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CONSTRAINT PRESERVING IMPLICIT FINITE ELEMENT
DISCRETIZATION OF HARMONIC MAP FLOW INTO SPHERES

SÖREN BARTELS AND ANDREAS PROHL

Abstract. Discretization of the harmonic map flow into spheres often uses
a penalization or projection strategy, where the first suffers from the proper
choice of an additional parameter, and the latter from the lack of a discrete
energy law, and restrictive mesh-constraints. We propose an implicit scheme
that preserves the sphere constraint at every node, enjoys a discrete energy
law, and unconditionally converges to weak solutions of the harmonic map
heat flow.

1. Introduction

Critical points of the energy

(1.1) E(u) :=
1
2

∫
Ω

| ∇u |2 dx ,

for maps u : Ω → S2, where Ω ⊂ RN , N = 2, 3, is bounded and S2 ⊂ R3 is
the unit sphere, are known as harmonic maps into spheres. The above energy is
prototypic for continuum models in ferromagnetics [14] and liquid crystal theory
[1, 15], for example. At present, there are not many algorithms available for reliable
approximation [1, 3]; main difficulties in the construction of convergent numerical
methods are the nonconvexity of the constraint, |u | = 1 almost everywhere in Ω,
limited regularity and nonuniqueness of minimizers, as well as restricted flexibility
of used Lagrange finite element functions.

An alternative strategy to study critical points of (1.1) is to consider long-time
behavior of the harmonic map flow into spheres,

ut − ∆u = | ∇u |2u on ΩT , ∂nu = 0 on ∂ΩT ,(1.2)
|u | = 1 a.e. in ΩT , u(0, ·) = u0 on Ω ,(1.3)

for any T > 0. Here, ΩT := (0, T )× Ω and ∂ΩT := (0, T )× ∂Ω, with ∂Ω being the
boundary of Ω with outer unit normal n. Problem (1.2)–(1.3) characterizes the L2-
gradient flow of (1.1), and solutions to this problem have been studied intensively
over the last fifteen years [17, 7, 8, 11]; see [18] for a survey. Weak solutions to
(1.2)–(1.3) satisfy (1.2) in a distributional sense, assume initial data in (1.3) in the
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sense of traces for u0 ∈ W 1,2(Ω,S2), and satisfy the following energy inequality
(cf. [18]) for almost every T ′ ∈ (0, T ):

(1.4) E
(
u(T ′, ·)

)
+

∫ T ′

0

‖ut(s, ·) ‖2
L2 ds ≤ E(u0) .

It is well-known that there exists a subsequence {tk′} ⊂ {tk} with tk → ∞, such that
u∗ = limk′→∞ u(tk′ , ·) exists and is a harmonic map. In order to verify existence
of weak solutions to (1.2)–(1.3), the problem is modified to first finding a solution
uε : ΩT → R3 of the following (nonconstrained) penalized formulation for ε > 0
and T > 0:

uε
t − ∆uε +

1
2ε

(
|uε |2 − 1

)
uε = 0 on ΩT , ∂nuε = 0 on ∂ΩT ,(1.5)

uε(0, ·) = u0 on Ω;(1.6)

cf. [7, 8]. Considering appropriate limits as ε → 0 for solutions to (1.5)–(1.6)
then leads to weak solutions of (1.2)–(1.3), which satisfy (1.4). Apart from its use
as an analytical tool, problem (1.5)–(1.6) is often the starting point to construct
convergent numerical schemes for (1.2)–(1.3); however, the penalization parameter
requires careful balancing with numerical parameters, and often leads to diffusive
structures in practice.

From this background, we wish to design a convergent implicit discretization
of (1.2)–(1.3) that uses a low order conforming finite element space, such that
Vh ⊂ W 1,2(Ω;R3), subordinate to a triangulation Th of Ω, and a partition of
(0, T ) named Ik = {tj}j≥0 of time-step size k > 0. Classical solutions to (1.2)–(1.3)
satisfy |u | = 1 in ΩT , for |u0 | = 1 in Ω; this property is not valid any more for
straightforward discretizations, due to damping character of most implicit temporal
discretization schemes, and restricted flexibility of globally continuous, pieceweise
polynomial finite element functions. It is the idea of the following projection ansatz
(cf. [16, 14]) to compensate for this shortcoming.

Algorithm 1.1. For j ≥ 0, let Uj ∈ Vh. Then, determine Ũj+1 ∈ Vh from

(1.7) (dtUj+1,ΦΦΦ) +
(
∇Uj+1,∇ΦΦΦ

)
=

(
| ∇Uj |2Uj+1,ΦΦΦ

)
∀ΦΦΦ ∈ Vh ,

and define Uj+1 ∈ Vh through

(1.8) Uj+1(z) =
Ũj+1(z)
| Ũj+1(z) |

, for each node.

Remark 1.1. Some modifications of the projection step are also studied in [16],
where iterates Ũj+1 ∈ Vh are only shifted closer to the sphere, rather than pro-
jecting them back onto it.

In (1.7), we use dtϕ
j := k−1

(
ϕj − ϕj−1

)
, for j ≥ 1 and a sequence {ϕj}j≥0.

