‖∆P

E|K × nK‖2
0,∂K ≤ C(‖∆P

E‖0,K‖∆P
E‖1,K + σ−1

K ρ−1
K ‖∆P

E‖2
0,K),

‖∆P
H|K × nK‖2

0,∂K ≤ C(‖∆P
H‖0,K‖∆P

H‖1,K + σ−1
K ρ−1

K ‖∆P
H‖2

0,K)

where C is a constant independent of K and r.
Indeed, note that v = ∆P

E|K = (v1, v2, v3)∗ and nK = (n1, n2, n3)∗. We can then
write:

(4.26) ∆P
E|K × nK = v × nK = (v2n3 − v3n2, v3n1 − v1n3, v1n2 − v2n1)∗.

Now, developing ‖∆P
E|K × nK‖2

0,∂K , we get:

(4.27)

‖∆P
E|K × nK‖2

0,∂K

=
∫

∂K

(
(v2n3 − v3n2)2 + (v3n1 − v1n3)2 + (v1n2 − v2n1)2

)
dσ

≤ 2
∫

∂K

(
v2
2n2

3 + v2
3n2

2 + v2
3n2

1 + v2
1n2

3 + v2
1n2

2 + v2
2n2

1

)
dσ

≤ 4
∫

∂K

(
v2
1 + v2

2 + v2
3

)
dσ = 4

(
‖v1‖2

0,∂K + ‖v2‖2
0,∂K + ‖v3‖2

0,∂K

)
.

To obtain the last inequality, we have used the fact that n2
1 +n2

2+n2
3 = 1. Applying

(4.18) to vi ∈ H1(K) (for 1 ≤ i ≤ 3), one deduces the inequalities:

(4.28) ‖vi‖2
0,∂K ≤ C(‖vi‖0,K‖∇vi‖0,K + σ−1

K ρ−1
K ‖vi‖2

0,K).

Finally, introducing (4.28) into (4.27), we have:

(4.29)

‖∆P
E|K × nK‖2

0,∂K ≤ 4C
3∑

i=1

(‖vi‖0,K‖∇vi‖0,K + σ−1
K ρ−1

K ‖vi‖2
0,K)

≤ 4C

3∑
i=1

(‖v‖0,K‖v‖1,K + σ−1
K ρ−1

K ‖v‖2
0,K)

≤ 12C(‖v‖0,K‖v‖1,K + σ−1
K ρ−1

K ‖v‖2
0,K).

We obtain the wanted result. For ‖∆P
H|K ×nK‖2

0,∂K it is obviously the same thing.
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For the other terms of (4.11), we have the following estimates:

(4.30)

•
∑

K∈Th

[
|(∇× ∆P

E , ∆I
H)0,K | + |

(
∇× ∆P

H, ∆I
E

)
0,K

|
]

≤ C
∑

K∈Th

[
‖∆P

E‖1,K‖∆I
H‖0,K,µ + ‖∆P

H‖1,K‖∆I
E‖0,K,ε

]
,

•
∑

K∈Th

∣∣( ∂

∂t
∆P

E, ∆I
E

)
0,K,ε

∣∣ +
∣∣( ∂

∂t
∆P

H, ∆I
H

)
0,K,µ

∣∣

≤ C
∑

K∈Th

(
‖∆P

Et
‖0,K‖∆I

E‖0,K,ε + ‖∆P
Ht

‖0,K‖∆I
H‖0,K,ε

)
,

•
∑

K∈Th

|(∆P
E, ∆I

E)0,K,σ| ≤ C
∑

K∈Th

‖∆P
E‖0,K‖∆I

E‖0,K,ε

where C is a constant independent of K and r but dependent on the dielectric values
of the medium and ut = ∂

∂tµ.

Remark 4.3. To obtain the second inequality of (4.30), we have used the property:

(4.31)
∂

∂t
∆P

E = ∆P
∂
∂tE

= ∆P
Et

.

We have the same thing for ∆P
H.

