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DISCRETE MAXIMUM PRINCIPLE
FOR HIGHER-ORDER FINITE ELEMENTS IN 1D

TOMÁŠ VEJCHODSKÝ AND PAVEL ŠOLÍN

Abstract. We formulate a sufficient condition on the mesh under which we
prove the discrete maximum principle (DMP) for the one-dimensional Poisson
equation with Dirichlet boundary conditions discretized by the hp-FEM. The
DMP holds if a relative length of every element K in the mesh is bounded by
a value H∗

rel(p) ∈ [0.9, 1], where p ≥ 1 is the polynomial degree of the element
K. The values H∗

rel(p) are calculated for 1 ≤ p ≤ 100.

1. Introduction

Classical (continuous) maximum principles belong to the most important results
in the theory of second-order partial differential equations (PDEs). Their discrete
counterparts, discrete maximum principles (DMP), appeared in the early 1970s.
They were used by various authors to prove the convergence of the lowest-order
finite difference and finite element methods (see, e.g., [3, 4] and the references
therein). DMP have been studied intensively during the past decades in the context
of linear PDEs [2, 8, 10, 17, 18, 20] and more recently also nonlinear equations [9].
Most of these results have two points in common:

• they are limited to lowest-order approximations,
• they are based on M -matrices [6, 16].

Much less is known about the DMP for methods of higher orders of accuracy such as
higher-order finite difference methods, spectral FEM, or hp-FEM. Let us mention,
e.g., a result [21] on higher-order collocation methods. Particularly noteworthy is a
negative result [7] from 1981 stating that a stronger DMP is not valid for cubic and
higher-order Lagrange elements in 2D. In the quadratic case, the stronger DMP
is valid under extremely restrictive assumptions on the mesh, which almost never
could be satisfied in practice. In light of this negative result, a few attempts were
made to formulate and prove weakened forms of the DMP (see, e.g., [11, 14]). The
present result is based on the analysis of the discrete Green’s function (DGF) for
higher-order elements. A similar concept was used in the piecewise-linear case in
[5].

The paper is organized as follows. In Section 2 we introduce the one-dimensional
Poisson problem, its hp-FEM discretization, and the discrete maximum principle.
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The discrete Green’s function along with its basic properties is discussed in Sec-
tion 3. In Section 4 we derive an explicit formula for the DGF for the Poisson
problem discretized by hp-FEM, which is used to find sufficient conditions for its
nonnegativity in Section 5. This leads to the notion of critical relative element
length H∗

rel. The main result is presented in Section 6.

2. Model problem and its discretization

We consider the one-dimensional Poisson equation with homogeneous Dirichlet
boundary conditions in an open bounded interval Ω = (α, β). The standard weak
formulation reads: Find u ∈ V = H1

0 (Ω) such that

(2.1) a(u, v) = (f, v) ∀v ∈ V,

where f ∈ L2(Ω), the symbol (·, ·) stands for the inner product in L2(Ω), H1
0 (Ω) is

the standard Sobolev space, and a(u, v) = (u′, v′).
We create a partition α = x0 < x1 < . . . < xM = β of the domain Ω consisting

of M elements Ki = [xi−1, xi], i = 1, 2, . . . , M . Every element Ki is assigned an
arbitrary polynomial degree pi ≥ 1. The corresponding finite element space of
piecewise-polynomial continuous functions Vhp ⊂ V has the form

Vhp = {vhp ∈ V ; vhp|Ki
∈ P pi(Ki), i = 1, 2, . . . , M} ,

where P pi(Ki) stands for the space of polynomials of degree at most pi on the
element Ki. The space Vhp has the dimension N = −1 +

∑M
i=1 pi. There exists a

unique function uhp ∈ Vhp satisfying

(2.2) a(uhp, vhp) = (f, vhp) ∀vhp ∈ Vhp.

Definition 2.1. We say that problem (2.2) satisfies the discrete maximum principle
(DMP) if for any right-hand side f ∈ L2(Ω) it holds that

f ≥ 0 a.e. in Ω ⇒ uhp ≥ 0 in Ω.

Remark 2.2. The above implication is equivalent to

f ≥ 0 a.e. in Ω ⇒ min
x∈Ω

uhp(x) = min
x∈∂Ω

uhp(x)

for homogeneous Dirichlet boundary conditions. This is further equivalent to

f ≤ 0 a.e. in Ω ⇒ max
x∈Ω

uhp(x) = max
x∈∂Ω

uhp(x).