Problem (1.7)–(1.8) is computationally attractive, since staying on the sphere is
decoupled from computing iterates from (1.7) in W 1,2(Ω,R3). The algorithm may
be reinterpreted as a time-shifted penalization method, which is the starting point
in [16, Chapter 4] for an error analysis: strong convergence (at optimal rates) may
be established in canonical norms by an inductive argument, to compensate for the
lack of a discrete energy law, and rests on existing (local) strong solutions to the
problem (1.2)–(1.3). These arguments were extended to N = 3 in [9]. However,
reliability of long-time computation with Algorithm 1.1 remains an open question.
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As is known from [6], existing weak solutions may show finite-time blow-up be-
havior even for N = 2, which thus leaves serious doubts on whether the efficient
Algorithm 1.1 handles such situations reliably. In [5], and motivated by [2], an
explicit fully discrete method which satisfies the side constraint at every spatial
mesh-node is developed for the general p-harmonic flow, and convergence of iter-
ates towards weak solutions of (1.2)–(1.3) is established under restrictive mesh-size
conditions, which for (1.2)–(1.3) is k = o(h2).

The goal of this paper is to construct unconditionally convergent schemes for
(1.2)–(1.3). A corresponding program was realized in [4] for the related Landau-
Lifshitz-Gilbert equation; unfortunately, arguments there do not carry over to the
present case, where in [4] the troublesome term −u × (u × ∆u) in the Landau-
Lifshitz formulation was deliberately exchanged by the damping term u×ut in the
equivalent Gilbert formulation of the ferromagnetic problem.

An essential step in the development of our scheme is to restate (1.2)–(1.3), by
using the vector identity a×(b×c) = 〈a, c〉b−〈a,b〉c, for all a,b, c ∈ R3, together
with (1.3)1, to derive

(1.9) ut + u × (u× ∆u) = 0 in ΩT .

Given the lowest order finite element space Vh ⊂ W 1,2(Ω;R3) subordinate to a
triangulation Th of Ω and a time-step size k > 0, our first approximation scheme
reads as follows.

Algorithm 1.2. For j ≥ 0, let Uj ∈ Vh, and determine Uj+1 ∈ Vh from

(dtUj+1,ΦΦΦ)h +
(
Uj+1 × (Uj+1 × ∆̃hUj+1

)
,ΦΦΦ

)
h

= 0 ∀ΦΦΦ ∈ Vh .

Here, (·, ·)h denotes a discrete version (reduced integration) of the inner product
in L2(Ω;R3), ∆̃h : W 1,2(Ω;R3) → Vh is a discrete version of the Laplacian, and we
use dtϕ

j := k−1
(
ϕj −ϕj−1

)
for j ≥ 1, for a sequence {ϕj}j≥0; we refer to Section 2

for details.
As will be shown in Lemma 3.1, solutions to this scheme satisfy an approximate

discrete energy law and an approximate sphere constraint. Next, we propose a
modified scheme, which satisfies both properties exactly, i.e., a discrete energy law
and the sphere constraint at nodes of the triangulation; cf. Lemma 3.2. We denote
ϕj+1/2 := 1

2

(
ϕj+1 + ϕj) for j ≥ 0.

Algorithm 1.3. For j ≥ 0, let Uj ∈ Vh, and determine Uj+1 ∈ Vh from

(1.10) (dtUj+1,ΦΦΦ)h +
(
U

j+1/2 × (U
j+1/2 × ∆̃hU

j+1/2)
,ΦΦΦ

)
h

= 0 ∀ΦΦΦ ∈ Vh .

It is well-known that strong solutions to (1.2)-(1.3) solve (1.9) in the distribu-
tional sense. In contrast, these relations need not hold for corresponding discretiza-
tions, due to competition of local and nonlocal aspects inherent to fully discrete
finite-element based methods; cf. [4].

Our main result is unconditional convergence of Algorithm 1.3. For this purpose,
let UUUh,k : ΩT → R3 be defined by (j ≥ 0)

(1.11) UUUh,k(t,x) :=
t − tj

k
Uj+1(x) +

tj+1 − t

k
Uj(x) ∀ ( t,x ) ∈ [tj , tj+1) × Ω .

Theorem 1.1. Let T > 0, and Th be a regular triangulation of Ω with maximal
mesh-size h > 0, and U0 ∈ Vh, with |U0(z)| = 1 for all z ∈ Nh. Let {Uj}j≥0 ⊂ Vh
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satisfy (1.10). Then |Uj(z)| = 1 for all z ∈ Nh and j ≥ 0, and

E(Uj+1) + k

j∑
�=0

∥∥U�+1/2 × ∆̃hU
�+1/2∥∥2

h
= E(U0) .

Moreover, if U0 → u0 strongly in W 1,2(Ω;R3) as ( h, k ) → 0, there exists a sub-
sequence of {UUUh,k} which converges weakly in W1,2(ΩT ;R3) to a weak solution of
(1.2)–(1.3).

The proof of Theorem 1.1 may be considered as an alternative way to construct
weak solutions to (1.2)–(1.3).

The remainder of this paper is organized as follows: Preliminaries are stated
in Section 2. Theorem 1.1 is verified in Section 3. A simple fixed-point iteration
(Algorithm 4.1) for the solution of the nonlinear system in each step (1.10) is
proposed in Section 4, and convergence is established under certain assumptions
regarding h, k > 0, and the involved stopping criterion. Concluding remarks are
stated in Section 5.

2. Preliminaries

Let Ω ⊂ RN be a bounded Lipschitz domain. We define the nonlinear Sobolev
space

W 1,2(Ω;S2) =
{
v ∈ W 1,2(Ω;R3)

∣∣ v ∈ S2 a.e. in Ω
}

,

which is equipped with the topology inherited from the one of W 1,2(Ω;R3). Critical
points u ∈ W 1,2(Ω;S2) of E(u) may be characterized as solutions to the Euler-
Lagrange equation

(2.1) −∆u = | ∇u |2u on Ω , ∂nu = 0 on ∂Ω .