Now, we are going to recombine the established estimates and use the projection
errors of the previous section. Keep in mind that we use a regular family, (Th)h>0,
of meshes. We assume that E, H ∈ Hs+1(Th) ∩ H(rot, Ω), Et, Ht ∈ Hs′+1(Th)
and Js ∈ Hs′′+1(Th) with 0 ≤ s, s′, s′′ ≤ r and 0 < hK ≤ 1, ∀K ∈ Th.

Using (3.46), (4.25) becomes:

(4.32)

‖∆P
E|K × nK‖2

0,∂K ≤ C
h

min(2s−1,2r−1)
K

r2s+1
‖E‖s+1,K ,

‖∆P
H|K × nK‖2

0,∂K ≤ C
h

min(2s−1,2r−1)
K

r2s+1
‖H‖s+1,K .

Thus, the boundary terms are bounded by:

(4.33)

∑
K∈Th

[|
(
β[[∆P

H × nK ]], ∆I
E,K

)
0,∂K

| + |
(
γ[[∆P

E × nK ]], ∆I
H,K

)
0,∂K

|]

≤ C
∑

K∈Th

h
min(s−1,r−1)
K

rs− 1
2

[‖E‖s+1,K‖∆I
E,K‖0,K,ε + ‖H‖s+1,K‖∆I

H,K‖0,K,µ].

Here C depends on r.
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We also have the estimates of (4.30):

(4.34)

•
∑

K∈Th

[
|(∇× ∆P

E, ∆I
H)0,K | + |

(
∇× ∆P

H, ∆I
E

)
0,K

|
]

≤ C
∑

K∈Th

h
min(s−1,r−1)
K

rs

[
‖E‖s+1,K‖∆I

H‖0,K,µ + ‖H‖s+1,K‖∆I
E‖0,K,ε

]
,

•
∑

K∈Th

∣∣( ∂

∂t
∆P

E, ∆I
E

)
0,K,ε

∣∣ +
∣∣( ∂

∂t
∆P

H, ∆I
H

)
0,K,µ

∣∣

≤ C
∑

K∈Th

h
min(s′,r)
K

rs′+1

[
‖Et‖s′+1,K‖∆I

E‖0,K,ε + ‖Ht‖s′+1,K‖∆I
H‖0,K,µ

]
,

•
∑

K∈Th

|(∆P
E, ∆I

E)0,K,σ| ≤ C
∑

K∈Th

h
min(s,r)
K

rs+1
‖E‖s+1,K‖∆I

E‖0,K,ε.

Now, by using the fact that
‖∆I

E‖0,K,ε

‖(∆I
E , ∆I

H)‖∗
≤ 1 and

‖∆I
H‖0,K,µ

‖(∆I
E , ∆I

H)‖∗
≤ 1, (4.11) leads

to:

(4.35)

d

dt
‖(∆I

E , ∆I
H)‖∗ ≤ C

∑
K∈Th

[h
min(s−1,r−1)
K

rs− 1
2

(
‖E‖s+1,K + ‖H‖s+1,K

)

+
h

min(s′,r)
K

rs′+1

(
‖Et‖s′+1,K + ‖Ht‖s′+1,K

)]
.

Finally, the Gronwall lemma on the interval (0, T ) gives the following theorem:

Theorem 4.4. Let r be a positive integer. Assume that the exact solu-
tion verifies (E,H) ∈ Hs+1

(
Th

)
and (Et,Ht) ∈ Hs′+1

(
Th

)
for s, s′ ≥ 0

real and 0 < hK ≤ 1, ∀K ∈ Th. Then,we have the global estimate of the
interpolation error:

(4.36)

‖(∆I
E , ∆I

H)‖∗(T ) ≤ ‖(∆I
E , ∆I

H)‖∗(0)

+CT
hmin(s−1,s′,r−1)

rmin(s− 1
2 ,s′+1)

max
t∈(0,T )

(
‖E‖s+1,h(t), ‖H‖s+1,h(t),

·‖Et‖s′+1,h(t), ‖Ht‖s′+1,h(t)
)

where C > 0 is a constant independent of K and r and h = max
K∈Th

hK .
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Return to the error of the scheme: According to (4.4), we have