Remark 2.3. In problem (2.2), homogeneous Dirichlet conditions are considered
without loss of generality. This follows immediately from the fact that every solu-
tion ûhp to a problem with nonhomogeneous Dirichlet boundary conditions can be
written as ûhp = uL

hp + uhp, where uL
hp is a linear function satisfying the nonhomo-

geneous conditions and uhp vanishes at Ω-endpoints.

3. Discrete Green’s function

The discrete Green’s function (DGF) is defined in analogy with the standard
(continuous) Green’s function:

Definition 3.1. For an arbitrary z ∈ Ω, the unique solution Ghp,z ∈ Vhp to the
problem

(3.1) a(vhp, Ghp,z) = vhp(z) ∀vhp ∈ Vhp

is called the discrete Green’s function (DGF) corresponding to the point z.
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In the following, we will use the notation Ghp(x, z) = Ghp,z(x). A combination
of (2.2) and (3.1) yields an important consequence:

(3.2) uhp(z) =
∫

Ω

Ghp(x, z)f(x) dx ∀z ∈ Ω.

The following lemma shows that the DGF can easily be expressed using any
basis of Vhp; cf. [5]. We use the Kronecker symbol

δik =
{ 1 for i = k,

0 for i �= k.

Lemma 3.2. Let {ϕ1, ϕ2, . . . , ϕN} be any basis of Vhp. If the stiffness matrix
Aij = a(ϕj , ϕi), 1 ≤ i, j ≤ N , is nonsingular, then

(3.3) Ghp(x, z) =
N∑

j=1

N∑
k=1

A−1
jk ϕk(x)ϕj(z).

Here A−1
jk are the entries of the inverse stiffness matrix, i.e.,

N∑
j=1

AijA
−1
jk = δik,

1 ≤ i, k ≤ N .

Proof. Substitute

(3.4) Ghp(x, z) =
N∑

i=1

ci(z)ϕi(x)

into (3.1) with vhp = ϕj . It follows that
N∑

i=1

ci(z) a(ϕj, ϕi)︸ ︷︷ ︸
Aij

= ϕj(z).

The coefficients ci(z) can be expressed in terms of the inverse matrix as ck(z) =∑N
j=1 ϕj(z)A−1

jk , and they can be substituted back into (3.4). �

Corollary 3.3. Let {l1, l2, · · · , lN} be a basis of Vhp such that a(li, lj) = δij. Then

Ghp(x, z) =
N∑

i=1

li(x)li(z).

Lemma 3.4. If there exists a basis {l1, l2, . . . , lN} of Vhp such that a(li, lj) = δij,
1 ≤ i, j ≤ N , then Ghp(x, x) > 0 for all x ∈ Ω.

Proof. Let x ∈ Ω. Since {l1, l2, . . . , lN} is a basis, there exists at least one k ∈
{1, 2, . . . , N} such that lk(x) �= 0. Hence, by Corollary 3.3

Ghp(x, x) =
N∑

i=1

l2i (x) > 0. �

Theorem 3.5. Problem (2.2) satisfies the discrete maximum principle if and only
if the corresponding discrete Green’s function Ghp(x, z) = Ghp,z(x) defined by (3.1)
is nonnegative in Ω2.

Proof. Immediate consequence of (3.2). �
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Remark 3.6. Results presented in this section are valid for any second-order elliptic
problem of the form (2.1) as well as in higher spatial dimensions.

4. DGF for Poisson problem in 1D

4.1. Lowest-order case. Consider the case p1 = p2 = . . . = pM = 1 first.
Let BL = {φ1, φ2, . . . , φM−1} be the standard lowest-order basis consisting of the
piecewise-linear “hat functions” such that φj(xi) = δij , 1 ≤ i, j ≤ M − 1. In this
case the stiffness matrix AL ∈ R

(M−1)×(M−1) is tridiagonal,

AL
ij =

⎧⎪⎪⎨
⎪⎪⎩

1/hi + 1/hi+1 for i = j,
−1/hi+1 for i = j − 1,
−1/hi−1 for i = j + 1,
0 otherwise,

with hi = xi − xi−1.