If a map u ∈ W 1,2(Ω,S2) satisfies (2.1) in the distributional sense, it is called a
weakly harmonic map. We now make precise what we mean by a weak solution to
(1.2)–(1.3).

Definition 2.1. Let u0 ∈ W 1,2(Ω,S2). Then u : ΩT → R3 is a weak solution to
(1.2)–(1.3), if

1. u ∈ L∞(
0, T ; W 1,2(Ω;R3)

)
∩ W 1,2(ΩT ;R3) for all T > 0,

2. |u | = 1 almost everywhere in ΩT ,
3. u satisfies (1.4) for almost every T ′ ∈ (0, T ),
4. for all φφφ ∈ C∞(ΩT ;R3) there holds

(2.2)
∫ T

0

{
(ut,u× φφφ) +

(
∇u,∇[u ×φφφ]

)}
dt = 0 ,

5. the initial condition holds in the sense of traces.

We refer to [17, 18] for a verification of its existence and qualitative analyses.
By choosing (a regularization of) φφφ = u×ψψψ in (2.2) one checks with the properties
of the vector product and with |u| = 1 almost everywhere in ΩT that the weak
solution of (1.2)–(1.3) satisfies for all ψψψ ∈ C∞

0

(
ΩT ;R3

)
∫ T

0

{
(ut,ψψψ) + (∇u,∇ψψψ) − (|∇u|2u,ψψψ)

}
dt = 0 .
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Throughout this paper we assume that Th is a quasiuniform regular triangulation
of the polygonal or polyhedral bounded Lipschitz domain Ω ⊂ RN into triangles or
tetrahedra for N = 2, 3, respectively. We use the lowest order finite element space
Vh ⊂ W 1,2(Ω;R3),

Vh =
{
ΦΦΦ ∈ C(Ω;R3) : ΦΦΦ|K ∈ P1(K;R3) ∀K ∈ Th

}
,

where P1(K;R3) denotes the set of polynomials of total degree less than or equal
to one if restricted to the element K ∈ Th. Given the set of nodes (or vertices)
Nh in Th, and letting {ϕz : z ∈ Nh} denote the nodal basis in Vh, we define the
nodal interpolation operator IIIh : C(Ω;R3) → Vh by IIIhψψψ :=

∑
z∈Nh

ψψψ(z)ϕz, for
ψψψ ∈ C(Ω;R3). For f ,g ∈ L2(Ω;R3), and 〈·, ·〉 the inner product in R3, let

(
f ,g

)
=

∫
Ω

〈f ,g〉 dx .

For functions φφφ, ψψψ ∈ C(Ω;R3) we use

(
φφφ, ψψψ

)
h

=
∫

Ω

Ih

(
〈φφφ,ψψψ〉

)
dx =

∑
z∈Nh

βz

〈
φφφ(z),ψψψ(z)

〉
,

where βz =
∫
Ω

ϕz dx, and z ∈ Nh. We define ‖ΦΦΦ‖2
h =

(
ΦΦΦ, ΦΦΦ

)
h
, and have for all

ΦΦΦ,ΨΨΨ ∈ Vh,

‖ΦΦΦ ‖L2 ≤ ‖ΦΦΦ ‖h ≤ (N + 2)1/2 ‖ΦΦΦ ‖L2 ,(2.3) ∣∣∣(ΦΦΦ,ΨΨΨ)h − (ΦΦΦ,ΨΨΨ)
∣∣∣ ≤ Ch ‖ΦΦΦ ‖L2‖∇ΨΨΨ ‖L2 ,(2.4)

where h is the maximal mesh-size of Th. Here and throughout the paper, C > 0
denotes an ( h, k )-independent constant. We define the discrete Laplacian ∆̃h :
W 1,2(Ω;R3) → Vh via

(2.5) −(∆̃hφφφ,ΨΨΨ)h = (∇φφφ,∇ΨΨΨ) ∀ΨΨΨ ∈ Vh .

If Th is a quasiuniform triangulation of Ω, then there exists a constant C > 0 such
that for all ΦΦΦ ∈ Vh there hold

(2.6) ‖∆̃hΦΦΦ‖h ≤ Ch−2‖ΦΦΦ‖h and ‖∆̃hΦΦΦ‖L∞ ≤ Ch−2‖ΦΦΦ‖L∞ .

The proof of the first estimate in (2.6) follows directly from the inverse estimate
‖∇ΦΦΦ‖ ≤ Ch−1‖ΦΦΦ‖. In order to verify the second estimate, let z ∈ Nh be such that
‖∆̃hΦΦΦ‖L∞ = |∆̃hΦΦΦ(z)|. Choosing ΨΨΨ = ∆̃hΦΦΦ(z)ϕz in (2.5) yields that

|∆̃hΦΦΦ(z)|2 = β−1
z

(
∆̃hΦΦΦ,ΨΨΨ

)
h

≤ |∆̃hΦΦΦ(z)|β−1
z

∑
y∈Nh

ΦΦΦ(y)|
(
∇ϕy,∇ϕz

)
|≤C|∆̃hΦΦΦ(z)|β−1

z ‖ΦΦΦ‖L∞‖∇ϕz‖2
L2

≤ C|∆̃hΦΦΦ(z)|β−1
z ‖ΦΦΦ‖L∞h−2‖ϕz‖2

L2 ≤ C|∆̃hΦΦΦ(z)|h−2‖ΦΦΦ‖L∞ ,

where we have used the fact that the number of nodes y ∈ Nh such that
(
∇ϕy,∇ϕz

)
= 0 is bounded h-independently, ||∇ϕy|| ≤ C||∇ϕz|| for such y, and β−1

z ‖ϕz‖2 ≤ C.
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3. Proof of Theorem 1.1

The first lemma outlines properties of iterates from Algorithm 1.2.