‖(E− Eh,H− Hh)‖∗(T ) ≤
√

2(‖(∆P
E, ∆P

H)‖∗ + ‖
(
∆I

E, ∆I
H

)
‖∗)(T )

≤
√

2‖(∆I
E , ∆I

H)‖∗(0) + C
√

2
[
hs max

(
‖E‖s+1,h(T ), ‖H‖s+1,h(T )

)
+T

hmin(s−1,s′,r−1)

rmin(s− 1
2 ,s′+1)

max
t∈(0,T )

(
‖E‖s+1,h(t), ‖H‖s+1,h(t), ‖Et‖s′+1,h(t), ‖Ht‖s′+1,h(t)

)]
.

We see that the error seems to be sub-optimal and it increases at most linearly in
time. Moreover, for r = 1, the previous estimate does not prove the consistence of
the scheme. In the last section of this paper, we will see with a simple numerical
example that it is not clear that this scheme is consistent for a certain type of mesh.

Remark 4.5. If the mesh used is orthogonal or almost parallelepipedic, we find
an exponent hs. Indeed, we are respectively in an affine case and with second
derivatives of FK bounded by Ch2

K .

4.4. Error due to the numerical integration. In this sub-section, we assume
that the dielectric tensors are constant by cells and that we have conformal meshes.
This last assumption allows us to have all discrete jump integrals (i.e. computed
by using the Gauss rule) which are exact [34] i.e. ∀uh, vh ∈ Uh we have:

(4.37)
∫ G

∂K

[[uh × nK ]] · vhdσ =
∫

∂K

[[uh × nK ]] · vhdσ.

For technical reasons due to the use of a quadrature formula, we will need the
interpolation operator Ih on Uh defined by: Let v ∈ [C0(Th)]3 (i.e. v ∈ L2(Ω) be
such that ∀K ∈ Th we have v|K ∈ [C0(K)]3); then ∀K ∈ Th,

(4.38) Ih|KvoFK(ξl) = voFK(ξl)

∀l ∈ {1, · · · , r+1}3. We can easily transpose the error estimates of the operator π1
h

to Ih and we obtain, in particular: Let v ∈ Hs+1(K), s >
1
2

(s >
3
2

to ensure the

inclusion of Hs(K) in [C0(K)]3); then there exists C independent of the element
K and r such that:

(4.39) ‖v − Ih|Kv‖0,K ≤ C
h

min(s,r)
K

rs+1
‖v‖s+1,K .

To prove the r-dependence of (4.39), we have used the result in [31],

v ∈ Hs+1(K), s>
1
2
, then there exists a constant C independent of r such that:

(4.40) ‖v − Ih|Kv‖0,K ≤ C

rs+1
‖v‖s+1,K .
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Now, let us rewrite equation (4.10) by taking into account the Gauss quadrature
rule:

(4.41)

1

2

d

dt

∫ G

K

[
ε∆E

I · ∆E
I + µ∆H

I · ∆H
I

]
dx =

∫
K

[
ε

∂

∂t
∆E

P · ∆E
I + µ

∂

∂t
∆H

P · ∆H
I

]
dx

+
[ ∫

K

ε
∂

∂t
πhE · ∆E

I dx −
∫ G

K

ε
∂

∂t
πhE · ∆E

I

]
+

[ ∫
K

µ
∂

∂t
πhH · ∆H

I dx

−
∫ G

K

µ
∂

∂t
πhH · ∆H

I

]
+

[ ∫
K

σπhE · ∆E
I dx −

∫ G

K

σπhE · ∆E
I

]

+
[ ∫

K

Js · ∆E
I dx −

∫ G

K

Js · ∆E
I

]
+

∫
∂K

β[[∆H
I × nK ]] · ∆E

I

+

∫
∂K

β[[πhH × nK ]] · ∆E
I +

∫
∂K

γ[[πhE × nK ]] · ∆H
I

+

∫
∂K

γ[[∆E
I × nK ]] · ∆H

I +

∫
K

∇× ∆H
I · ∆E

I dx −
∫

K

∇× ∆E
I · ∆H

I dx

−
∫

K

∇× ∆H
P · ∆E

I dx +

∫
K

∇× ∆E
P · ∆H

I dx

−
∫ G

K

σ∆E
I · ∆E

I +

∫
K

σ∆E
P · ∆E

I dx.