Lemma 4.1. The inverse matrix (AL)−1 ∈ R
(M−1)×(M−1) has the form

(AL)−1 =
1

β − α

⎛
⎜⎜⎜⎝

(x1 − α)(β − x1) (x1 − α)(β − x2) (x1 − α)(β − x3) . . .
(x1 − α)(β − x2) (x2 − α)(β − x2) (x2 − α)(β − x3) . . .
(x1 − α)(β − x3) (x2 − α)(β − x3) (x3 − α)(β − x3) . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠,

i.e., (AL)−1
ij = (xi − α)(β − xj)/(β − α) for 1 ≤ i ≤ j ≤ M − 1 and (AL)−1

ij =
(xj − α)(β − xi)/(β − α) for 1 ≤ j < i ≤ M − 1.

Proof 1. We need to show that zij = δij , where

zij =
M−1∑
k=1

(AL)−1
ik AL

kj =
M−1∑
k=1

(AL)−1
ik a(φj , φk),

for all i, j = 1, 2, . . . , M − 1. Let us fix i and j and consider the bilinear forms

a1(u, v) =
∫ xi

α

u′v′ dx and a2(u, v) =
∫ β

xi

u′v′ dx.

The explicit formulae for (AL)−1
ik yield

(β − α)zij = (β − xi)a
(
φj ,

i−1∑
k=1

(xk − α)φk

)
+ (xi − α)(β − xi)a(φj , φi)

+ (xi − α)a
(
φj ,

M−1∑
k=i+1

(β − xk)φk

)
.

Now, we split the term a(φj , φi) = a1(φj , φi) + a2(φj , φi) to obtain

(β − α)zij = (β − xi)a1(φj , x − α) + (xi − α)a2(φj , β − x).

The fact that a1(φj , β − x) = a2(φj , x − α) = δij finishes the proof. �

1The authors thank an anonymous referee for simplifying their original proof.
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Figure 1. The lowest-order part GL
hp(x, z) of the discrete Green’s

function Ghp(x, z) for the Poisson equation in Ω = (−1, 1), on a
mesh with three elements [−1,−3/4], [−3/4, 0], and [0, 1].

Using Lemma 4.1 and identity (3.3), we can write the DGF in the form

GL
hp(x, z) =

1
β − α

(
M−1∑
i=1

(xi − α)(β − xi)φi(x)φi(z)(4.1)

+
M−2∑
i=1

M−1∑
j=i+1

(xi − α)(β − xj)[φi(x)φj(z) + φj(x)φi(z)]

⎞
⎠ .

In particular, we see immediately that

(4.2) GL
hp(x, z) ≥ 0 ∀[x, z] ∈ Ω2.

The situation is illustrated in Figure 1.

4.2. Higher-order case. In this paragraph we return to the original setting with
arbitrary polynomial degrees pi ≥ 1. In order to facilitate the construction of
higher-order basis functions of the space Vhp, let us introduce the Lobatto shape
functions l0, l1, l2, . . . on a reference interval K̂ = [−1, 1] (see, e.g., [12, 15]).

The lowest-order Lobatto shape functions l0 and l1 have the form l0(ξ) =
(1− ξ)/2, l1(ξ) = (1 + ξ)/2, ξ ∈ K̂. The higher-order shape functions l2, l3, . . . are
defined as antiderivatives to the Legendre polynomials. Therefore, they satisfy∫ 1

−1

l′i(ξ)l
′
j(ξ) dξ = δij , i, j = 2, 3, . . . .
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Every Lobatto shape function li, i = 2, 3, . . . , is a polynomial of degree i and it
vanishes at ±1. Thus it can be expressed as

li(ξ) = l0(ξ)l1(ξ)κi(ξ), i = 2, 3, . . . ,

where κi is a polynomial of degree i − 2. For reference, the first few kernels κi are
listed in Appendix.

The basis B = {φ1, φ2, . . . , φN} of Vhp can be written as B = BL∪BB, where BL

was defined above and BB is the higher-order part of the basis comprising functions
φM , φM+1, . . . , φN . These are defined as follows.

Consider the standard linear transformations from K̂ to Ki,

(4.3) χKi
(ξ) =

(xi − xi−1)ξ + (xi + xi−1)
2

.

On an element Ki of the polynomial degree pi, there are pi − 1 higher-order basis
functions. These vanish outside of Ki and in Ki they are defined as the Lobatto
shape functions l2, l3, . . . , lpi

composed with the inverse map χ−1
Ki

(x).