Lemma 3.1. For Algorithm 1.2, suppose |U0(z)| = 1 for all z ∈ Nh. Then the
sequence {Uj}j≥0 satisfies for all j ≥ 0

(i) |Uj+1(z) |2 + k2

j∑
�=0

| dtU�+1(z) |2 = 1 ∀z ∈ Nh ,

(ii)
1
2
‖∇Uj+1 ‖2

L2 + k

j∑
�=0

[k

2
‖∇dtU�+1 ‖2

L2 +
∥∥∥Uj+1 × ∆̃hUj+1

∥∥∥2

h

]

=
1
2
‖∇U0 ‖2

L2 ,

(iii) k

j∑
�=0

‖ dtU�+1 ‖2
h ≤ 1

2
‖∇U0 ‖2

L2 .

Proof. Assertion (i) follows from choosing ΦΦΦ = Uj+1(z)ϕz ∈ Vh, for z ∈ Nh

in Algorithm 1.2, binomial formula, and assumption for initial data. In order to
verify (ii), choose ΦΦΦ = −∆̃hUj+1 and find

1
2
dt‖∇Uj+1 ‖2

L2 +
k

2
‖∇dtUj+1 ‖2

L2 +
(
Uj+1×(Uj+1×∆̃hUj+1),−∆̃hUj+1

)
h

= 0 .

Thanks to (a × b, c) := −(a × c,b) for all a,b, c ∈ R3, this verifies (ii). The
estimate (iii) now follows from (i)–(ii), by setting ΦΦΦ = dtUj+1 and using Young’s
inequality. �

Next, we ask for corresponding stability properties for Algorithm 1.3. As will
be clear in Section 4, it is useful to consider an extended version of (1.10) for this
purpose. Let {Rj+1} ⊂ Vh be given, and let ‖Rj+1‖h ≤ ε, for all j ≥ 0, and some
ε > 0. For j ≥ 0, let Uj ∈ Vh, and find Uj+1 ∈ Vh such that

(dtUj+1,ΦΦΦ)h+
(
U

j+1/2 × (U
j+1/2 × ∆̃hU

j+1/2
),ΦΦΦ

)
h

= (U
j+1/2 × Rj+1,ΦΦΦ)h ∀ΦΦΦ ∈ Vh .

(3.1)

The following lemma provides discrete counterparts of items 1 and 4 in Defini-
tion 2.1 for iterates {Uj} which satisfy (3.1).

Lemma 3.2. Let 0 ≤ ε < 1, and |U0(z)| = 1 for all z ∈ Nh. Suppose that
{Uj}, {Rj+1} ⊂ Vh satisfy (3.1). Then, for all j ≥ 0,

(i) |Uj+1(z) | = 1 ∀z ∈ Nh ,

(ii)
1
2
‖∇Uj+1 ‖2

L2 + (1 − ε)k
j∑

�=0

∥∥∥U�+1/2 × ∆̃hU
�+1/2

∥∥∥2

h

≤ 1
2
‖∇U0‖2

L2 + εtj+1 ,

(iii) k

j∑
�=0

‖ dtU�+1 ‖2
h ≤ 1

2
‖∇U0 ‖2

L2 +
5ε

4
tj .
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Proof. Choose ΦΦΦ = U
j+1/2

(z)ϕz, for z ∈ Nh to verify assertion (i). To verify (ii),
set ΦΦΦ = −∆̃hU

j+1/2
in (3.1) and deduce

1
2
dt‖∇Uj+1‖2 + ‖Uj+1/2 × ∆̃hU

j+1/2‖2
h

= −
(
dtUj+1, ∆̃hU

j+1/2)
h
−

(
U

j+1/2 ×
(
U

j+1/2 × ∆̃hU
j+1/2)

, ∆̃hU
j+1/2

)
h

= −
(
U

j+1/2 × Rj+1, ∆̃hU
j+1/2)

h
≤ 1

4ε
‖Rj+1‖2

h + ε‖Uj+1/2 × ∆̃hU
j+1/2‖2

h ,

from which we infer assertion (ii) after summation. For (iii), we set ΦΦΦ = dtUj+1 in
(3.1), the bound ‖Uj+1/2‖L∞ ≤ 1, and Young’s inequality to conclude

‖dtUj+1‖2
h =

(
U

j+1/2 × ∆̃hU
j+1/2

,U
j+1/2 × dtUj+1

)
h

+
(
U

j+1/2 × Rj+1, dtUj+1
)
h

≤ ‖Uj+1/2 × ∆̃hU
j+1/2‖h‖U

j+1/2‖L∞‖dtUj+1‖h

+‖Uj+1/2‖L∞‖dtUj+1‖h‖Rj+1‖h

≤ 1
2
‖Uj+1/2 × ∆̃hU

j+1/2‖2
h +

1
2ε

‖Rj+1‖2
h +

1
2
(1 + ε)‖dtUj+1‖2

h .