To obtain (4.41), we have used the fact that the stiffness and the jump integrals
are exact for all the elements belonging to the approximate space Uh. Indeed, for
the stiffness terms we have the classical result: Let uh, vh ∈ Uh; we have ∀K ∈ Th,

(4.42)

∫ G

K

∇× uh · vh =
∫ G

K̂

|JK |DFK

JK
∇̂ × ûh · DF ∗−1

K v̂h

= sign(JK)
∫ G

K̂

∇̂ × ûh · v̂h

= sign(JK)
∫

K̂

∇̂ × ûh · v̂hdx̂ =
∫

K

∇× uh · vhdx.

To write the last line of (4.42) we use the fact that the Gauss formula used is exact
for all the polynomials in Q2r+1(K̂). This is why we have omitted the symbol G
(for “Gauss”) in these integrals.

As regards the discrete energy norm of the first line, one shows easily that it is
equivalent to the energy norm without numerical integration. Indeed, let uh ∈ Uh;
then we have:

(4.43)
∫ G

K

uh · uhdx =
∫ G

K̂

|JK |DF−1DF ∗−1
K ûh · ûhdx̂.

By using the estimates (3.3) and (3.5), we can write immediately these two inequal-
ities:

(4.44) C1
ρ3

K

h2
K

∫ G

K̂

ûh · ûhdx̂ ≤
∫ G

K

uh · uhdx ≤ C2
h7

K

ρ6
K

∫ G

K̂

ûh · ûhdx̂
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where C1, C2 > 0 are independent of K and r.
Now, as the Gauss formula is exact to the order 2r + 1 when we use (r + 1)3

quadrature points, we have:

(4.45)
∫ G

K̂

ûh · ûhdx̂ =
∫

K̂

ûh · ûhdx̂.

Returning to the cell K of the mesh:

(4.46)

∫
K̂

ûh · ûhdx̂ =
∫

K̂

DF ∗
KuhoFK · DF ∗

KuhoFKdx̂

=
∫

K̂

|JK |DFKDF ∗
K

|JK | uhoFK · uhoFKdx̂.

Again using (3.3) and (3.5), one obtains the following inequalities:

(4.47)
ρ6

K

C2h7
K

∫
K

uh · uhdx ≤
∫

K̂

ûh · ûhdx̂ ≤ h2
K

C1ρ3
K

∫
K

uh · uhdx.

Combining (4.44) and (4.47), we get the wanted result i.e.,

(4.48)
C1

C2
σ9

K

∫
K

uh · uhdx ≤
∫ G

K

uh · uhdx ≤ C2

C1
σ9

K

∫
K

uh · uhdx.

From this equivalence, one deduces the following result: The assumption of regu-
larity of the mesh gives:

(4.49) Cσ9

∫
K

[
ε∆E

I · ∆E
I + µ∆H

I · ∆H
I

]
dx ≤

∫ G

K

[
ε∆E

I · ∆E
I + µ∆H

I · ∆H
I

]
dx

where C > 0 is independent of K and r.
Now, we are going to estimate the first integration error of the second line of

(4.41):

(4.50)