Proposition 4.2. We have the following orthogonality relations:

a(φL, φB) = 0 ∀φL ∈ BL, ∀φB ∈ BB,

a(φB, ψB) = 0 ∀φB ∈ BB , ∀ψB ∈ BB, φB �= ψB.

Proof. The proof is straightforward, based on the L2-orthogonality of the Legendre
polynomials. �

By Proposition 4.2, both the stiffness matrix A and its inverse have the following
block structure:

A =
(

AL 0
0 D

)
, A−1 =

(
(AL)−1 0

0 D−1

)
with

(4.4) D = diag
( 2

h1
, . . . ,

2
h1︸ ︷︷ ︸

(p1−1) times

,
2
h2

, . . . ,
2
h2︸ ︷︷ ︸

(p2−1) times

, . . . ,
2

hM
, . . . ,

2
hM︸ ︷︷ ︸

(pM−1) times

)
.

By (3.3), the DGF can be written as

(4.5) Ghp(x, z) = GL
hp(x, z) + GB

hp(x, z),

where GL
hp(x, z) corresponds to (4.1) and

(4.6) GB
hp(x, z) =

N∑
k=M

D−1
kk φk(x)φk(z) ∀[x, z] ∈ Ω2.

Unfortunately, GB
hp(x, z) defined by (4.6) is not nonnegative in the entire Ω2 in

general. For instance, in the example shown in Figure 2, there are small regions
near the points [1, 0] and [0, 1], where the function GB

hp(x, z) is negative.
Notice that any partition of Ω produces a rectangular grid on Ω2 and that

GB
hp(x, z) can be nonzero within the diagonal squares of this grid only. In other

words,

(4.7) supp GB
hp ⊂

M⋃
i=1

K2
i .
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Figure 2. The higher-order part GB
hp(x, z) of the discrete Green’s

function Ghp(x, z) for the Poisson equation in Ω = (−1, 1), on a
mesh with three elements [−1,−3/4], [−3/4, 0], and [0, 1] of the
polynomial degrees p1 = 1, p2 = 2, p3 = 3.

Lemma 4.3. The discrete Green’s function Ghp defined by (4.5) is nonnegative in
Ω2 \

⋃M
i=1 K2

i .

Proof. Consider (4.7) together with (4.2). �

5. The DGF on K2
i

As justified by Lemma 4.3, we only need to continue with the study of the discrete
Green’s function Ghp(x, z) in the union of the diagonal squares

⋃M
i=1 K2

i . Without
loss of generality, let us restrict ourselves to only one square K2

i , 1 ≤ i ≤ M . Let
p = pi be the polynomial degree assigned to Ki. Notice that only a few terms in
(4.1) and (4.6) are nonzero in K2

i . Hence, by (4.1), (4.4), and (4.6) we obtain

Ghp(x, z)
∣∣
K2

i
=

(xi − α)(β − xi)
β − α

φi(x)φi(z)

+
(xi−1 − α)(β − xi−1)

β − α
φi−1(x)φi−1(z)

+
(xi−1 − α)(β − xi)

β − α
[φi(x)φi−1(z) + φi−1(x)φi(z)](5.1)

+
xi − xi−1

2
GB

hp(x, z),

[x, z] ∈ K2
i , 1 ≤ i ≤ M . It is convenient to introduce the notation Ki = [xi−1, xi] =

[L, R].
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We transform the function Ghp from K2
i to the reference square K̂2 = [−1, 1]2

using the linear transformation (4.3) with x = χKi
(ξ) and z = χKi

(η),

Ghp(x, z)
∣∣
K2

i
= Ĝhp(ξ, η) =

(R − α)(β − R)
β − α

l1(ξ)l1(η)

+
(L − α)(β − L)

β − α
l0(ξ)l0(η)(5.2)

+
(L − α)(β − R)

β − α
[l1(ξ)l0(η) + l0(ξ)l1(η)]

+
R − L

2
Ĝp,B

hp (ξ, η),

[ξ, η] ∈ K̂2. Here l0(ξ) and l1(ξ) are the above-defined lowest-order shape functions
on K̂ and

(5.3) Ĝp,B
hp (ξ, η) =

p∑
k=2

lk(ξ)lk(η) = l0(ξ)l0(η)l1(ξ)l1(η)
p∑

k=2

κk(ξ)κk(η)

is the higher-order part.
Let us modify formula (5.2) in the following way: Divide (5.2) by R−L > 0 and

use the identities
(L − α)(β − L)
(β − α)(R − L)

=
(L − α)(β − R)
(β − α)(R − L)

+
L − α

β − α
,

(R − α)(β − R)
(β − α)(R − L)

=
(L − α)(β − R)
(β − α)(R − L)

+
β − R

β − α
,

and
l0(ξ)l0(η) + l1(ξ)l1(η) + l0(ξ)l1(η) + l1(ξ)l0(η) = 1 ∀[ξ, η] ∈ K̂2.