Thanks to (ii), this verifies assertion (iii). �

Existence of sequences {Uj}j≥0 ⊂ Vh which solve Algorithm 1.2, resp. (3.1),
follows from Brouwer’s fixed point theorem: for given {Rj+1} ⊂ Vh, consider the
continuous mapping F : Vh → Vh, where for all j ≥ 0,

F(ΦΦΦ) =
2
k

(
ΦΦΦ − Uj

)
+ IIIh

[
ΦΦΦ × (ΦΦΦ × ∆̃hΦΦΦ) − (ΦΦΦ × Rj+1)

]
.

For all ΦΦΦ ∈ Vh such that ‖ΦΦΦ‖h ≥ ‖Uj‖h we have
(
F(ΦΦΦ),ΦΦΦ

)
h

=
2
k

(
‖ΦΦΦ‖2

h − (Uj ,ΦΦΦ)h

)
≥ 2

k
‖ΦΦΦ‖h

(
‖ΦΦΦ‖h − ‖Uj‖h

)
≥ 0 .

Brouwer’s theorem implies the existence of ΦΦΦ∗ ∈ Vh such that F(ΦΦΦ∗) = 0 (cf. e.g.
[12, Corollary 1.1, p. 279]). Then Uj+1 := 2ΦΦΦ∗ − Uj solves (3.1). The following
result immediately implies Theorem 1.1.

Theorem 3.3. Suppose that the assumptions of Lemma 3.2 are valid, and {Uj},
{Rj} solve (3.1). Let UUUh,k,ε : ΩT → R3, as in (1.11). For U0 → u0 strongly
in W 1,2(Ω,R3) as h → 0, there exists a subsequence of {UUUh,k,ε} which converges
weakly in W 1,2(ΩT ,R3) as ( h, k, ε ) → 0 to a weak solution of (1.2)–(1.3).

The verification of this result is given in the remainder of this section. Next, we
drop sub-indices of UUUh,k,ε, and also introduce

UUU−(t, ·) := Uj , UUU+(t, ·) := Uj+1 , UUU(t, ·) := U
j+1/2

t ∈ [tj , tj+1) .

Now, the bounds of Lemma 3.2 and relations between UUU , UUU+, UUU yield the existence
of u ∈ W 1,2(ΩT ,R3) such that as ( h, k, ε ) → 0,

UUU ,UUU+,UUU ∗
⇀ u in L∞(

0, T, W 1,2(Ω,R3)
)
,

UUU ,UUU+,UUU → u in L2
(
ΩT ,R3

)
,(3.2)

∂tUUU ⇀ ∂tu in L2
(
ΩT ,R3

)
.
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Since |UUU+| = 1 for all z ∈ Nh and almost all t ∈ (0, T ), there holds that Ih

[
|UUU+|2

]
=

1 for almost all x ∈ Ω and t ∈ (0, T ), and hence we deduce with standard results
for nodal interpolation∥∥|UUU+| − 1

∥∥
L2(K)

≤ Ch‖∇
[
|UUU+|2 − 1

]
‖L2(K)

≤ Ch‖(UUU+)T∇UUU+‖2
L2(K) ≤ Ch‖∇UUU+‖2

L2(K) ,

for all K ∈ Th that |UUU| → 1 almost everywhere in ΩT , and hence |u| = 1 almost
everywhere.

We use weak lower semicontinuity of norms and the fact that U0 → u0 in
assertion (ii) of Lemma 3.2 to verify that u satisfies (1.4). Since the trace operator
is bounded and linear, it is weakly continuous as an operator from W 1,2(ΩT ,R3)
into L2(Ω,R3), and we deduce that u(0, ·) = u0 in the sense of traces. Lemma 3.4
states that the missing property 4 of Definition 2.1 for u to be a weak solution of
(1.2)–(1.3) is valid as well.

Lemma 3.4. For u : ΩT → R3 as in (3.2) and all ψψψ ∈ C∞(ΩT ,R3), then the
following identity is satisfied:∫ T

0

{
(∂tu,u ×ψψψ) + (∇u,∇[u ×ψψψ])

}
dt = 0 .

Proof. For t ∈ (0, T ) let ΨΨΨ(t, ·) = IIIhψψψ(t, ·), where ψψψ ∈ C∞(ΩT ,R3). Then(
∂tUUU ,UUU ×ΨΨΨ

)
h
−

(
∂tu,u ×ψψψ

)
=

[(
∂tUUU ,IIIh[UUU ×ΨΨΨ]

)
h
−

(
∂tUUU ,IIIh[UUU ×ΨΨΨ]

)]

+
(
∂tUUU ,IIIh[UUU ×ΨΨΨ] −UUU ×ΨΨΨ

)
+

(
∂tUUU ,UUU × [ΨΨΨ −ψψψ]

)

+
(
∂tUUU , [UUU − u] ×ψψψ

)
d +

(
∂tUUU − ∂tu,u ×ψψψ

)
.

The properties of (·, ·)h, W 1,2-stability of IIIh, and ||UUU||L∞ ≤ 1 yield∣∣∣
(
∂tUUU ,IIIh[UUU ×ΨΨΨ]

)
h
−

(
∂tUUU ,IIIh[UUU ×ΨΨΨ]

)∣∣∣
≤ Ch‖∂tUUU‖L2‖∇IIIh[UUU ×ΨΨΨ]‖L2 ≤ Ch‖∂tUUU‖L2

(
‖∇UUU‖L2 + 1

)
‖ψψψ‖W 1,∞ .