∫
K

ε
∂

∂t
πhE · ∆E

I dx −
∫ G

K

ε
∂

∂t
πhE · ∆E

I =
∫

K

επhEt · ∆E
I dx

−
∫ G

K

επhEt · ∆E
I =

∫
K

ε
(
πhEt − Et

)
· ∆E

I dx +
∫

K

εEt · ∆E
I dx

−
∫ G

K

εEt · ∆E
I +

∫ G

K

ε
(
IhEt − πhEt

)
· ∆E

I

≤ ‖πhEt − Et‖0,K,ε‖∆E
I ‖0,K,ε +

∣∣∣ ∫
K

εEt · ∆E
I dx −

∫ G

K

εEt · ∆E
I

∣∣∣
+C‖πhEt − IhEt‖0,K,ε‖∆E

I ‖0,K,ε

≤ (1 + C)‖πhEt − Et‖0,K,ε‖∆E
I ‖0,K,ε + C‖IhEt − Et‖0,K,ε‖∆E

I ‖0,K,ε

+
∣∣∣ ∫

K

εEt · ∆E
I dx −

∫ G

K

εEt · ∆E
I

∣∣∣
where C is independent of K and r.
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We obtain the previous inequalities by combining the Schwarz discrete inequality
and the previous equivalence property. To estimate the last line of (4.50), only for
the last term, additional work is necessary. First, we develop this term:
(4.51) ∣∣∣ ∫

K

εEt · ∆E
I dx −

∫ G

K

εEt · ∆E
I

∣∣∣
=

∣∣∣ ∫
K̂

|JK |DF−1
K εoFKDF ∗−1

K Êt · ∆̂E
I dx −

∫ G

K̂

|JK |DF−1
K εoFKDF ∗−1

K Êt · ∆̂E
I

∣∣∣
where Êt = DF ∗

KEtoFK and ∆̂E
I = Êh − π̂1

rÊ ∈ [Qr(K̂)]3.

Let ŵ = |JK |DF−1
K εoFKDF ∗−1

K Êt. Introduce the interpolation polynomial Îrŵ
in (4.51) and using the fact that the Gauss quadrature rule is exact for the poly-
nomial space Q2r+1 when we take (r + 1)3 quadrature points, we get:

(4.52)

∣∣∣ ∫
K

εEt · ∆E
I dx −

∫ G

K

εEt · ∆E
I

∣∣∣ =
∣∣∣ ∫

K̂

ŵ · ∆̂E
I dx −

∫
K

Îrŵ · ∆̂E
I dx

∣∣∣
=

∣∣∣ ∫
K̂

(
ŵ − Îrŵ

)
· ∆̂E

I dx
∣∣∣ ≤ C‖ŵ − Îrŵ‖0,K̂‖∆̂E

I ‖0,K̂,ε

where C depends on C1.
Using the Bramble-Hilbert lemma and the theory of the spectral methods [31],

we can write the two following estimates for the interpolation operator Îr:

(4.53)
‖Îr(ŵ) − ŵ‖0,K̂ ≤ C(K̂)

rr+1
[ŵ]r+1,K̂ ,

‖Îr(ŵ) − ŵ‖0,K̂ ≤ C

rs
‖ŵ‖s,K̂ .

First, we are going to estimate the term [ŵ]r+1,K̂ . The definition of ŵ leads to:

(4.54) [ŵ]r+1,K̂ = [|JK |DF−1
K εoFKEtoFK ]r+1,K̂ = [MKεoFKEtoFK ]r+1,K̂

where MK = (mK
i,j) ∈ M (3, 3), the cofactor matrix of DFK . Developing (4.54), we

get:

(4.55)

[MKεoFKEtoFK ]2r+1,K̂ =

3∑
i=1

[

3∑
j=1

mK
i,j

3∑
k=1

εj,kE
k
t oFK ]2r+1,K̂

≤ 6

3∑
i=1

3∑
j=1

3∑
k=1

[mK
i,jεj,kE

k
t oFK ]2r+1,K̂

≤ 6

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

∫
K̂

∣∣∣ ∂r+1

∂x̂r+1
l

(
mK

i,jεj,kE
k
t oFK

)∣∣∣2dx̂

≤ 6

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

εj,k

∫
K̂

∣∣∣ r+1∑
m=0

(
m

r + 1

)
∂m

∂x̂m
l

(
mK

i,j

) ∂r+1−m

∂x̂r+1−m
l

(
Ek

t oFK

)∣∣∣2dx̂
(because ε is constant within a cell).
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It is easy to see that ∀m ≥ 3,
∂m