We obtain
Ĝhp(ξ, η)
R − L

=
(L − α)(β − R)
(β − α)(R − L)

+
L − α

β − α
l0(ξ)l0(η)(5.4)

+
β − R

β − α
l1(ξ)l1(η) +

1
2
Ĝp,B

hp (ξ, η).

The endpoints of Ki can be parameterized using the element length H = R − L
and a real parameter 0 ≤ t ≤ 1, so that L = α for t = 0 and R = β for t = 1:

L = (1 − t)α + t(β − H),(5.5)

R = (1 − t)(α + H) + tβ.(5.6)

Use (5.5) and (5.6), define relative element length Hrel by

Hrel =
H

β − α
,

and compute
L − α

β − α
=

t(β − α − H)
β − α

= t(1 − Hrel),(5.7)

β − R

β − α
=

(1 − t)(β − α − H)
β − α

= (1 − t)(1 − Hrel),(5.8)

(L − α)(β − R)
(β − α)(R − L)

=
t(1 − t)(β − α − H)2

(β − α)H
= t(1 − t)

(1 − Hrel)2

Hrel
.(5.9)



DMP FOR HIGHER-ORDER ELEMENTS IN 1D 1841

Substitute (5.7)–(5.9) into (5.4) to obtain

Ĝhp(ξ, η)
H

= t(1 − t)
(1 − Hrel)2

Hrel
+ t(1 − Hrel)l0(ξ)l0(η)(5.10)

+(1 − t)(1 − Hrel)l1(ξ)l1(η) +
1
2
Ĝp,B

hp (ξ, η).

Finally, use the identity

Ĝp,B
hp (ξ, η) = tĜp,B

hp (ξ, η) + (1 − t)Ĝp,B
hp (ξ, η),

substitute (5.3) into (5.10), and factor out l0(ξ)l0(η) and l1(ξ)l1(η):

Ĝhp(ξ, η)
H

= t(1 − t)
(1 − Hrel)2

Hrel
(5.11)

+ tl0(ξ)l0(η)

[
1 − Hrel +

1
2
l1(ξ)l1(η)

p∑
k=2

κk(ξ)κk(η)

]

+ (1 − t)l1(ξ)l1(η)

[
1 − Hrel +

1
2
l0(ξ)l0(η)

p∑
k=2

κk(ξ)κk(η)

]
.

Indeed, the value t(1 − t)(1 − Hrel)2/Hrel is nonnegative for all t ∈ [0, 1] as well as
the values tl0(ξ)l0(η) and (1 − t)l1(ξ)l1(η), for all [ξ, η] ∈ K̂2. Hence, the discrete
Green’s function Ghp is nonnegative in K2

i if both expressions in the square brackets
in (5.11) are nonnegative. To see that they impose the same restriction on the
relative element length Hrel, let us introduce Lemma 5.1:

Lemma 5.1. It is true that

min
[ξ,η]∈K̂2

l0(ξ)l0(η)
p∑

k=2

κk(ξ)κk(η) = min
[ξ,η]∈K̂2

l1(ξ)l1(η)
p∑

k=2

κk(ξ)κk(η).