A similar argumentation shows∣∣∣
(
∂tUUU ,IIIh[UUU×ΨΨΨ]−UUU×ΨΨΨ

)∣∣∣+
∣∣∣
(
∂tUUU ,UUU×[ΨΨΨ−ψψψ]

)∣∣∣≤Ch‖∂tUUU‖L2

(
‖∇UUU‖L2+1

)
‖ψψψ‖W 1,∞ .

A combination of the last three equations yields

I :=
∣∣∣
∫ T

0

(
∂tUUU ,UUU ×ΨΨΨ

)
h
−

(
∂tu,u ×ψψψ

)
dt

∣∣∣
≤ Ch‖∂tUUU‖L2(ΩT )

(
‖∇UUU‖L2(ΩT ) + 1 + ‖UUU − u‖L2(ΩT )

)
‖ψψψ‖L∞(0,T ;W 1,∞)

+
∣∣∣
∫ T

0

(
∂tUUU − ∂tu,u ×ψψψ

)
dt

∣∣∣ .

Since UUU → u in L2(ΩT ,R3) and ∂tUUU ⇀ ∂tu in L2(ΩT ,R3), we infer that I → 0
for ( h, k, ε ) → 0. We have, using that 〈∇u,∇[u × ψψψ]〉 = 〈∇u, [u × ∇ψψψ]〉 and
〈∇UUU ,∇[UUU ×ΨΨΨ]〉 = 〈∇UUU , [UUU ×∇ΨΨΨ]〉,(

∇UUU ,∇IIIh[UUU ×ΨΨΨ]
)
−

(
∇u,∇[u ×ψψψ]

)
=

(
∇UUU ,∇{IIIh[UUU ×ΨΨΨ] −UUU ×ΨΨΨ}

)

+
(
∇UUU ,UUU ×∇[ΨΨΨ −ψψψ]

)
+

(
∇UUU , [UUU − u] ×∇ψψψ

)
+

(
∇[UUU − u],u ×∇ψψψ

)
.
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Interpolation estimates and D2UUU|K = 0 for all K ∈ T imply that∣∣∣
(
∇UUU ,∇{IIIh[UUU ×ΨΨΨ] −UUU ×ΨΨΨ}

)∣∣∣ +
∣∣∣
(
∇UUU ,UUU ×∇[ΨΨΨ −ψψψ]

)∣∣∣
≤ Ch‖∇UUU‖L2

(
‖∇UUU‖L2 + 1

)
‖ψψψ‖W 2,∞ .

We combine the previous two equations to verify that

II :=
∣∣∣
∫ T

0

(
∇UUU ,∇IIIh[UUU ×ΨΨΨ]

)
−

(
∇u,∇[u ×ψψψ]

)
dt

∣∣∣
≤ Ch‖∇UUU‖L2(ΩT )

(
‖∇UUU‖L2(ΩT ) + 1

)
‖ψψψ‖L∞(0,T ;W 2,∞)

+ ‖∇UUU‖L2(ΩT )‖UUU − u‖L2(ΩT )‖ψψψ‖L∞(0,T ;W 1,∞)+
∣∣∣
∫ T

0

(
∇[UUU − u],u ×∇ψψψ

)
dt

∣∣∣.
Using that UUU → u in L2(ΩT ,R3) and ∇UUU ⇀ ∇u in L2(ΩT ,R3N ) we deduce that
II → 0 as ( h, k, ε ) → 0. Using ‖RRR+‖h ≤ ε for almost all t ∈ (0, T ) we verify that
‖RRR+‖h ≤ ε for almost all t ∈ (0, T ) and that

III :=
∣∣∣
∫ T

0

(
UUU ×RRR+,UUU ×ΨΨΨ

)
h
dt

∣∣∣ ≤ ‖RRR+‖L2(ΩT )‖ψψψ‖L2(ΩT ) ≤ T 1/2ε‖ψψψ‖L2(ΩT ) .

Noting that([
1 − |UUU|2

]
∆̃hUUU ,UUU ×ΨΨΨ

)
h
≤ ‖UUU × ∆̃hUUU‖h

∥∥1 − |UUU|2
∥∥

h
‖ψψψh‖L∞

and using that
∣∣1 − |UUU|2

∣∣ =
∣∣〈u−UUU ,u +UUU〉

∣∣ ≤ 2|u −UUU| we deduce

IV :=
∣∣∣
∫ T

0

([
1 − |UUU|2

]
∆̃hUUU ,UUU ×ΨΨΨ

)
h
dt

∣∣∣
≤ C‖UUU × ∆̃hUUU‖L2(ΩT )‖ψψψ‖L∞(ΩT )‖u −UUU‖L2(ΩT ) .

With the bounds of Lemma 3.2 and since UUU → u in L2(ΩT ,R3) we verify that IV →
0 as ( h, k, ε ) → 0. In order to verify the assertion of the lemma we rewrite (3.1) as

(
∂tUUU ,ΦΦΦ

)
h

+
(
UUU × (UUU × ∆̃hUUU),ΦΦΦ

)
h

=
(
UUU ×RRR+,ΦΦΦ)h ,

for ΦΦΦ ∈ Vh and almost all t ∈ (0, T ). The choice ΦΦΦ(t, ·) = IIIh

[
(UUU ×ΨΨΨ)(t, ·)

]
leads to

(
∂tUUU ,UUU ×ΨΨΨ

)
h

+
(
UUU × (UUU × ∆̃hUUU),UUU ×ΨΨΨ

)
h

=
(
UUU ×RRR+,UUU ×ΨΨΨ)h .

