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ZEROS OF THE DAVENPORT-HEILBRONN
COUNTEREXAMPLE

EUGENIO P. BALANZARIO AND JORGE SÁNCHEZ-ORTIZ

Abstract. We compute zeros off the critical line of a Dirichlet series consid-
ered by H. Davenport and H. Heilbronn. This computation is accomplished
by deforming a Dirichlet series with a set of known zeros into the Davenport-
Heilbronn series.

1. Introduction

Let ξ =
(√

10 − 2
√

5 − 2
)/

(
√

5 − 1). For s = σ + it with σ > 1, let

(1) f1(s) = 1 +
ξ

2s
− ξ

3s
− 1

4s
+

0
5s

+ · · ·

be a Dirichlet series with periodic coefficients of period 5. Then f1(s) defines an
entire function satisfying the following functional equation

(2) f(s) = T−s+ 1
2 χ2(s)f(1 − s)

with T = 5 and

(3) χ2(s) = 2(2π)s−1 Γ(1 − s) cos
(πs

2
)
.

In 1936, H. Davenport and H. Heilbronn (see [2]) showed that f1(s), as defined in
(1), has zeros off the critical line σ = 1/2. In 1994, R. Spira (see [3]) computed the
following zeros of the Davenport-Heilbronn example:

.808517 + 85.699348i, .650830 + 114.163343i,

.574356 + 166.479306i, .724258 + 176.702461i.

In this note we present a scheme for computing additional zeros of the Davenport-
Heilbronn Dirichlet series.

2. Continuity of zeros

In order to compute zeros of f1, let us consider

(4) f0(s) =
(
1 +

√
5

5s

)
ζ(s),

where ζ(s) is the Riemann zeta function. A good number of zeros of ζ(s) have been
computed and are readily available. On the other hand

1 +
√

5
5s

= 0 if and only if s =
1
2

+
2k + 1
log 5

πi with k ∈ Z.
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For each τ ∈ [0, 1], let

(5) fτ = f0 · (1 − τ ) + f1 · τ.

The next theorem shows that if ρ0 is a zero of f0, and τ > 0 is small, then fτ has
a zero ρτ in a small neighborhood of ρ0. Beginning with ρ0 as initial data, it is
easy (provided τ > 0 is small) to numerically compute a zero ρτ of fτ in a small
neighborhood of ρ0. Repeating this process a number of times, we end up with a
zero ρ1 of the Davenport-Heilbronn series f1.

Theorem 1. Let q be a fixed positive integer. Let aτ (j) :R×N → C be a sequence
of continuous functions such that aτ (j + q) = aτ (j) for all τ ∈ R and all j ∈ N.
Let fτ (s) be the meromorphic function, defined initially for σ > 1 by

fτ (s) =
∞∑

j=1

aτ (j)
js

,

and extended to the whole complex plane by analytic continuation. Let ρ be such
that 0 < �e(ρ) < 1 and f0(ρ) = 0. If δ > 0 and τ ∈ R are sufficiently small, then
there exists s such that fτ (s) = 0 and |s − ρ| < δ.

Thus, our scheme of computation of zeros of f1 is to keep track of zeros of
f0 while performing a ‘deformation’ of f0 into f1. By keeping track of the first
known zeros of f0 as defined in (4), we found the following additional zeros of the
Davenport-Heilbronn Dirichlet series f1 defined in (1):

.86953 + 240.4046i, .81955 + 320.8764i, .76822 + 331.0502i,

.62850 + 366.6409i, .81587 + 411.7967i, .70882 + 440.4845i,

.51591 + 520.9438i, .84695 + 531.2797i, .72953 + 548.9067i,

.78655 + 566.5097i, .58285 + 595.0233i, .62825 + 611.7750i,

.61076 + 646.9868i, .76059 + 657.1083i, .78870 + 692.8924i,

.77736 + 737.7669i, .85300 + 783.6530i, .66855 + 811.7657i,

.56194 + 847.4657i, .85610 + 857.2958i, .68089 + 864.1180i,

.68843 + 892.1490i, .75935 + 921.1726i, .76249 + 983.7521i,

.69140 + 1012.019i, .69809 + 1018.795i, .58613 + 1029.004i,

.61106 + 1078.490i, .85462 + 1092.454i, .60577 + 1109.548i.