Proof. Using the definition of the functions κi, it is easy to see that κk(ξ) = κk(−ξ)
for k even and κk(ξ) = −κk(−ξ) for k odd. Therefore, κk(ξ)κk(η) = κk(−ξ)κk(−η)
for every k = 2, 3, . . . . Moreover, l0(ξ) = l1(−ξ), which yields

min
[ξ,η]∈K̂2

l0(ξ)l0(η)
p∑

k=2

κk(ξ)κk(η) = min
[ξ,η]∈K̂2

l1(−ξ)l1(−η)
p∑

k=2

κk(−ξ)κk(−η)

= min
[ξ,η]∈K̂2

l1(ξ)l1(η)
p∑

k=2

κk(ξ)κk(η). �

Relation (5.11) and Lemma 5.1 motivate the following definition:

Definition 5.2. By critical relative element length H∗
rel corresponding to a poly-

nomial degree p ≥ 2 we mean the value

H∗
rel(p) = 1 +

1
2

min
(ξ,η)∈K̂2

l0(ξ)l0(η)
p∑

k=2

κk(ξ)κk(η)

= 1 +
1
2

min
(ξ,η)∈K̂2

l1(ξ)l1(η)
p∑

k=2

κk(ξ)κk(η).(5.12)

For p = 1 we define H∗
rel = 1.
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Figure 3. Critical relative element lengths H∗
rel(p) for p =

1, 2, . . . , 100. Circles indicate the values for p odd and crosses in-
dicate the value for p even.

Theorem 5.3. If α ≤ L < R ≤ β and

(5.13)
R − L

β − α
≤ H∗

rel(p),

then the function Ĝhp(ξ, η) defined by (5.2) is nonnegative for all [ξ, η] ∈ K̂2 =
[−1, 1]2.

Proof. Apply (5.13) and the definition of H∗
rel(p) to infer

1 − Hrel +
1
2
l1(ξ)l1(η)

p∑
k=2

κk(ξ)κk(η)

≥ 1 − H∗
rel(p) +

1
2
l1(ξ)l1(η)

p∑
k=2

κk(ξ)κk(η) ≥ 0 ∀[ξ, η] ∈ K̂2.

Similarly,

1 − Hrel +
1
2
l0(ξ)l0(η)

p∑
k=2

κk(ξ)κk(η) ≥ 0 ∀[ξ, η] ∈ K̂2.

Thus, all terms in (5.11) are nonnegative and we can conclude that

Ĝhp(ξ, η) ≥ 0 for all [ξ, η] ∈ K̂2. �

Computation of H∗
rel(p). In Table 1 we list the values of H∗

rel(p) for p=1, 2, . . . , 20.
The values of H∗

rel(p) for p = 1, 2, . . . , 100 are plotted in Figure 3. While the
values H∗

rel(p) for p = 1, 2, 3, 4 could be calculated analytically, results for p ≥ 5 are
numerical, obtained with high accuracy.
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Table 1. Critical relative element length H∗
rel(p) for p = 1, 2, 3, . . . , 20.

p H∗
rel(p) p H∗

rel(p) p H∗
rel(p) p H∗

rel(p)
1 1 6 1 11 0.953759 16 0.968695
2 1 7 0.935127 12 0.969485 17 0.967874
3 9/10 8 0.987060 13 0.959646 18 0.969629
4 1 9 0.945933 14 0.968378 19 0.970855
5 0.919731 10 0.973952 15 0.964221 20 0.970814

6. Main results

Let us summarize the conclusions of the previous analysis:

Theorem 6.1. If the partition α = x0 < x1 < . . . < xM = β of the domain
Ω = (α, β) satisfies the condition

(6.1)
xi − xi−1

β − α
≤ H∗

rel(pi) for all i = 1, 2, . . . , M,

where pi ≥ 1 is the polynomial degree assigned to the element Ki = [xi−1, xi], and
H∗

rel(pi) is defined by (5.12), then the problem (2.2) satisfies the discrete maximum
principle (i.e., uhp ≥ 0 in Ω for arbitrary f ∈ L2(Ω) which is nonnegative a.e. in
Ω).

Proof. Let Ki be any element. By (5.2), condition (6.1), and Theorem 5.3 it holds
that

Ghp(x, z)|K2
i

= Ghp(ξ, η) ≥ 0 for all [x, z] ∈ K2
i .

Thus, Ghp(x, z) ≥ 0 in
⋃M

i=1 K2
i . Lemma 4.3 implies that Ghp(x, z) ≥ 0 also in

Ω2 \
⋃M

i=1 K2
i . Theorem 3.5 finishes the proof. �

Table 1 indicates that the restriction on the relative element length (xi −xi−1)/
(β − α) is strongest in the cubic case where H∗

rel = 9/10. Moreover, Figure 3
shows a steadily growing trend in H∗

rel for p ≥ 50. These observations motivate the
following conjecture:

Conjecture 6.2. If the partition α = x0 < x1 < . . . < xM = β of the domain
Ω = (α, β) satisfies the condition

xi − xi−1

β − α
≤ 9

10
for all i = 1, 2, . . . , M,

then problem (2.2) satisfies the discrete maximum principle (i.e., uhp ≥ 0 in Ω for
arbitrary f ∈ L2(Ω) which is nonnegative a.e. in Ω).