∂x̂m
k

(
mK

i,j

)
= 0 and that 0 ≤ m ≤ 2,

∣∣∣ ∂m

∂x̂m
k

(
mK

i,j

)∣∣∣ ≤
Ch2

K . That implies the following estimate:

(4.56)

[MKεoFKEtoFK ]2
r+1,K̂

≤ C
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

2∑
m=0

∫
K̂

∣∣∣ ∂m

∂x̂m
l

(
mK

i,j

) ∂r+1−m

∂x̂r+1−m
l

(
Ek

t oFK

)∣∣∣2dx̂

≤ Ch4
K

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=0

2∑
m=0

∫
K̂

∣∣∣ ∂r+1−m

∂x̂r+1−m
l

(
Ej

koFK

)∣∣∣2dx̂.

Finally, we have:

(4.57) [ŵ]2
r+1,K̂

≤ Ch4
K([EtoFK ]2

r+1,K̂
+ [EtoFK ]2

r,K̂
+ [EtoFK ]2

r−1,K̂
).

Now, using (3.28), we deduce the following three estimates:

(4.58)

[EtoFK ]r+1,K̂ ≤ Ch
r− 1

2
K |Et|r+1,K ,

[EtoFK ]r,K̂ ≤ Ch
r− 3

2
K |Et|r,K ,

[EtoFK ]r−1,K̂ ≤ Ch
r− 5

2
K |Et|r−1,K .

Injecting (4.58) in (4.57), we obtain:

(4.59) [ŵ]r+1,K̂ ≤ C
(
h

r+ 3
2

K |Et|r+1,K + h
r+ 1

2
K |Et|r,K + h

r− 1
2

K |Et|r−1,K

)
.

Moreover, we have:

(4.60) ‖∆̂E
I ‖0,K̂ ≤ C

h
1
2
K

‖∆E
I ‖0,K,ε.

Combining (4.59) and (4.60), we have the following error estimate for the interpo-
lation operator:

(4.61)

∣∣∣ ∫ G

K

Et · ∆E
I dx −

∫
K

Et · ∆E
I dx

∣∣∣ ≤ C

rr+1

(
hr+1

K |Et|r+1,K + hr
K |Et|r,K

+hr−1
K |Et|r−1,K

)
‖∆E

I ‖0,K,ε.

Finally, using (4.61) and (4.39), (4.50) gives: For 0 < hK ≤ 1,

(4.62)∣∣∣ ∫ G

K

επhEt · ∆I
E −

∫
K

επhEt · ∆I
Edx

∣∣∣ ≤ C
hr−1

K

rr+1
‖Et‖r+1,K‖∆I

E‖0,K, tensε.
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Proceeding in the same way, we prove:

(4.63)

•
∣∣∣ ∫ G

K

µπhHt · ∆I
H −

∫
K

µπhHt · ∆I
Hdx

∣∣∣ ≤ C
hr−1

K

rr+1
‖Ht‖r+1,K‖∆I

H‖0,K,ε,

•
∣∣∣ ∫ G

K

σπhE · ∆I
E −

∫
K

σπhE · ∆I
Edx

∣∣∣ ≤ C
hr−1

K

rr+1
‖E‖r+1,K‖∆I

E‖0,K,ε,

•
∣∣∣ ∫ G

K

Js · ∆I
E −

∫
K

Js · ∆I
Edx

∣∣∣ ≤ C
hr−1

K

rr+1
‖Js‖r+1,K‖∆I

E‖0,K,ε.

From (4.62) and (4.63), we deduce that it suffices to add the error (after the tem-
poral integration from 0 to T ):

(4.64)
C

hmin(s−1,s′−1,s”−1,r−1)

rmin(s+1,s′+1,s′′+1)

(
max

t∈[0,T ]

(
‖Et‖s′+1,h, ‖Ht‖s′+1,h,

‖E‖s+1,h, ‖Js‖s”+1,h

))
T

from
1
2

< s, s′, s” ≤ r (one had s, s′, s” ≥ 0 when the numerical integration was not

used) for the space error estimate using the mass-lumping technique. Here C is a
positive constant independent of K and r.