3. Two hypotheses

In this section, we consider the case in which f0 and f1 are two linearly indepen-
dent Dirichlet series satisfying a given functional equation. For example we might
take f0 to be as in equation (4) above, or we might take f0 to be

L
(
s, χ

(5)
2

)
= 1 − 1

2s
− 1

3s
+

1
4s

+
0
5s

+ · · · .

Notice that f0 as given in (4) and L
(
s, χ

(5)
2

)
both satisfy the functional equation

(6) f(s) = T−s+ 1
2 χ1(s)f(1 − s)

with T = 5 and

(7) χ1(s) = 2(2π)s−1 Γ(1 − s) sin
(πs

2
)
.
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Thus we have two linearly independent Dirichlet series satisfying a given functional
equation. Hence, by taking appropriate linear combinations of these, we can pro-
duce a Dirichlet series f1 satisfying the above functional equation and having a zero
off the critical line, in fact, at any preassigned place in the complex plane. With
these f0 and f1, we let fτ be as in (5). Then fτ satisfies the functional equation
(6) for all τ ∈ [0, 1].

Since fτ satisfies (6), then its nonreal zeros lie symmetrically about the critical
line σ = 1/2. Hence, by Theorem 1 in section §2, a simple zero must move along
the critical line. If we assume that all zeros of f0 are simple, how then might we
obtain any zero of f1 lying off the critical line? It is easy to see that there must exist
0 ≤ τ∗ < 1 such that fτ∗ has a zero in the critical line with an even multiplicity.

Loosely speaking, we might say that zeros of multiplicity greater than one must
exist before the Riemann hypothesis fails.

4. Other periodic Dirichlet series

The Dirichlet series considered by Davenport and Heilbronn satisfies a functional
equation akin to the functional equation satisfied by the Riemann zeta function.
Moreover, this Dirichlet series of Davenport and Heilbronn is the unique solution of
its functional equation. It is natural to consider all those periodic Dirichlet series
arising as the unique solution to a fixed functional equation of the type satisfied
by the Riemann zeta function. The following result will help us determine all such
Dirichlet series; see [1].

Theorem 2. Let f(s) be a T -periodic Dirichlet series. Let χ1(s) and χ2(s) be as
in (7) and (3) respectively. Let

Vα,β =
{

f(s) : f(s) = (−1)α T−s+ 1
2 χβ(s)f(1 − s)

}
.

Let d1 = dimV0,1, d2 = dimV1,1, d3 = dimV0,2, and d4 = dimV1,2, where dimVα,β

is the dimension of Vα,β as a vector space. Then dj is given by the following table:

T d1 d2 d3 d4

4m m + 1 m m m − 1
4m + 1 m + 1 m m m
4m + 2 m + 1 m + 1 m m
4m + 3 m + 1 m + 1 m + 1 m

Thus, for T = 2,
(
1 +

√
2

2s

)
ζ(s),

(
1 −

√
2

2s

)
ζ(s)

is the list of all 2-periodic Dirichlet series which are the unique solution of a func-
tional equation.

For T = 3,

L
(
s, χ

(3)
1

)
,

(
1 +

√
3

3s

)
ζ(s),

(
1 −

√
3

3s

)
ζ(s)

is the list of all 3-periodic Dirichlet series which are the unique solution of a func-
tional equation. Here χ

(3)
1 is the nonprincipal character modulo 3.
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For T = 4,

L
(
s, χ

(4)
1

)
,

(
1 − 2

4s

)
ζ(s)

is the list of all 4-periodic Dirichlet series which are the unique solution of a func-
tional equation. Here χ

(4)
1 is the nonprincipal character modulo 4.