The vector product identity

〈a× b, c × d〉 = 〈a, c〉〈b,d〉 − 〈b, c〉〈a,d〉 ∀a,b, c,d ∈ R3 ,

and the definition of ∆̃h imply that(
∂tUUU ,UUU ×ΨΨΨ

)
h
+

(
∇UUU ,∇IIIh[UUU ×ΨΨΨ]

)
=

(
UUU ×RRR+,UUU ×ΨΨΨ

)
h
+

([
1−|UUU|2

]
∆̃hUUU ,UUU ×ΨΨΨ

)
h

.

Thereby we verify that for ( h, k, ε ) → 0,
∣∣∣
∫ T

0

(
∂tu,u×ψψψ

)
+

(
∇u,∇[u ×ψψψ]

)
dt

∣∣∣ ≤ I + II + III + IV → 0 .

This finishes the proof of Theorem 3.3, which reduces to Theorem 1.1 for ε = 0. �
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4. Fixed point method for Algorithm 1.3

A fully practical version of Algorithm 1.3 requires an iterative solution of the
nonlinear system of equations in each step. The subsequent method is motivated
by the substitution kdtUj+1 = 2Wj+1−2Uj , for Wj+1 = U

j+1/2
, such that (1.10)

takes the form

(4.1)

2
k

(
Wj+1,ΦΦΦ

)
h

+
(
Wj+1 × (Wj+1 × ∆̃hWj+1),ΦΦΦ

)
h

=
2
k

(
Uj ,ΦΦΦ

)
h

∀ΦΦΦ ∈ Vh .

A suitable stopping criterion is stated to assure convergence of the following fully
practical scheme. Inputs are the time-step size k > 0, a positive integer J , a regular
triangulation Th of Ω ⊂ RN , a parameter ε > 0, initial data U0 ∈ Vh such that
|U0(z)| = 1 for all z ∈ Nh, and R0 = 0. Outputs of the subsequent algorithm are
sequences {Uj} and {Rj}.

Algorithm 4.1. 1. For j ≥ 0, set Wj+1,0 := Uj, and � := 0.
2. Compute Wj+1,�+1 ∈ Vh, such that for all ΦΦΦ ∈ Vh

(4.2)
2
k

(
Wj+1,�+1,ΦΦΦ

)
h
+

(
Wj+1,�+1×(Wj+1,�×∆̃hWj+1,�),ΦΦΦ

)
h

=
2
k

(
Uj ,ΦΦΦ

)
h

.

3. Set Ej+1,�+1 := Wj+1,�+1 − Wj+1,�, and

Rj+1 = Wj+1,�+1 × ∆̃hEj+1,�+1 + Ej+1,�+1 × ∆̃hWj+1,� .

Stop if ‖Rj+1‖ ≤ ε, and set Uj+1 := 2Wj+1,�+1 − Uj, and go to 1; set � = � + 1
and continue with 2 otherwise.

4. Stop if j + 1 = J ; set j = j + 1 and go to 1 otherwise.

The following theorem shows that all steps in Algorithm 4.1 are well-defined, that
the algorithm terminates, and that iterates converge to weak solutions of (1.2)–(1.3)
if k = O(h2). The key tool for its verification is Theorem 3.3.

Theorem 4.1. Suppose that Th is quasiuniform. Let 0 ≤ j ≤ J − 1 and Uj ∈ Vh

such that |Uj(z)| = 1 for all z ∈ Nh. Then, for all � ≥ 0, (4.2) has a unique solution
Wj+1,�+1 ∈ Vh such that

∣∣Wj+1,�+1(z)
∣∣ ≤ 1, and

∣∣[2Wj+1,�+1 − Uj
]
(z)

∣∣ = 1 for
all z ∈ Nh. Moreover, there holds for some C̃ > 0

(4.3) ‖Ej+1,�+1‖h ≤ C̃kh−2‖Ej+1,�‖h .

For k such that C̃kh−2 < 1, there holds (3.1), and hence iterates {Uj} of Algo-
rithm 4.1 subconverge to a weak solution of (1.2)–(1.3) in the sense which is made
precise in Theorem 3.3 for ( h, k, ε ) → 0.

Remark 4.1. By Banach fixed point theorem, contraction property (4.3) for Γ =
C̃kh−2 implies existence of a unique Wj+1 ∈ Vh which solves (4.1) for given Uj ,
and satisfies for all � ≥ 1,

i) ‖Wj+1 − Wj+1,�+1 ‖h ≤ Γ�

1 − Γ
‖Wj+1,1 − Uj ‖h ,

ii) ‖Wj+1 − Wj+1,�+1 ‖h ≤ Γ
1 − Γ

‖Wj+1,� − Wj+1,�+1 ‖h .
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Proof. Step 1: Well-posedness and discrete sphere constraint. The left-hand side
in (4.2) defines a continuous bilinear form a

(
Wj+1,�+1,φφφh

)
on [Vh]2. The choice

ΦΦΦ = Wj+1,�+1 shows that a is elliptic. Hence, there exists a unique solution
Wj+1,�+1 in (4.2). On choosing ΦΦΦ = Wj+1,�+1(z)ϕz for z ∈ Nh we verify that
|Wj+1,�+1(z)| ≤ |Uj(z)| = 1. Defining Ũj+1 = 2Wj+1,�+1 − Uj , (4.2) implies for
all ΦΦΦ ∈ Vh that

1
k

(
Ũj+1 − Uj ,ΦΦΦ

)
h

+
(
Wj+1,�+1 × (Wj+1,� × ∆̃hWj+1,�),ΦΦΦ

)
h

= 0 .