We conclude that the use of the Gauss quadrature formula can generate a de-
terioration of the spatial convergence (s′ − 1, s′′ − 1) when the exact solution of
the problem is not very regular inside at least a cell. Nevertheless, if the data of
the treated problem are regular, then the mass-lumping does not generate a de-
terioration of the h convergence (i.e. hr−1

K ). Moreover, this reinforces the risk of
inconsistency of the scheme using r = 1. Lastly, the behavior remains linear in
time.

5. Numerical results

The aim of this part is to numerically verify whether the h-convergence rates
obtained in the previous sections are optimal or not. To carry out this purpose, we
study the propagation of a mode inside a perfectly metallic cubic cavity (E×n = 0
on the wall of the cavity) with an edge of a = 0.25m. The propagative mode that
we study is a mode (m, n, 0) given by:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ex = 0; Ey = 0; Hz = 0,

Ez = sin(mπ
x

a
) sin(nπ

y

a
) cos(ωt),

Hx =
πn

aωµ0
sin(mπ

x

a
) cos(nπ

y

a
) sin(ωt),

Hy =
πm

aωµ0
cos(mπ

x

a
) sin(nπ

y

a
) sin(ωt),

where ω = 3 · 108

√(mπ

a

)2 +
(nπ

a

)2.

By imposing this mode as an initial condition (i.e. for t = 0), the DG scheme
gives an approached solution of (5.1). Hence, one knows the exact solution of our
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problem. We can then compute the errors due to the DG scheme for some appro-
priated norms. More precisely, we have used two norms. The first is the classical
L2 norm (‖ · ‖0,Ω) and the second is the norm

‖u‖2
h = ‖u‖2

0,Ω +
∑

K∈Th

‖∇ × u‖2
0,K +

∑
Γ∈Fh

‖[[u × n]]‖2
0,Γ

which gives the classical H(curl, Ω) norm when µ is curl-conforming.
Moreover, we have chosen to take a sufficiently small time step in order to have

a negligible time error.
Finally, we have used two types of mesh. The first is a “slightly deformed” carte-

sian type and the second is obtained by cutting each tetrahedron of a tetrahedrique
mesh in four hexahedrons.

Remark 5.1. The simulations are carried out for the approximation Q1 and Q2.
For highers orders, the computational cost rapidly becomes too important when
one wants to obtain the asymptotic behaviour.

a- “slightly deformed” Cartesian grids:
The meshes are composed of N×N×N cells, N being the number of subdivisions

in each direction. For the Q1 and Q2 approximations, we have respectively taken
m = n = 1 and m = n = 3. We have determined both the projection errors (i.e. for
t = 0) and the DG errors obtained after having covered one period (i.e. t =

ω

2π
).

Tables 1 and 3 contain the results obtained for the L2 projection of the initial
condition. We find the theoretical rates, i.e., hr for the L2 norm and hr−1 for
the norm ‖ · ‖h. Indeed, the slight deformation has been made in order to obtain
the estimation |FK |2,∞,K̂ ≤ ChK (and not h2

K). Moreover, under this hypothesis,
the theoretical results predicate that the L2 error of the DG scheme is bounded
by O(hr−1). However, the results contained in Tables 2 and 3 show that the h-
convergence rates are hr for the norm ‖ · ‖0,Ω and hr−1 for the norm ‖ · ‖h. To
conclude, for this type of mesh, the theoretical convergence rates obtained seem to
be sub-optimals.

Table 1. Projection errors on “slightly deformed” Cartesian grids for Q1.

Q1 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 64 × 64 × 64
L2 error 1.2812 · 10−2 5.775 · 10−3 2.835 · 10−3 1.439 · 10−3

L2 order X 1.14 1.026 0.98
‖ · ‖h error 0.1938 0.1754 0.172 0.1736
‖ · ‖h order X ≈ 0 ≈ 0 ≈ 0

Table 2. Error after one period on “slightly deformed” Cartesian
grids for Q1.