For T = 5,

(8)
(
1 −

√
5

5s

)
ζ(s), f1(s), f2(s) = 1 − 1/ξ

2s
+

1/ξ

3s
− 1

4s
+

0
5s

+ · · ·

is the list of all 5-periodic Dirichlet series which are the unique solution of a func-
tional equation. Here f1 is the Dirichlet series of Davenport and Heilbronn, and
the constant ξ in the definition of f2 is defined in the Introduction, §1.

For T = 6,
(
1 − 1 −

√
2

1 + 2s

)
L(s, χ(6)

1 ),
(
1 − 1 +

√
2

1 + 2s

)
L(s, χ(6)

1 )

is the list of all 6-periodic Dirichlet series which are the unique solution of a func-
tional equation. Here χ

(6)
1 is the nonprincipal character modulo 6.

For T = 7,

(9) f3(s) = 1 − 1 + α

2s
− α

3s
+

α

4s
+

1 + α

5s
− 1

6s
+

0
7s

+ · · ·

is the only 7-periodic Dirichlet series which is the unique solution of a functional
equation. Here α = 0.80194 · · · .

For T = 8, (
1 −

√
2

2s

)
L(s, χ(8)

1 )

is the only 8-periodic Dirichlet series which is the unique solution of a functional
equation. Here χ

(8)
1 (3) = −1, χ

(8)
1 (5) = 1, χ

(8)
1 (7) = −1 is a Dirichlet character.

Of all these periodic Dirichlet series arising as the unique solution of a functional
equation, only three are not Euler products. These three series are f1 as given in
(1), f2 as given in (8) and f3 as given in (9).

Now we list a few zeros off the critical line of f2 as given in (8). Notice that
most of these zeros have real part greater than 1:

2.30862 + 8.91836i, 1.94374 + 18.8994i, 2.09106 + 26.5450i,

2.15626 + 36.5556i, 1.50497 + 44.8057i, 2.33262 + 54.4201i,

1.78509 + 64.3711i, 2.17279 + 72.0637i, 0.69340 + 77.3469i,

2.05503 + 82.0598i, 1.83279 + 89.9631i, 2.34551 + 99.8614i,

1.18952 + 107.106i, 1.33795 + 109.439i, 2.22293 + 117.572i.

Finally, we list a few zeros off the critical line of f3 as given in (9). Notice that
most of these zeros have real part greater than 1:

1.34746 + 17.5286i, 1.06162 + 28.4426i, 1.30492 + 45.5320i,

1.01460 + 56.2793i, 0.91718 + 63.7111i, 1.33196 + 80.3522i,

1.22180 + 91.1756i, 1.22009 + 108.402i, 0.92165 + 119.323i,

1.28500 + 126.482i, 1.08964 + 137.285i, 0.91608 + 143.175i,

0.78002 + 146.163i, 1.28909 + 154.268i, 0.65384 + 161.521i.
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5. Proof of Theorem 1

In order to prove the theorem in §2, we let

Aτ =
1
q

q∑
j=1

aτ (j) and Aτ (x) =
∑
j≤x

aτ (j).

For σ > 0 we have

fτ (s) =
Aτ s

s − 1
+ s

∞∫
1

Aτ (x) − Aτ x

xs+1
dx.

Assume ρ ∈ C is such that 0 < �e(ρ) < 1 and f0(ρ) = 0. There exist δ > 0 such
that f0(s) does not vanish for 0 < |s − ρ| ≤ δ. Let

ε = min
{
|f0(s)| : |s − ρ| = δ

}
.

Since

|Aτ (x) − Aτ x − A0(x) + A0x| ≤ 2
q∑

j=1

|aτ (j) − a0(j)|

and aτ (j) :R × N → C are continuous functions of τ , then it follows that

|fτ (s) − f0(s)| ≤
{

1
q

∣∣∣ s

s − 1

∣∣∣ + 2
∣∣∣ s

σ

∣∣∣
} q∑

j=1

|aτ (j) − a0(j)| < ε

provided |τ | and δ are sufficiently small and |s − ρ| = δ. By Rouche’s theorem

fτ (s) = f0(s) +
{

fτ (s) − f0(s)
}

vanishes for some s such that |s − ρ| < δ. �
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