7. Possible generalizations

An analogous technique can be used to study problem (2.1) with mixed Dirichlet-
Neumann boundary conditions. Of course, the structure of the stiffness matrix
and the structure of the DGF are different, but analysis reveals that the quantity
H∗

rel(p) plays a central role again. Since H∗
rel(p) is nonnegative in this case (at least

for p ≤ 100), the DMP for problem (2.1) with mixed boundary conditions is valid
with no restricting conditions on the mesh or polynomial degrees of elements. More
details can be found in a recent report [19].
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Generalization of these results to problems with variable coefficients and to
higher-dimensional problems, however, will be more involved. In both of these
cases, higher-order shape functions are no longer orthogonal, which yields a non-
trivial cross term in the expression for the DGF. An analysis of this term will be
crucial to achieve any progress in this direction. The goal of the analysis is to infer
possibly simple conditions on the mesh and polynomial degrees of elements so that
the DMP is valid. To achieve this goal, new techniques for the analysis of the DGF
have to be developed.

The negative result from [7] does not imply that generalizations to 2D are im-
possible. This paper dealt with a stronger version of the DMP which required the
maximum principle to be valid in all subdomains. Basically, the paper showed that
the DMP for higher-order elements was not valid on vertex patches (patches of
elements surrounding mesh vertices). It seems that vertex patches simply are too
coarse for the DMP to be valid.

Another possibility would be to employ an idea from [1]2 to treat a class of 1D
problems with a variable coefficient

−(�(x)u′)′ = f, u(α) = u(β) = 0.

The idea would be to define new vertex functions to be piecewise-harmonic, such
that each φi, i = 1, 2, . . . , M − 1, solves

−(�(x)φ′
i)

′ = 0 on (xi−1, xi), u(xi−1) = 0, u(xi) = 1,(7.1)

−(�(x)φ′
i)

′ = 0 on (xi, xi+1), u(xi) = 1, u(xi+1) = 0.(7.2)

Such vertex functions, interestingly, would be orthogonal to bubble functions. How-
ever, the definition of the corresponding bubble functions and formulation of the
condition for the DMP to be valid need further research.

Appendix

The Lobatto shape functions are defined by

lj(ξ) =

√
2j − 1

2

∫ ξ

−1

Pj−1(x) dx, j = 2, 3, . . . ,

where Pj(x) = dj/dxj(x2 − 1)j/(2jj!) stands for the jth-degree Legendre polyno-
mial. The kernels are defined by κj(ξ) = lj(ξ)/(l0(ξ)l1(ξ)), where l0(ξ) = (1− ξ)/2,
l1(ξ) = (1+ξ)/2, and ξ ∈ [−1, 1]. These kernels can be generated by the recurrence

κj+2(ξ) =
√

2j + 1
√

2j + 3
j + 2

ξκj+1(ξ) −
j − 1
j + 2

√
2j + 3
2j − 1

κj(ξ), j = 2, 3, . . . .

2We thank an anonymous referee for pointing this out.



DMP FOR HIGHER-ORDER ELEMENTS IN 1D 1845

For reference, we list several kernel functions κi (see, e.g., Section 3.1 in [15] or
Section 1.2 in [13]):

κ2(ξ) = −
√

6,

κ3(ξ) = −
√

10ξ,

κ4(ξ) = −1
4

√
14(5ξ2 − 1),

κ5(ξ) = −3
4

√
2(7ξ2 − 3)ξ,

κ6(ξ) = −1
8

√
22(21ξ4 − 14ξ2 + 1),

κ7(ξ) = −1
8

√
26(33ξ4 − 30ξ2 + 5)ξ,

κ8(ξ) = − 1
64

√
30(429ξ6 − 495ξ4 + 135ξ2 − 5),

κ9(ξ) = − 1
64

√
34(715ξ6 − 1001ξ4 + 385ξ2 − 35)ξ,

κ10(ξ) = − 1
128

√
38(2431ξ8 − 4004ξ6 + 2002ξ4 − 308ξ2 + 7).
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