Q1 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 64 × 64 × 64
L2 error 2.794 · 10−2 1.611 · 10−2 8.342 · 10−3 4.189 · 10−3

L2 order X 0.7 0.95 0.993
‖ · ‖h error 0.25 0.263 0.267 0.268
‖ · ‖h order X ≈ 0 ≈ 0 ≈ 0
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Table 3. Projection errors on “slightly deformed” Cartesian grids for Q2.

Q2 16 × 16 × 16 32 × 32 × 32 64 × 64 × 64
L2 error 1.708 · 10−3 3.658 · 10−4 8.772 · 10−5

L2 order X 2.22 2.06
‖ · ‖h error 8.2951 · 10−2 3.513 · 10−2 1.675 · 10−2

‖ · ‖h order X 1.24 1.06

Table 4. Error after one period on “slightly deformed” Cartesian
grids for Q2.

Q2 16 × 16 × 16 32 × 32 × 32 64 × 64 × 64
L2 error 5.721 · 10−3 1.206 · 10−3 3.12 · 10−4

L2 order X 2.24 1.95
‖ · ‖h error 0.16 5.947 · 10−2 2.607 · 10−2

‖ · ‖h order X 1.42 1.18

b- General unstructured hexahedral meshes:
For this numerical experiment, we have used meshes obtained by cutting each
tetrahedron of a tetrahedrique mesh in four hexahedrons. We have taken an initial
mesh that we have successively refined. As for the previous example, we have the
estimation |FK |2,∞,K̂ ≤ ChK . For the Q1 and Q2 approximations, we have taken
m = n = 1.

Tables 5-6 and 7-8 contain the results obtained for the projection and the DG
errors respectively. The first line of each table corresponds to the maximal spatial
step (h). For the projection, the convergence rates conform to the theoretical results
i.e. hr for ‖ · ‖0,Ω and hr−1 for ‖ · ‖h. With regard to the DG errors, the Q1 and Q2

approximations seem to have convergence rates for the L2- norm equal to h0 and
h1 respectively i.e. hr−1. This result seems to be confirmed by the errors obtained
for ‖ · ‖h. Indeed for this norm, the convergence rates are h−α for Q1 and hβ for
Q2, α and β seemingly tending respectively towards 1 and 0. For this type of mesh,
the theoretical convergence rates seem to be optimal.

Table 5. Projection errors on general unstructured hexahedral
meshes for Q1.

Q1 0.039 0.021 0.011
L2 error 8.4622 · 10−3 4.3179 · 10−3 2.1568 · 10−3

L2 order X 1.08 1.07
‖ · ‖h error 0.3575 0.3567 0.3544
‖ · ‖h order X ≈ 0 ≈ 0
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Table 6. Projection errors on general unstructured hexahedral
meshes for Q2.

Q2 0.078 0.039 0.021
L2 error 8.0761 · 10−4 1.8373 · 10−4 4.9105 · 10−5

L2 order X 2.13 2.13
‖ · ‖h error 2.4309 · 10−2 1.136 · 10−2 5.8978 · 10−3

‖ · ‖h order X 1.09 1.05

Table 7. Error after one period on general unstructured hexahe-
dral meshes for Q1.

Q1 0.039 0.021 0.011
L2 error 6.2637 · 10−2 3.6486 · 10−2 2.8541 · 10−2

L2 order X 0.87 0.37
‖ · ‖h error 1.168 1.326 2.04
‖ · ‖h order X −0.208 −0.67

Table 8. Error after one period on general unstructured hexahe-
dral meshes for Q2.

Q2 0.078 0.039 0.021
L2 error 6.6374 · 10−3 2.6737 · 10−3 1.1924 · 10−3

L2 order X 1.31 1.3
‖ · ‖h error 0.1568 0.1152 9.8245 · 10−2

‖ · ‖h order X 0.44 0.25

References

1. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland, 1978.
MR0520174 (58:25001)

2. Achdou Yves, The Finite Element Methods, www.ann.jussieu.fr/achdou/enseignement.
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15. Nicolas Canouet, Méthodes de Galerkin Discontinu pour la résolution du système de Maxwell
sur des maillages localement raffinés non-conforme,Doctorat de Mathématiques Appliquées
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