Choosing ΦΦΦ = Wj+1,�+1(z)ϕz for z ∈ Nh in (4.2) and noting that Wj+1,�+1 =
1
2

[
Ũj+1

h + Uj
]

yields that |Ũj+1
h (z)|2 = |Uj(z)|2 = 1.

Step 2: Property (4.3). Subtract two subsequent equations in (4.2) and choose
ΦΦΦ = Ej+1,�+1

h to verify that for � ≥ 1 there holds

2
k
‖Ej+1,�+1‖2

h = −
(
Wj+1,� × (Ej+1,� × ∆̃hWj+1,�),Ej+1,�+1

)
h

−
(
Wj+1,� × (Wj+1,�−1 × ∆̃hEj+1,�),Ej+1,�+1

)
h

≤ ‖Wj+1,�‖L∞‖Ej+1,�‖h‖∆̃hWj+1,�‖L∞‖Ej+1,�+1‖h

+‖Wj+1,�‖L∞‖Wj+1,�−1‖L∞‖∆̃hEj+1,�‖h‖Ej+1,�+1‖h .

We employ the estimates in (2.6) and use ||Wj+1,�||L∞ ≤ 1 to deduce (4.3).
Step 3: Convergence towards weak solutions of (1.2)–(1.3). Suppose that for

some � ≥ 0 we have Uj+1 = 2Wj+1,�+1 − Uj , in particular Uj+1/2 = Wj+1,�+1.
Then, the system in (4.2) implies that for all φφφh ∈ Vh there holds

(
dtUj+1,ΦΦΦ

)
h

+
(
Uj+1/2 × (Uj+1/2 × ∆̃hUj+1/2),ΦΦΦ

)
h

=
(
Uj+1/2 × (Wj+1,�+1 × ∆̃hWj+1,�+1),ΦΦΦ

)
h

−
(
Uj+1/2 × (Wj+1,� × ∆̃hWj+1,�),ΦΦΦ

)
h

=
(
Uj+1/2 × (Ej+1,�+1 × ∆̃hWj+1,�+1),ΦΦΦ

)
h

+
(
Uj+1/2 × (Wj+1,� × ∆̃hEj+1,�+1),ΦΦΦ

)
h

=
(
Uj+1/2 × Rj+1,ΦΦΦ

)
h

.

Hence, (3.1) is valid, and Theorem 3.3 implies convergence of iterates towards weak
solutions of (1.2)–(1.3) for ( h, k, ε ) → 0. This finishes the proof of the theorem. �

Remark 4.2. Newton schemes for the approximate solution of (1.10) do in general
not fit into the form (3.1). Suppose that Ũj ∈ Vh is given. Then, in order to
compute an approximation of Uj+1/2, one is led to finding W∗ ∈ Vh such that
F (W∗) = 0, where

F (W) =
2
k

(
W − Ũj

)
+ IIIh

[
W × (W × ∆̃hW)

]
.



1858 SÖREN BARTELS AND ANDREAS PROHL

Given an iterate W� (e.g. with W0 = Ũj), the correction C ∈ Vh in the update
W�+1 = W� − C is the solution of DF (W�)[C] = F (W�), i.e., C satisfies

2
k

(
C,ΦΦΦ

)
h

+
(
C× (W� × ∆̃hW�),ΦΦΦ

)
h

+
(
W� × (C× ∆̃hW�),ΦΦΦ

)
h

+
(
W� × (W� × ∆̃hC),ΦΦΦ

)
h
=

2
k

(
W� − Ũj ,ΦΦΦ

)
h

+
(
W� × (W� × ∆̃hW�),ΦΦΦ

)
h
,

for all ΦΦΦh ∈ Vh. Setting Ũj+1 := 2W�+1 − Ũj , i.e., Ũj+1/2 = W�+1, the equation
may be rewritten as

(
dtŨj+1,ΦΦΦ

)
h

+
(
Ũj+1/2 × (Ũj+1/2 × ∆̃hŨj+1/2),ΦΦΦ

)
h

=
(
C × (W� × ∆̃hC),ΦΦΦ

)
h

+
(
C × (C × ∆̃hW�),ΦΦΦ

)
h

+
(
W� × (C× ∆̃hC),ΦΦΦ

)
h
−

(
C × (C × ∆̃hC),ΦΦΦ

)
h

,

which is not of the form (3.1).

5. Concluding remarks

We proposed a constraint preserving, implicit discretization (i.e., Algorithm 1.3)
of the harmonic map flow into spheres (1.2)–(1.3); reduced spatial integration,
trapezoidal rule, as well as projected discrete Laplacian are main tools to over-
come stiffness of used (lowest order) finite elements and show unconditional con-
vergence towards weak solutions of (1.2)–(1.3) — as opposed to former schemes
in the literature. Analytical studies for a simple, linear fixed point method (Algo-
rithm 4.1) which preserves (discrete) sphere constraint elaborate necessary mesh-
size constraints to validate a contraction property at each time-step, and evidence
need of a careful selection of a stopping criterion and a corresponding parameter to
achieve overall convergence towards weak solutions of (1.2)–(1.3). The studies in
Section 4 motivate higher order fixed point methods for improved flexibility with
respect to both, mesh-size constraints and stopping criterion, which is left to future
work.
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